Specific Cation Effect on the Flotation of Graphite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Froth Flotation Tests
2.3. Contac Angle Measurement
2.4. Zeta Potential Measurement
2.5. Surface Tension Measurement and Foam Property Tests
3. Results
3.1. Effect of Salt Ion Concentration on Graphite Flotation
3.2. Effect of Salt Ions on the Surface Properties of Graphite Particles
3.2.1. Contact Angle
3.2.2. Zeta Potential
3.3. Effect of Salt Ions on the Properties of Foam
3.3.1. Solution Chemistry Analysis
3.3.2. Froth Stability Analysis
3.3.3. Surface Tension
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chehreh Chelgani, S.; Rudolph, M.; Kratzsch, R.; Sandmann, D.; Gutzmer, J. A Review of Graphite Beneficiation Techniques. Miner. Process. Extr. Met. Rev. 2015, 37, 58–68. [Google Scholar] [CrossRef]
- Jara, A.D.; Woldetinsae, G.; Betemariam, A.; Kim, J.Y. Mineralogical and petrographic analysis on the flake graphite ore from Saba Boru area in Ethiopia. Int. J. Min. Sci. Technol. 2020, 30, 715–721. [Google Scholar] [CrossRef]
- Xu, W.; Sun, K.; Qiu, Y.; Zhang, L.; Yang, L.; Wei, S.; Ding, D. Understanding the collection behavior of gangue minerals in fine flake graphite flotation. Physicochem. Probl. Miner. Process. 2022, 58, 101–112. [Google Scholar] [CrossRef]
- Ni, C.; Zhang, Q.; Jin, M.; Xie, G.; Peng, Y.; Yu, H.; Bu, X. Effect of high-speed shear flocculation on the flotation kinetics of ultrafine microcrystalline graphite. Powder Technol. 2021, 396, 345–353. [Google Scholar] [CrossRef]
- Sun, K.; Qiu, Y.; Zhang, L.; Liu, Q.; Mao, Z.; Qian, Y. Enhanced fine flake graphite flotation and reduced carbon emission by a novel water-in-oil kerosene emulsion. Colloids Surf. A Physicochem. Eng. Asp. 2022, 650, 129603. [Google Scholar] [CrossRef]
- Farrokhpay, S. The significance of froth stability in mineral flotation—A review. Adv. Colloid Interface Sci. 2011, 166, 1–7. [Google Scholar] [CrossRef]
- Xing, Y.; Gui, X.; Pan, L.; Pinchasik, B.-E.; Cao, Y.; Liu, J.; Kappl, M.; Butt, H.-J. Recent experimental advances for understanding bubble-particle attachment in flotation. Adv. Colloid Interface Sci. 2017, 246, 105–132. [Google Scholar] [CrossRef]
- Schelero, N.; von Klitzing, R. Ion specific effects in foam films. Curr. Opin. Colloid Interface Sci. 2015, 20, 124–129. [Google Scholar] [CrossRef]
- Wei, Y.-C.; Peng, Y. Effect of froth stability on dewatering of coal flotation concentrates. Miner. Process. Extr. Met. 2015, 124, 167–174. [Google Scholar] [CrossRef]
- Li, G.; Deng, L.; Cao, Y.; Wang, B.; Ran, J.; Zhang, H. Effect of sodium chloride on fine coal flotation and discussion based on froth stability and particle coagulation. Int. J. Miner. Process. 2017, 169, 47–52. [Google Scholar] [CrossRef]
- Buckley, A. Surface Science and Flotation. In Surface and Interface Science; Wandelt, K., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2020; Volume 10, pp. 735–798. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, J.Q.; Diao, W.Z. Flotation Reagent Progress and Application Overview. Appl. Mech. Mater. 2014, 441, 76–79. [Google Scholar] [CrossRef]
- Firouzi, M.; Nguyen, A. Effects of monovalent anions and cations on drainage and lifetime of foam films at different interface approach speeds. Adv. Powder Technol. 2014, 25, 1212–1219. [Google Scholar] [CrossRef]
- Firouzi, M.; Nguyen, A.V. On the effect of van der Waals attractions on the critical salt concentration for inhibiting bubble coalescence. Miner. Eng. 2014, 58, 108–112. [Google Scholar] [CrossRef]
- Jeldres, R.I.; Forbes, L.; Cisternas, L.A. Effect of Seawater on Sulfide Ore Flotation: A Review. Miner. Process. Extr. Met. Rev. 2016, 37, 369–384. [Google Scholar] [CrossRef]
- Grabowski, B.; Drzymala, J. Graphite flotation in the presence of sodium acetate. In Annales Universitatis Mariae Curie-Sklodowska; Maria Curie-Skłodowska University: Lublin, Poland, 2008; Volume 63, p. 68. [Google Scholar]
- Liu, J.; Liang, J.; Feng, X.; Cui, W.; Deng, H.; Ji, Z.; Zhao, Y.; Guo, X.; Yuan, J. Effects of inorganic ions on the transfer of weak organic acids and their salts in electrodialysis process. J. Membr. Sci. 2021, 624, 119109. [Google Scholar] [CrossRef]
- Laskowski, J.; Castro, S. Flotation in concentrated electrolyte solutions. Int. J. Miner. Process. 2015, 144, 50–55. [Google Scholar] [CrossRef]
- Laskowski, J.S.; Castro, S.; Gutierrez, L. Flotation in Seawater. Min. Met. Explor. 2018, 36, 89–98. [Google Scholar] [CrossRef]
- Cisternas, L.A.; Gálvez, E.D. The use of seawater in mining. Miner. Process. Extr. Met. Rev. 2018, 39, 18–33. [Google Scholar] [CrossRef]
- Wang, B.; Peng, Y. The effect of saline water on mineral flotation—A critical review. Miner. Eng. 2014, 66, 13–24. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, X.; Liu, H.; Zhang, H.; Miller, J.D. Some physicochemical aspects of water-soluble mineral flotation. Adv. Colloid Interface Sci. 2016, 235, 190–200. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, H.; Zhu, J.; Min, F.; Chen, J.; Shi, Q. Effect of inorganic cations on enhancing graphite/kerosene adsorption and reducing carbon emission in graphite flotation. Fuel 2022, 314, 122740. [Google Scholar] [CrossRef]
- Bournival, G.; Pugh, R.; Ata, S. Examination of NaCl and MIBC as bubble coalescence inhibitor in relation to froth flotation. Miner. Eng. 2012, 25, 47–53. [Google Scholar] [CrossRef]
- Bournival, G.; Zhang, F.; Ata, S. Coal Flotation in Saline Water: Effects of Electrolytes on Interfaces and Industrial Practice. Miner. Process. Extr. Met. Rev. 2021, 42, 53–73. [Google Scholar] [CrossRef]
- Pawlik, M.; Laskowski, J.S.; Melo, F. Effect of Coal Surface Wettability on Aggregation of Fine Coal Particles. Coal Prep. 2004, 24, 233–248. [Google Scholar] [CrossRef]
- Awan, F.U.R.; Arif, M.; Iglauer, S.; Keshavarz, A. Coal fines migration: A holistic review of influencing factors. Adv. Colloid Interface Sci. 2022, 301, 102595. [Google Scholar] [CrossRef]
- Yangshuai, Q.; Yongfu, Y.; Lingyan, Z.; Weijun, P.; Yupeng, Q. Dispersion and agglomeration mechanism of flaky graphite particles in aqueous solution. J. Dispers. Sci. Technol. 2017, 38, 796–800. [Google Scholar] [CrossRef]
- Zhang, N.; Chen, X.; Nicholson, T.; Peng, Y. The effect of saline water on the settling of coal slurry and coal froth. Powder Technol. 2019, 344, 161–168. [Google Scholar] [CrossRef]
- Paulson, O.; Pugh, R.J. Flotation of Inherently Hydrophobic Particles in Aqueous Solutions of Inorganic Electrolytes. Langmuir 1996, 12, 4808–4813. [Google Scholar] [CrossRef]
- Yang, X.; Bu, X.; Xie, G.; Chelgani, S.C. A comparative study on the influence of mono, di, and trivalent cations on the chalcopyrite and pyrite flotation. J. Mater. Res. Technol. 2021, 11, 1112–1122. [Google Scholar] [CrossRef]
- Kurniawan, A.U.; Ozdemir, O.; Nguyen, A.V.; Ofori, P.; Firth, B. Flotation of coal particles in MgCl2, NaCl, and NaClO3 solutions in the absence and presence of Dowfroth 250. Int. J. Miner. Process. 2011, 98, 137–144. [Google Scholar] [CrossRef]
- Cao, Q.; Wang, X.; Miller, J.D.; Cheng, F.; Jiao, Y. Bubble attachment time and FTIR analysis of water structure in the flotation of sylvite, bischofite and carnallite. Miner. Eng. 2010, 24, 108–114. [Google Scholar] [CrossRef]
- Ozdemir, O.; Ersoy, O.F.; Guven, O.; Turgut, H.; Cinar, M.; Çelik, M.S. Improved flotation of heat treated lignite with saline solutions containing mono and multivalent ions. Physicochem. Probl. Miner. Process. 2018, 54, 1070–1082. [Google Scholar] [CrossRef]
- Suyantara, G.P.W.; Hirajima, T.; Elmahdy, A.M.; Miki, H.; Sasaki, K. Effect of kerosene emulsion in MgCl2 solution on the kinetics of bubble interactions with molybdenite and chalcopyrite. Colloids Surf. A Physicochem. Eng. Asp. 2016, 501, 98–113. [Google Scholar] [CrossRef]
- Hirajima, T.; Suyantara, G.P.W.; Ichikawa, O.; Elmahdy, A.M.; Miki, H.; Sasaki, K. Effect of Mg2+ and Ca2+ as divalent seawater cations on the floatability of molybdenite and chalcopyrite. Miner. Eng. 2016, 96–97, 83–93. [Google Scholar] [CrossRef]
- Sun, K.; Qiu, Y.; Zhang, L. Preserving Flake Size in an African Flake Graphite Ore Beneficiation Using a Modified Grinding and Pre-Screening Process. Minerals 2017, 7, 115. [Google Scholar] [CrossRef]
- Qiu, Y.S.; Zhang, L.Y.; Sun, K.K.; Li, Y.; Qian, Y.P. Reducing entrainment of sericite in fine flaky graphite flotation using polyalurninum chloride. Physicochem. Probl. Miner. Process. 2019, 55, 1108–1119. [Google Scholar] [CrossRef]
References | Cations | Minerals | Conclusions |
---|---|---|---|
Kurniawan et al. [32] | Na+, Mg2+ | Coal | Mg2+ showed a greater flotation improvement compared to Na+. Increasing the Mg2+ concentration decreased the bubble size, which, in turn, increased the coal flotation Kinetics and recovery. |
Ozdemir et al. [33] | Na+, K+, Mg2+, Ca2+, La3+ | Coal and graphite | The enhancement of coal and graphite flotation by salt ions depends on the salt type and concentration. Multivalent Mg2+, Ca2+, and La3+ significantly improved the floatability of coal and graphite at lower salt concentrations. Bubble coalescence in salt solutions seems to be a significant factor in coal flotation in saline water. |
Ozdemir et al. [34] | Na+, K+, Mg2+, Ca2+ | Lignite | The highest recoveries were obtained with Mg2+ and the lowest with Na+. Divalent ions were more effective than monovalent ions in the flotation of heat-treated coals in salt solutions. |
Zheng et al. [29] | Na+, Mg2+, Ca2+ | Anthracite coal | Only divalent ions of Ca2+ and Mg2+ significantly compressed the double electrical layer and enhanced the attachment between bubbles and coal particles |
Suyantara et al. [35] | Mg2+ | Molybdenite and chalcopyrite | At pH 11, both the molybdenite and chalcopyrite surfaces became hydrophilic due to the presence of Mg(OH)2 on the mineral surfaces. The kerosene-Mg(OH)2(s) aggregates prevented the adsorption of kerosene on the mineral surfaces. |
Hirajima et al. [36] | Mg2+, Ca2+ | Molybdenite and chalcopyrite | Both Mg2+ and Ca2+ significantly reduce the floatability of chalcopyrite and molybdenite. Mg2+ exerts a more substantial effect than Ca2+ owing to the adsorption of Mg(OH)2 precipitates on the mineral surfaces. |
Yang et al. [31] | Na+, Mg2+, Al3+ | Chalcopyrite and pyrite | Compared to Na+ and Mg2+, Al3+ could significantly change both minerals’ surface properties, relatively improved pyrite’s floatability, and decreased chalcopyrite recovery. Adsorption of Al(OH)3(s) on the minerals surface and the collector-Al(OH)3(s) aggregate could explain these variations. |
Composition | SiO2 | Al2O3 | MgO | CaO | Fe2O3 | SO3 | Cl | FC |
---|---|---|---|---|---|---|---|---|
Content/wt% | 0.21 | 0.18 | 0.16 | 0.04 | 0.02 | 0.01 | 0.01 | 99.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, Y.; Sun, K.; Qiu, Y.; Zhang, L. Specific Cation Effect on the Flotation of Graphite. Minerals 2022, 12, 1070. https://doi.org/10.3390/min12091070
An Y, Sun K, Qiu Y, Zhang L. Specific Cation Effect on the Flotation of Graphite. Minerals. 2022; 12(9):1070. https://doi.org/10.3390/min12091070
Chicago/Turabian StyleAn, Yaxin, Kangkang Sun, Yangshuai Qiu, and Lingyan Zhang. 2022. "Specific Cation Effect on the Flotation of Graphite" Minerals 12, no. 9: 1070. https://doi.org/10.3390/min12091070
APA StyleAn, Y., Sun, K., Qiu, Y., & Zhang, L. (2022). Specific Cation Effect on the Flotation of Graphite. Minerals, 12(9), 1070. https://doi.org/10.3390/min12091070