Multiple Sulfur Isotope Evidence for Bacterial Sulfate Reduction and Sulfate Disproportionation Operated in Mesoarchaean Rocks of the Karelian Craton
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Sulfur Isotope Analysis
3.2. Scanning Electron Microscopy and Energy Dispersion X-ray Spectroscopy Analysis
- Scanning electron microscopy (SEM) was used to examine the detailed mineralogical and textural characteristics of sulfides on polished and some unpolished surface areas. Backscattered electron (BSE) and secondary electron (SE) imagery, as well as qualitative energy dispersive X-ray spectroscopy (EDS) analysis, was carried out on gold or carbon coated samples using a dual-beam TESCAN LYRA 3 XMH (Schottky cathode) Oxford AZtec Energy EDS system.
- Electron imagery was performed at variable acceleration voltage (20–30 kV) and beam current (9–14 nA). Up to 30 kV and 14 nA was used for EDS analysis to ensure sufficiently high peak count rates for accurate determination of characteristic element-specific X-ray emission lines.
- Quantitative X-ray spectroscopy spot analysis was performed using a JEOL JXA 8100 electron probe micro-analyser with three wave spectrometers and one energy dispersive spectrometers (Oxford Instruments Inca, Abingdon, UK), under a resolution of 137 eV MnKα, an accelerating voltage of 20 kV and a measure current of 1 × 10−8 A. Prior to analysis the samples were coated with a 20 nm carbon film. The beam was fully focused to give a spot size of about 1 μm with a measure current 1 × 10−8 A. Pure metals, glasses, and minerals analyzed through other methods were used as standards along with Oxford Instruments standards. Total Fe is equivalent to Fe+2 in calculations.
- The qualitative phase analysis of sulfides was determined by X-ray diffraction in the powder by Rigaku MiniFlex II (Rigaku, Japan) (XRD) at the Laboratory of X-Ray Methods of the Analytical Center of the Far East Geological Institute, Far Eastern Branch of the Russian Academy of Sciences (FEGI FEB RAS) in Vladivostok.
4. Results
5. Discussion
5.1. Sulfur Pathways Recorded by the Studied Colloform Pyrite
5.2. Colloform Pyrite—A Result of Microbial Sulfate Reduction Alone?
5.3. Colloform Pyrite: Evidence of Sulfur Disproportionation Accompanying Sulfate Reduction
5.4. Euhedral Pyrite: Evidence of Sulfur Disproportionation Accompanying Sulfate Reduction
5.5. General Insights
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Sulfide Petrography
Sample (Drill Core/Depth) | δ34S (‰) | Δ33S (‰) | Δ36S (‰) | Pyrite Types |
---|---|---|---|---|
H1/50.7 | −1.3 | 0.03 | Euhedral crystal disseminated in rocks | |
H1/50.7 | −0.1 | −0.04 | Euhedral crystal disseminated in rocks | |
H1/50.7 | −0.9 | −0.02 | Euhedral crystal disseminated in rocks | |
H1/50.7 | −1.2 | 0.03 | Euhedral crystal disseminated in rocks | |
H1/50.7 | 5.4 | 0.04 | Euhedral crystal disseminated in rocks | |
H1/54.6 | 13.4 | 0.02 | Euhedral crystal disseminated in rocks | |
H1/54.6 | 13.9 | 0.34 | Euhedral crystal disseminated in rocks | |
H1/54.6 | 13.5 | −0.02 | Euhedral crystal disseminated in rocks | |
H1/54.6 | −3.2 | 0.00 | Euhedral crystal disseminated in rocks | |
H1/54.6 | −2.9 | −0.05 | Euhedral crystal disseminated in rocks | |
H1/63 | −1.0 | 0.00 | Euhedral crystal disseminated in rocks | |
H1/75 | −4.8 | 0.84 | Euhedral crystal disseminated in rocks | |
H1/75 | −4.2 | −0.38 | Euhedral crystal disseminated in rocks | |
H1/75 | −7.0 | 0.23 | Euhedral crystal disseminated in rocks | |
H1/75 | −1.0 | −0.51 | Euhedral crystal disseminated in rocks | |
H2/24.0 | 31.9 | −0.18 | Euhedral crystal disseminated in rocks | |
H2/24.0 | 32.7 | −0.16 | Euhedral crystal disseminated in rocks | |
H2/61.5 | 2.6 | −0.01 | Euhedral crystal disseminated in rocks | |
H2/61.5 | 2.3 | 0.04 | Euhedral crystal disseminated in rocks | |
H2/61.5 | −5.1 | 0.05 | Euhedral crystal disseminated in rocks | |
H2/61.5 | 2.4 | −0.02 | Euhedral crystal disseminated in rocks | |
H2/61.5 | 2.2 | 0.02 | Euhedral crystal disseminated in rocks | |
H3/56.0 | 13.8 | 1.48 | Euhedral crystal disseminated in rocks | |
H3/56.0 | 12.6 | 1.28 | Euhedral crystal disseminated in rocks | |
H3/56.0 | 7.6 | 0.25 | Euhedral crystal disseminated in rocks | |
H3/56.0 | 11.5 | 0.40 | Euhedral crystal disseminated in rocks | |
H3/56.0 | 13.8 | 0.12 | Euhedral crystal disseminated in rocks | |
H3/56.0 | 11.6 | 0.28 | Euhedral crystal disseminated in rocks | |
H3/56.0 | 12.1 | 0.32 | Euhedral crystal disseminated in rocks | |
H3/56.0 | 10.2 | 0.28 | Euhedral crystal disseminated in rocks | |
H3/56.0 | 12.0 | 0.35 | Euhedral crystal disseminated in rocks | |
H3/56.0 | 11.9 | 0.28 | Euhedral crystal disseminated in rocks | |
H3/56.0 | 10.3 | 0.41 | Euhedral crystal disseminated in rocks | |
H3/56.0 | 5.4 | 0.10 | Euhedral crystal disseminated in rocks | |
H3/56.0 | 16.9 | 0.67 | Euhedral crystal disseminated in rocks | |
H3/56.0 | 12.2 | 0.42 | Euhedral crystal disseminated in rocks | |
H1/75 | 9.9 | 1.65 | Euhedral, observed as ring-shaped aggregates | |
H1/75 | 11.0 | 2.65 | Euhedral, observed as ring-shaped aggregates | |
H1/75 | 3.7 | 1.76 | −1.3 | Euhedral, observed as ring-shaped aggregates |
H1/75 | 2.8 | 1.57 | −2.0 | Euhedral, observed as ring-shaped aggregates |
H1/75 | 3.8 | 1.93 | −2.4 | Euhedral, observed as ring-shaped aggregates |
H1/75 | 3.8 | 1.85 | −2.5 | Euhedral, observed as ring-shaped aggregates |
H1/75 | 6.1 | 1.95 | Euhedral crystal, overgrowth around colloform grains | |
H1/75 | 6.3 | 2.20 | Euhedral crystal, overgrowth around colloform grains | |
H1/75 | 5.2 | 1.55 | Euhedral crystal, overgrowth around colloform grains | |
H1/75 | 4.6 | 1.55 | Euhedral crystal, overgrowth around colloform grains | |
H1/75 | 5.3 | 1.93 | Euhedral crystal, overgrowth around colloform grains | |
H1/75 | 5.2 | 1.96 | Euhedral crystal, overgrowth around colloform grains | |
H1/75 | 5.1 | 1.85 | Euhedral crystal, overgrowth around colloform grains | |
H1/75 | 7.0 | 2.64 | Euhedral crystal, overgrowth around colloform grains | |
H1/75 | 5.7 | 2.06 | Euhedral crystal, overgrowth around colloform grains | |
H1/75 | 5.9 | 2.02 | Euhedral crystal, overgrowth around colloform grains | |
H1/75 | 7.8 | 1.40 | Colloform grains_1, core | |
H1/75 | 3.7 | 0.31 | Colloform grains_1, concentric layer | |
H1/75 | 0.5 | 0.00 | Colloform grains_1, concentric layer | |
H1/75 | −1.8 | 0.00 | Colloform grains_1, concentric layer | |
H1/75 | 3.0 | −0.01 | Colloform grains_1, concentric layer | |
H1/75 | 16.2 | −0.01 | Colloform grains_1, concentric layer | |
H1/75 | 27.5 | 0.44 | Colloform grains_1, concentric layer | |
H1/75 | 24.5 | 0.33 | Colloform grains_1, concentric layer | |
H1/75 | 15.4 | −0.01 | Colloform grains_1, concentric layer | |
H1/75 | −6.7 | 0.05 | Colloform grains_1, concentric layer | |
H1/75 | −9.5 | 0.13 | Colloform grains_2, non-laminated | |
H1/75 | −9.8 | 0.22 | Colloform grains_2, non-laminated | |
H1/75 | −10.2 | 0.11 | Colloform grains_2, non-laminated | |
H1/75 | 7.0 | 0.08 | Colloform grains_3, non-laminated | |
H1/75 | 1.6 | −0.30 | Colloform grains_3, non-laminated | |
H1/75 | −6.6 | −0.27 | Colloform grains_3, non-laminated | |
H3/56.0 | 5.7 | 0.17 | Colloform grains_4, core | |
H3/56.0 | 8.5 | 0.23 | Colloform grains_4, concentric layer | |
H3/56.0 | 10.6 | 0.48 | Colloform grains_4, concentric layer | |
H3/56.0 | 10.1 | 0.49 | Colloform grains_4, concentric layer | |
H3/56.0 | 11.9 | 0.45 | Colloform grains_4, concentric layer |
References
- Jørgensen, B.B.; Isaksen, M.F.; Jannasch, H.W. Bacterial sulfate reduction above 100° C in deep-sea hydrothermal vent sediments. Science 1992, 258, 1756–1757. [Google Scholar] [CrossRef]
- Jørgensen, B.B.; Findlay, A.J.; Pellerin, A. The Biogeochemical sulfur cycle of marine sediments. Front. Microbiol. 2019, 10, 849. [Google Scholar] [CrossRef]
- Hofmann, H.J.; Grey, K.; Hickman, A.H.; Thorpe, R.I. Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Geol. Soc. Am. Bull. 1999, 111, 1256–1262. [Google Scholar] [CrossRef]
- Philippot, P.; Van Zuilen, M.; Lepot, K.; Thomazo, C.; Farquhar, J.; Van Kranendonk, M.J. Early Archaean microorganisms preferred elemental sulfur, not sulfate. Science 2007, 317, 1534–1537. [Google Scholar] [CrossRef] [PubMed]
- Philippot, P.; Van Zuilen, M.; Rollion-Bard, C. Variations in atmospheric sulphur chemistry on early Earth linked to volcanic activity. Nat. Geosci. 2012, 5, 668–674. [Google Scholar] [CrossRef]
- Ueno, Y.; Ono, S.; Rumble, D.; Maruyama, S. Quadruple sulfur isotope analysis of ca. 3.5 Ga Dresser Formation: New evidence for microbial sulfate reduction in the early Archean. Geochim. Cosmochim. Acta 2008, 72, 5675–5691. [Google Scholar] [CrossRef]
- Shen, Y.; Farquhar, J.; Masterson, A.; Kaufman, A.J.; Buick, R. Evaluating the role of microbial sulfate reduction in the early Archean using quadruple isotope systematics. Earth Planet. Sci. Lett. 2009, 279, 383–391. [Google Scholar] [CrossRef]
- Wacey, D.; Noffke, N.; Cliff, J.; Barley, M.E.; Farquhar, J. Micro-scale quadruple sulfur isotope analysis of pyrite from the ∼3480 Ma Dresser Formation: New insights into sulfur cycling on the early Earth. Precambrian Res. 2015, 258, 24–35. [Google Scholar] [CrossRef]
- Baumgartner, R.J.; Caruso, S.; Fiorentini, M.L.; van Kranendonk, M.J.; Martin, L.; Jeon, H.; Pagès, A.; Wacey, D. Sulfidization of 3.48 billion-year-old stromatolites of the Dresser Formation, Pilbara Craton: Constraints from in-situ sulfur isotope analysis of pyrite. Chem. Geol. 2020, 538, 119488. [Google Scholar] [CrossRef]
- Roerdink, D.L.; Mason, P.R.D.; Whitehouse, M.J.; Reimer, T. High-resolution quadruple sulfur isotope analyses of 3.2 Ga pyrite from the Barberton Greenstone Belt in South Africa reveal distinct environmental controls on sulfide isotopic arrays. Geochim. Cosmochim. Acta 2013, 117, 203–215. [Google Scholar] [CrossRef]
- Montinaro, A.; Strauss, H.; Mason, P.R.D.; Roerdink, D.; Münker, C.; Schwarz-Schampera, U.; Arndt, N.T.; Farquhar, J.; Beukes, N.J.; Gutzmer, J.; et al. Paleoarchean sulfur cycling: Multiple sulfur isotope constraints from the Barberton Greenstone Belt, South Africa. Precambrian Res. 2015, 267, 311–322. [Google Scholar] [CrossRef]
- Nabhan, S.; Marin-Carbonne, J.; Mason, P.R.D.; Heubeck, C. In situ S-isotope compositions of sulfate and sulfide from the 3.2 Ga Moodies Group, South Africa: A record of oxidative sulfur cycling. Geobiology 2020, 18, 426–444. [Google Scholar] [CrossRef]
- Canfield, D.E. Biogeochemistry of sulfur isotopes. Rev. Miner. Geochem. 2001, 43, 607–636. [Google Scholar] [CrossRef]
- Shen, Y.; Buick, R.; Canfield, D.E. Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 2001, 410, 77–81. [Google Scholar] [CrossRef]
- Liu, L.; Ireland, T.R.; Holden, P. SHRIMP 4-S isotope systematics of two pyrite generations in the 3.49 Ga Dresser Formation. Geochem. Perspect. Lett. 2021, 17, 45–49. [Google Scholar] [CrossRef]
- Kaufman, A.J.; Johnston, D.T.; Farquhar, J.; Masterson, A.L.; Lyons, T.W.; Bates, S.; Anbar, A.D.; Arnold, G.L.; Garvin, J.; Buick, R. Late Archean biospheric oxygenation and atmospheric evolution. Science 2007, 317, 1900–1903. Available online: https://www.jstor.org/stable/20048474 (accessed on 28 September 2007). [CrossRef] [PubMed]
- Ono, S.; Beukes, N.; Rumble, D. Origin of two distinct multiple-sulfur isotope compositions of pyrite in the 2.5 Ga Klein Naute Formation, Griqualand West Basin, South Africa. Precambrian Res. 2009, 169, 48–57. [Google Scholar] [CrossRef]
- Ono, S.; Kaufman, A.J.; Farquhar, J. Lithofacies control on multiple-sulfur isotope records and Neoarchean sulfur cycles. Precambrian Res. 2009, 169, 58–67. [Google Scholar] [CrossRef]
- Zerkle, A.L.; Claire, M.W.; Domagal-Goldman, S.D.; Farquhar, J.; Poulton, S.W. A bistable organic-rich atmosphere on the Neoarchaean Earth. Nat. Geosci. 2012, 5, 359–363. [Google Scholar] [CrossRef]
- Farquhar, J.; Cliff, J.; Zerkle, A.L.; Kamyshny, A.; Poulton, S.W.; Claire, M.; Adams, D.; Harms, B. Pathways for Neoarchean pyrite formation constrained by mass-independent sulfur isotopes. Proc. Natl. Acad. Sci. USA 2013, 110, 17638–17643. [Google Scholar] [CrossRef] [Green Version]
- Zhelezinskaia, I.; Kaufman, A.J.; Farquhar, J.; Cliff, J. Large sulfur isotope fractionations associated with Neoarchean microbial sulfate reduction. Science 2014, 346, 742–744. [Google Scholar] [CrossRef] [PubMed]
- Farquhar, J.; Peters, M.; Johnston, D.T.; Strauss, H.; Masterson, A.; Wiechert, U.; Kaufman, A.J. Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature 2007, 449, 706–709. [Google Scholar] [CrossRef] [PubMed]
- Guy, B.M.; Ono, S.; Gutzmer, J.; Kaufman, A.J.; Lin, Y.; Fogel, M.L.; Beukes, N.J. A multiple sulfur and organic carbon isotope record from non-conglomeratic sedimentary rocks of the Mesoarchean Witwatersrand Supergroup, South Africa. Precambrian Res. 2012, 216–219, 208–231. [Google Scholar] [CrossRef]
- Ono, S.; Beukes, N.J.; Rumble, D.; Fogel, M.L. Early evolution of atmospheric oxygen from multiple-sulfur and carbon isotope records of the 2.9 Ga Mozaan Group of the Pongola Supergroup, Southern Africa. S. Afr. J. Geol. 2006, 109, 97–108. [Google Scholar] [CrossRef]
- Strauss, H. Sulphur isotopes and the early Archaean sulphur cycle. Precambrian Res. 2003, 126, 349–361. [Google Scholar] [CrossRef]
- Farquhar, J.; Bao, H.; Thiemens, M. Atmospheric influence of Earth’s earliest sulphur cycle. Science 2000, 289, 756–758. [Google Scholar] [CrossRef]
- Johnston, D. Multiple sulfur isotopes and the evolution of Earth’s surface sulfurcycle. Earth-Sci. Rev. 2011, 106, 161–183. [Google Scholar] [CrossRef]
- Farquhar, J.; Savarino, J.; Airieau, S.; Thiemens, M.H. Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis: Implications for the early atmosphere. J. Geophys. Res. 2001, 106, 32829–32839. [Google Scholar] [CrossRef]
- Pavlov, A.A.; Kasting, J.F. Mass-independent fractionation of sulphur isotopesin Archaean sediments: Strong evidence for an anoxic Archaean atmosphere. Astrobiology 2002, 2, 27–41. [Google Scholar] [CrossRef]
- Ono, S.; Eigenbrode, J.L.; Pavlov, A.A.; Kharecha, P.; Ruble, D.; Kasting, J.F.; Freeman, K.H. New insights into Archean sulfur cycle from mass-independent sulfurisotope records from the Hamersley Basin, Australia. Earth Planet. Sci. Lett. 2003, 213, 15–30. [Google Scholar] [CrossRef]
- Ono, S.; Wing, B.; Johnston, D.; Farquhar, J.; Rumble, D. Mass-dependent fractionation of quadruple stable sulfur isotope system as a new tracer of sulfur biogeochemical cycles. Geochim. Cosmochim. Acta 2006, 70, 2238–2252. [Google Scholar] [CrossRef]
- Glebovitskii, V.A. The Early Precambrian of the Baltic Shield; Nauka: St. Petersburg, Russia, 2005. (In Russain) [Google Scholar]
- Hölttä, P.; Heilimo, E.; Huhma, H.; Kontinen, A.; Mertanen, S.; Mikkola, P.; Paavola, J.; Peltonen, P.; Semprich, J.; Slabunov, A.; et al. The Archaean of the Karelia Province in Finland. Geol. Surv. Finl. Spec. Pap. 2012, 54, 21–73. [Google Scholar]
- Kulikov, V.S.; Svetov, S.A.; Slabunov, A.I.; Kulikova, V.V.; Polin, A.K.; Golubev, A.I.; Gorkovets, V.Y.; Ivashchenko, V.I.; Gogolev, M.A. Geological map of Southeastern Fennoscandia (scale 1:750 000): A new approach to map compilation. Trans. KarRC RAS. 2017, 2, 3–41. [Google Scholar] [CrossRef]
- Slabunov, A.I.; Lobach-Zhuchenko, S.B.; Bibikova, E.V.; Sorjonen-Ward, P.; Balagansky, V.V.; Volodichev, O.I.; Shchipansky, A.A.; Svetov, S.A.; Chekulaev, V.P.; Arestova, N.A.; et al. The Archaean Nucleus of the Baltic/Fennoscandian Shield. In European Lithosphere Dynamics: Geological Society of London, Memoir; Gee, D.G., Stephenson, R.A., Eds.; European Lithosphere Dynamics Geological Society: London, UK, 2006; Volume 32, pp. 627–644. [Google Scholar]
- Slabunov, A.I.; Nesterova, N.S.; Egorov, A.V.; Kuleshevich, L.V.; Kevlich, V.I. Age of the Archean strata with banded iron formation in the Kostomuksha Greenstone Belt, Karelian Craton, Fennoscandian Shield: Constraints on the geochemistry and geochronology of zircons. Geochem. Int. 2021, 59, 341–356. [Google Scholar] [CrossRef]
- Hölttä, P.; Heilimo, E.; Huhma, H.; Kontinen, A.; Mertanen, S.; Mikkola, P.; Paavola, J.; Peltonen, P.; Semprich, J.; Slabunov, A.; et al. The Archaean Karelia and Belomorian Provinces, Fennoscandian Shield. In Evolution of Archean Crust and Early Life. Modern Approaches in Solid Earth Sciences; Dilek, Y., Furnes, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 55–102. [Google Scholar] [CrossRef]
- Lobach-Zhuchenko, S.B.; Chekulaev, V.P.; Arestova, N.A.; Levskii, L.K.; Kovalenko, A.V. Archaean terranes in Karelia: Geological and isotopic–geochemical evidence. Geotectonics 2000, 34, 452–466. [Google Scholar]
- Puchtel, I.S.; Hofmann, A.W.; Amelin, Y.u.V.; Garbe-Schönberg, C.-D.; Samsonov, A.V.; Shchipansky, A.A. Combined mantle plume-island arc model for the formation of the 2.9 ga Sumozero-Kenozero greenstone belt, se baltic shield: Isotope and trace element constraints. Geochim. Cosmochim. Acta 1999, 63, 3579–3595. [Google Scholar] [CrossRef]
- Kuleshevich, L.V. Metamorphism and Ore Potential of Archean Greenstone Belts from the Southeastern Margin of the Baltic Shield; Karelian Scientific Center: Petrozavodsk, Russia, 1992. (In Russian) [Google Scholar]
- Kuleshevich, L.V.; Furman, V.N.; Fedyuk, Z.N. Promises for gold mineralization in the Kamenoozero structure of the Sumozero-Kenozero greenstone belt. Geol. Useful Miner. Karelia. 2005, 8, 50–67. (In Russian) [Google Scholar]
- Hölttä, P.; Heilimo, E.; Huhma, H.; Kontinen, A.; Lauri, L.; Slabunov, A. Paleoarchean rocks in the Fennoscandian Shield (Chapter 32). In Earth’s Oldest Rocks, 2nd ed.; Van Kranendonk, M.J., Bennett, V.C., Hoffmann, J.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 819–836. [Google Scholar]
- Vysotskii, S.V.; Khanchuk, A.I.; Kuleshevich, L.V.; Ignatiev, A.V.; Slabunov, A.I.; Velivetskaya, T.A. The Multi-isotope composition of sulfur in sulfides and microfossils of the Mesoarchean Leksa pyrite ore occurrence of the Karelian Craton: New data on abiogenic and biogenic effects on the formation of ancient ores. Dokl. Earth Sci. 2019, 485, 409–412. [Google Scholar] [CrossRef]
- Vysotskiy, S.V.; Slabunov, A.I.; Ignatiev, A.V.; Kuleshevich, L.V.; Velivetskaya, T.A. Multiple sulfur isotopes from Mesoarchean volcano-sedimentary massive sulfide deposits of the Karelian Craton: Significance for determining sulfur sources, biogeochemical processes and the genesis of deposits. Russ. Geol. Geophys. 2022. [Google Scholar] [CrossRef]
- Kuleshevich, L.V.; Belashev, B.Z. Pyrite mineralization in East Karelia (experience in studying the composition and electrophysical properties of pyrites). Geol. Miner. Karelia 1998, 1, 57–72. (In Russian) [Google Scholar]
- Galley, A.G.; Hannington, M.; Jonasson, I. Volcanogenic massive sulphide deposits. In Mineral Deposits of Canada—A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods; Goodfellow, W.D., Ed.; Special Publication 5; Geological Association of Canada, Mineral Deposits Division: Saint John, NB, Canada, 2007; pp. 141–161. [Google Scholar]
- Hannington, M.D.; Bleeker, W.; Kjarsgaard, I. Sulfide mineralogy, geochemistry, and ore genesis of the Kidd Creek deposit—Part I. North, central, and south orebodies. In The Giant Kidd Creek Volcanogenic Massive Sulfide Deposit, Western Abitibi Subprovince, Canada; Hannington, M.D., Barrie, C.T., Eds.; Economic Geology Monograph Series; Geo Science World: McLean, VA, USA, 1999; Volume 10, pp. 163–224. [Google Scholar] [CrossRef]
- Goodfellow, W.D.; McCutcheon, S.R. Geologic and genetic attributes of volcanic sediment-hosted massive sulfide deposits of the Bathurst mining camp, New Brunswick—A synthesis. In Massive Sulfide Deposits of the Bathurst Mining Camp, New Brunswick, and Northern Maine; Goodfellow, W.D., McCutcheon, S.R., Peter, J.M., Eds.; Economic Geology Monograph Series; Geo Science World: McLean, VA, USA, 2003; Volume 11, pp. 245–301. [Google Scholar]
- Barrie, C.T.; Hannington, M.D. Classification of volcanic-associated massive sulfide deposits based on host-rock composition. In Volcanic-Associated Massive Sulfide Deposits: Progresses and Examples in Modern and Ancient Settings; Barrie, C.T., Hannington, M.D., Eds.; Reviews in Economic Geology; Geo Science World: McLean, VA, USA, 1999; Volume 8, pp. 1–11. [Google Scholar] [CrossRef]
- Franklin, J.M.; Gibson, H.L.; Jonasson, I.R.; Galley, A.G. Volcanogenic massive sulfide deposits. In One Hundredth Anniversary Volume; Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P., Eds.; Geo Science World: McLean, VA, USA, 2005; pp. 523–560. [Google Scholar] [CrossRef]
- Hannington, M.D.; de Ronde, C.E.; Petersen, S. Sea-Floor Tectonics and Submarine Hydrothermal Systems. Economic Geology 100th Anniversary Volume, 1905–2005: Littleton, Colo; Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P., Eds.; Geo Science World: McLean, VA, USA, 2005; pp. 111–141. [Google Scholar] [CrossRef]
- Ignatiev, A.V.; Velivetskaya, T.A.; Budnitskiy, S.Y.; Yakovenko, V.V.; Vysotskiy, S.V.; Levitskii, V.I. Precision analysis of multisulfur isotopes in sulfides by femtosecond laser ablation GC-IRMS at high spatial resolution. Chem. Geol. 2018, 493, 316–326. [Google Scholar] [CrossRef]
- Velivetskaya, T.A.; Ignatiev, A.V.; Yakovenko, V.V.; Vysotskiy, S.V. An improved femtosecond laser-ablation fluorination method for measurements of sulfur isotopic anomalies (Δ33S and Δ36S) in sulfides with high precision. Rapid Commun. Mass Spectrom. 2019, 33, 1722–1729. [Google Scholar] [CrossRef] [PubMed]
- Farquhar, J.; Savarino, J.; Jackson, T.L.; Thiemens, M.H. Evidence of atmospheric sulphur in the martian regolith from sulphur isotopes in meteorites. Nature 2000, 404, 50–52. [Google Scholar] [CrossRef] [PubMed]
- Berner, R.A. Sedimentary pyrite formation. Am. J. Sci. 1970, 268, 1–23. [Google Scholar] [CrossRef]
- Rickard, D.T. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: The rate equation. Geochim. Cosmochim. Acta 1997, 61, 115–134. [Google Scholar] [CrossRef]
- Rickard, D.; Luther, G.W., III. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: The mechanism. Geochim. Cosmochim. Acta 1997, 61, 135–147. [Google Scholar] [CrossRef]
- Masterson, A.L.; Farquhar, J.; Wing, B.A. Sulfur mass-independent fractionation patterns in the broadband UV photolysis of sulfur dioxide: Pressure and third body effects. Earth Planet Sci. Lett. 2011, 306, 253–260. [Google Scholar] [CrossRef]
- Whitehill, A.R.; Ono, S. Excitation band dependence of sulfur isotope mass-independent fractionation during photochemistry of sulfur dioxide using broadband light sources. Geochim. Cosmochim. Acta 2012, 94, 238–253. [Google Scholar] [CrossRef]
- Ono, S.; Whitehill, A.R.; Lyons, J.R. Contribution of isotopologue self-shielding to sulfur mass-independent fractionation during sulfur dioxide photolysis. J. Geophys. Res. Atmospheres 2013, 118, 2444–2454. [Google Scholar] [CrossRef]
- Whitehill, A.R.; Xie, C.; Hu, X.; Xie, D.; Guo, H.; Ono, S. Vibronic origin of sulfur mass-independent isotope effect in photoexcitation of SO2 and the implications to the early earth’s atmosphere. Proc. Natl. Acad. Sci. USA 2013, 110, 17697–17702. [Google Scholar] [CrossRef]
- Endo, Y.; Ueno, Y.; Aoyama, S.; Danielache, S.O. Sulfur isotope fractionation by broadband UV radiation to optically thin SO2 under reducing atmosphere. Earth Planet Sci. Lett. 2016, 453, 9–22. [Google Scholar]
- Endo, Y.; Danielache, S.O.; Ueno, Y. Total pressure dependence of sulfur mass-independent fractionation by SO2 photolysis. Geophys. Res. Lett. 2019, 46, 483–491. [Google Scholar] [CrossRef]
- Ignatiev, A.V.; Velivetskaya, T.A.; Yakovenko, V.V. Effect of mass-independent isotope fractionation of sulfur (Δ33S and Δ36S) during SO2 photolysis in experiments with a broadband light source. Geochem Int. 2019, 57, 751–760. [Google Scholar] [CrossRef]
- Velivetskaya, T.A.; Ignatiev, A.V.; Yakovenko, V.V. Mass-independent sulfur isotope fractionation in the photochemical SO2 processes under the UV radiation of different wave length. Geochem Int. 2020, 58, 1228–1238. [Google Scholar] [CrossRef]
- Thode, H.; Kleerekoper, H.; McElcheran, D. Isotope fractionation in the bacterial reduction of sulphate. Research 1951, 4, 581–582. [Google Scholar]
- Kaplan, I.R.; Rafter, T.A. Fractionation of stable isotopes of sulfur by Thiobacilli. Science 1958, 127, 517–518. [Google Scholar] [CrossRef]
- Kaplan, I.R.; Rittenberg, S.C. Microbiological fractionation of sulphur isotopes. Microbiology 1964, 34, 195–212. [Google Scholar] [CrossRef]
- Kemp, A.L.W.; Thode, H.G. The mechanism of the bacterial reduction of sulphate and of sulphite from isotope fractionation studies. Geochim. Cosmochim. Acta 1968, 32, 71–91. [Google Scholar] [CrossRef]
- Sim, M.S.; Bosak, T.; Ono, S. Large sulfur isotope fractionation does not require disproportionation. Science 2011, 333, 74–77. [Google Scholar] [CrossRef]
- Drake, H.; Tullborg, E.-L.; Whitehouse, M.; Sandberg, B.; Blomfeldt, T.; Åström, M.E. Extreme fractionation and micro-scale variation of sulphur isotopes during bacterial sulphate reduction in deep groundwater systems. Geochim. Cosmochim. Acta 2015, 161, 1–18. [Google Scholar] [CrossRef]
- Drake, H.; Whitehouse, M.J.; Heim, C.; Reiners, P.W.; Tillberg, M.; Hogmalm, K.J.; Dopson, M.; Broman, C.; Åström, M.E. Unprecedented 34S-enrichment of pyrite formed following microbial sulfate reduction in fractured crystalline rocks. Geobiology 2018, 16, 556–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavalazzi, B.; Agangi, A.; Barbieri, R.; Franchi, F.; Gasparotto, G. The formation of low-temperature sedimentary pyrite and its relationship with biologically-induced processes. Geol. Ore Depos. 2014, 56, 395–408. [Google Scholar] [CrossRef]
- Hallbauer, D.K.; Barton, J.M. The fossil gold placers of the Witwatersrand. Gold Bull. 1987, 20, 68–79. [Google Scholar] [CrossRef]
- Frizzo, P.; Rampazzo, G.; Molinaroli, E. Authigenic iron sulphides in Recent sediments of the Venice Lagoon (northern Italy). Eur. J. Miner. 1991, 3, 603–612. [Google Scholar] [CrossRef]
- Huang, F.; Gao, S.; Chen, L.; Su, L.; Li, Y.; Meng, L.; Liu, K.; Chai, C.; Qi, X. Micro-texture and in situ sulfur isotope of pyrite from the Baiyunpu Pb-Zn deposit in central Hunan, South China: Implications for the growth mechanism of colloform pyrite aggregates. J. Asian Earth Sci. 2020, 193, 104302. [Google Scholar] [CrossRef]
- Agangi, A.; Hofmann, A.; Rollion-Bard, C.; Marin-Carbonne, J.; Cavalazzi, B.; Large, R.; Meffre, S. Gold accumulation in the Archaean Witwatersrand Basin, South Africa—evidence from concentrically laminated pyrite. Earth Sci. Rev. 2015, 140, 27–53. [Google Scholar] [CrossRef]
- Canfield, D.E. Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochim. Cosmochim. Acta 2001, 65, 1117–1124. [Google Scholar] [CrossRef]
- Habicht, K.S.; Gade, M.; Thamdrup, B.; Berg, P.; Canfield, D.E. Calibration of sulfate levels in the Archean Ocean. Science 2002, 298, 2372–2374. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, J.W.; Wing, B.A.; Farquhar, J.; Hannington, M.D. Neoarchaean seawater sulphate concentrations from sulphur isotopes in massive sulphide ore. Nat. Geosci. 2013, 6, 61–64. [Google Scholar] [CrossRef]
- Crowe, S.A.; Paris, G.; Katsev, S.; Jones, C.; Kim, S.-T.; Zerkle, A.L.; Nomosatryo, S.; Fowle, D.A.; Adkins, J.F.; Sessions, A.L.; et al. Sulfate was a trace constituent of Archean seawater. Science 2014, 346, 735–739. Available online: https://www.jstor.org/stable/24917791 (accessed on 7 November 2014). [CrossRef]
- Canfield, D.E. The evolution of the Earth surface sulfur reservoir. Am. J. Sci. 2004, 304, 839–861. [Google Scholar] [CrossRef]
- Ingvorsen, K.; Zehnder, A.J.B.; Jørgensen, B.B. Kinetics of sulfate and acetate uptake by Desulfobacter postgatei. Appl. Environ. Microbiol. 1984, 47, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Ono, S.; Eigenbrode, J.L.; Pavlov, A.A.; Kharecha, P.; Rumble, D.; Kasting, J.F.; Freeman, K.H. New insights into Archaean sulfur cycle from mass-independent sulfur isotope records from the Hamersley Basin, Australia. Earth Planet Sci. Lett. 2003, 213, 15–30. [Google Scholar] [CrossRef]
- Cypionka, H.; Smock, A.M.; Bottcher, M.E. A combined pathway of sulfur compound disproportionation in Desulfovivrio desulfuricans. FEMS Microbiol. Lett. 1998, 166, 181–186. [Google Scholar] [CrossRef]
- Canfield, D.E.; Thamdrup, B. The production of 34S depleted sulfide during bacterial disproportionation of elemental sulfur. Science 1994, 266, 1973–1975. [Google Scholar] [CrossRef] [PubMed]
- Thamdrup, B.; Finster, K.; Hansen, J.W.; Bak, F. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Appl. Environ. Microbiol. 1993, 59, 101–108. [Google Scholar] [CrossRef]
- Canfield, D.E.; Thamdrup, B.; Fleischer, S. Isotope fractionation and metabolism by pure and enrichment cultures of elemental sulfur-disproportionating bacteria. Limnol. Oceanogr. 1998, 43, 253–264. [Google Scholar] [CrossRef]
- Böttcher, M.E.; Thamdrup, B.; Vennemann, T.W. Oxygen and sulfur isotope fractionation during anaerobic bacterial disproportionation of elemental sulfur. Geochim. Cosmochim. Acta 2001, 65, 1601–1609. [Google Scholar] [CrossRef]
- Böttcher, M.E.; Thamdrup, B. Anaerobic sulfide oxidation and stable isotope fractionation associated with bacterial sulfur disproportionation in the presence of MnO2. Geochim. Cosmochim. Acta 2001, 65, 1573–1581. [Google Scholar] [CrossRef]
- Böttcher, M.E.; Thamdrup, B.; Gehre, M.; Theune, A. 34S/32S and 18O/16O fractionation during sulfur disproportionation by Desulfobulbus propionicus. Geomicrobiol. J. 2005, 22, 219–226. [Google Scholar] [CrossRef]
- Johnston, D.T.; Farquhar, J.; Wing, B.A.; Kaufman, A.J.; Canfield, D.E.; Habicht, K.S. Multiple sulfur isotope fractionations in biological systems: A case study with sulfate reducers and sulfur disproportionators. Am. J. Sci. 2005, 305, 645–660. [Google Scholar] [CrossRef]
- Canfield, D.E.; Teske, A. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur isotope studies. Nature 1996, 382, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Johnston, D.T.; Farquhar, J.; Canfield, D.E. Sulfur isotope insights into microbial sulfate reduction: When microbes meet models. Geochim. Cosmochim. Acta 2007, 71, 3929–3947. [Google Scholar] [CrossRef]
- Farquhar, J.; Johnston, D.T.; Wing, B.A.; Habicht, K.S.; Canfield, D.E.; Airieau, S.; Thiemens, M.H. Multiple sulphur isotopic interpretations of biosynthetic pathways: Implications for biological signatures in the sulphur isotope record. Geobiology 2003, 1, 27–36. [Google Scholar] [CrossRef]
- Farquhar, J.; Johnston, D.T.; Wing, B.A. Implications of conservation of mass effects on mass-dependent isotope fractionations: Influence of network structure on sulfur isotope phase space of dissimilatory sulfate reduction. Geochim. Cosmochim. Acta 2007, 71, 5862–5875. [Google Scholar] [CrossRef]
- Ye, Y.T.; Wu, C.D.; Zhai, L.N.; An, Z.Z. Pyrite morphology and episodic euxinia of the Ediacaran Doushantuo Formation in South China. Sci. China Inf. Sci. 2017, 60, 102–113. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, D.; Zhang, J.; Lü, X.; Wang, Z.; Liao, W.; Shi, X.; Tang, J.; Xie, G. Pyrite morphology as an indicator of paleoredox conditions and shale gas content of the longmaxi and wufeng shales in the Middle Yangtze Area, South China. Minerals 2019, 7, 428. [Google Scholar] [CrossRef]
- Duverger, A.; Berg, J.S.; Busigny, V.; Guyo, F.; Bernard, S.; Miot, J. Mechanisms of pyrite formation promoted by sulfate-reducing bacteria in pure culture. Front. Earth Sci. 2020, 8, 588310. [Google Scholar] [CrossRef]
- Wacey, D.; Kilburn, M.R.; Saunders, M.; Cliff, J.; Brasier, M.D. Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nat. Geosci. 2011, 4, 698–702. [Google Scholar] [CrossRef]
- Duck, L.J.; Glikson, M.; Golding, S.D.; Webb, R.E. Microbial remains and other carbonaceous forms from the 3.24 Ga Sulphur Springs black smoker deposit, Western Australia. Precambrian Res. 2007, 154, 205–220. [Google Scholar] [CrossRef]
- Schidlowski, M. Probable life-forms from the Precambrian of the Witwatersrand system (South Africa). Nature 1965, 205, 895–896. [Google Scholar] [CrossRef]
- Guan, C.; Wang, W.; Zhou, C.; Muscente, A.D.; Wan, B.; Chen, X.; Yuan, X.; Chen, Z.; Ouyang, Q. Controls on fossil pyritization: Redox conditions, sedimentary organic matter content, and Chuaria preservation in the Ediacaran Lantian Biota. Palaeo. Palaeo. Palaeo. 2017, 474, 26–35. [Google Scholar] [CrossRef]
- Lepot, K. Signatures of early microbial life from the Archean (4 to 2.5 Ga) eon. Earth-Sci. Rev. 2020, 209, 103296. [Google Scholar] [CrossRef]
- Donald, R.; Southam, G. Low temperature anaerobic bacterial diagenesis of ferrous monosulfide to pyrite. Geochim. Cosmochim. Acta 1999, 63, 2019–2023. [Google Scholar] [CrossRef]
- Bao, H.; Sun, T.; Kohl, I.; Peng, Y. Comment on “Early Archaean microorganisms preferred elemental sulfur, not sulfate”. Science 2008, 319, 1336. [Google Scholar] [CrossRef] [PubMed]
- Finster, K. Microbiological disproportionation of inorganic sulfur compounds. J. Sulphur Chem. 2008, 29, 281–292. [Google Scholar] [CrossRef]
- Finster, K.; Liesack, W.; Thamdrup, B. Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. nov., a new anaerobic bacterium isolated from marine surface sediment. Appl. Environ. Microbiol. 1998, 64, 119–125. [Google Scholar] [CrossRef]
- Holland, H.D. Systematics of isotopic composition of sulfur in oceans during the Phanerozoic and its implications for atmospheric oxygen. Geochim. Cosmochim. Acta 1973, 37, 2605–2616. [Google Scholar] [CrossRef]
- Sugitani, K. Early Archean (Pre-3.0 Ga) Cellularly Preserved Microfossils and Microfossil-like Structures from the Pilbara Craton, Western Australia—A Review. In Earth’s Oldest Rocks; van Kranendonk, M.J., Bennett, V.C., Hoffmann, J.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1007–1028. [Google Scholar] [CrossRef]
- Wacey, D.; Noffke, N.; Saunders, M.; Guagliardo, P.; Pyle, D.M. Volcanogenic pseudo-fossils from the ~3.48 Ga Dresser Formation, Pilbara, Western Australia. Astrobiology 2018, 18, 539–555. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vysotskiy, S.V.; Velivetskaya, T.A.; Ignatiev, A.V.; Slabunov, A.I.; Aseeva, A.V. Multiple Sulfur Isotope Evidence for Bacterial Sulfate Reduction and Sulfate Disproportionation Operated in Mesoarchaean Rocks of the Karelian Craton. Minerals 2022, 12, 1143. https://doi.org/10.3390/min12091143
Vysotskiy SV, Velivetskaya TA, Ignatiev AV, Slabunov AI, Aseeva AV. Multiple Sulfur Isotope Evidence for Bacterial Sulfate Reduction and Sulfate Disproportionation Operated in Mesoarchaean Rocks of the Karelian Craton. Minerals. 2022; 12(9):1143. https://doi.org/10.3390/min12091143
Chicago/Turabian StyleVysotskiy, Sergey V., Tatyana A. Velivetskaya, Aleksandr V. Ignatiev, Aleksandr I. Slabunov, and Anna V. Aseeva. 2022. "Multiple Sulfur Isotope Evidence for Bacterial Sulfate Reduction and Sulfate Disproportionation Operated in Mesoarchaean Rocks of the Karelian Craton" Minerals 12, no. 9: 1143. https://doi.org/10.3390/min12091143
APA StyleVysotskiy, S. V., Velivetskaya, T. A., Ignatiev, A. V., Slabunov, A. I., & Aseeva, A. V. (2022). Multiple Sulfur Isotope Evidence for Bacterial Sulfate Reduction and Sulfate Disproportionation Operated in Mesoarchaean Rocks of the Karelian Craton. Minerals, 12(9), 1143. https://doi.org/10.3390/min12091143