Formation of the Miaoan Au-Polymetallic Deposit in the Northern Taihang Mountain, North China Craton: Ore Geology, Geochronological and Geochemical Perspectives
Abstract
:1. Introduction
2. Regional Geology
3. Characteristics of Ore Deposits
3.1. Orebody Characteristics
3.1.1. The Cu–Fe Ore Belt
3.1.2. The Cu–Zn Ore Belt
3.1.3. The Au Ore Belt
3.2. Ore Characteristics
3.2.1. Ore Type
3.2.2. Mineral Composition, Texture, and Structure
3.2.3. Wall-Rock Alteration
4. Samples and Methods
4.1. Pyrite Rb-Sr Isotopic Dating
4.2. Trace Element and S-C-O Isotopic Composition Analyses
5. Results
5.1. Pyrite Rb-Sr Isochron Age
5.2. Trace Element Compositions of Pyrites
5.3. Sulfur Isotopic Composition of Pyrite
5.4. Carbon and Oxygen Isotopic Compositions of Calcite and Ore
6. Discussion
6.1. Geochronology
6.2. The Properties of the Ore-Forming Fluids
6.3. Physicochemical Conditions of Mineralization
6.4. Source of Ore-Forming Fluids
6.5. Formation Mechanism of the Deposit
7. Conclusions
- (1)
- The Au mineralization shows a close spatial relationship with skarn-type Cu–Fe and Cu–Zn mineralization in the Miaoan Au-polymetallic deposit.
- (2)
- The Miaoan Au-polymetallic deposit was formed at 129.5 ± 2.4 Ma as indicated by the pyrite Rb–Sr isochron age, which is consistent with the age of magmatic rocks exposed in this deposit, suggesting a genetic relationship between them.
- (3)
- Large amounts of mantle-derived materials were involved in ore-forming fluids, as indicated by the S isotopes of pyrites and the C–O isotopes of calcites and ores.
- (4)
- The destruction of the North China Craton induced the upwelling of asthenospheric materials, which resulted in intense crust-mantle interactions, magmatic activity, and Au mineralization.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hou, Z.Q.; Li, Q.Y.; Gao, Y.F.; Lu, Y.J.; Yang, Z.M.; Wang, R.; Shen, Z.C. Lower-crustal magmatic hornblendite in North China Craton: Insight into the genesis of porphyry Cu deposits. Econ. Geol. 2015, 110, 1879–1904. [Google Scholar] [CrossRef]
- Zhu, R.X.; Fan, H.R.; Li, J.W.; Meng, Q.R.; Li, S.R.; Zeng, Q.D. Decratonic gold deposits. Sci. China-Earth Sci. 2015, 58, 1523–1537. [Google Scholar] [CrossRef]
- Zhu, R.X.; Sun, W.D. The big mantle wedge and decratonic gold deposits. Sci. China-Earth Sci. 2021, 64, 1451–1462. [Google Scholar] [CrossRef]
- Liu, Z.; Mao, X.; Jedemann, A.; Bayless, R.C.; Deng, H.; Chen, J.; Xiao, K. Evolution of pyrite compositions at the Sizhuang gold deposit, Jiaodong Peninsula, eastern China: Implications for the genesis of Jiaodong-type orogenic gold mineralization. Minerals 2021, 11, 344. [Google Scholar] [CrossRef]
- Li, S.R.; Santosh, M. Metallogeny and craton destruction: Records from the North China Craton. Ore Geol. Rev. 2014, 56, 376–414. [Google Scholar] [CrossRef]
- Li, J.W.; Bi, S.J.; Selby, D.; Chen, L.; Vasconcelos, P.; Thiede, D.; Zhou, M.F.; Zhao, X.F.; Li, Z.K.; Qiu, H.N. Giant Mesozoic gold provinces related to the destruction of the North China Craton. Earth Planet. Sci. Lett. 2012, 349, 26–37. [Google Scholar] [CrossRef]
- Chen, B.H.; Deng, J.; Ji, X.Z. Time limit of gold mineralization in Muping-Rushan belt, eastern Jiaodong Peninsula, China: Evidence from muscovite Ar-Ar dating. Minerals 2022, 12, 278. [Google Scholar] [CrossRef]
- Li, S.S.; Li, L.; Li, S.R.; Santosh, M.; Alam, M. Age and mineralization processes of decratonic lode gold deposits in the southern North China Craton: Constraints from trace elements, in-situ S-Pb isotopes and Rb-Sr geochronology of pyrite from the Chen’er gold deposit. Ore Geol. Rev. 2022, 145, 104888. [Google Scholar] [CrossRef]
- Cai, Y.C.; Fan, H.R.; Santosh, M.; Hu, F.F.; Yang, K.F.; Li, X.H. Decratonic gold mineralization: Evidence from the Shangzhuang gold deposit, eastern North China Craton. Gondwana Res. 2018, 54, 1–22. [Google Scholar] [CrossRef]
- Song, M.C.; Xue, G.Q.; Liu, H.B.; Li, Y.X.; He, C.Y.; Wang, H.J.; Wang, B.; Song, Y.X.; Li, S.Y. A geological-geophysical prospecting model for deep-seated gold deposits in the Jiaodong Peninsula, China. Minerals 2021, 11, 1393. [Google Scholar] [CrossRef]
- Li, C.P.; Shen, J.F.; Li, S.R.; Liu, Y.; Liu, F.X. In-situ LA-ICP-MS trace elements analysis of pyrite and the physicochemical conditions of telluride formation at the Baiyun gold deposit, North East China: Implications for gold distribution and deposition. Minerals 2019, 9, 129. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Groves, D.I.; Gardoll, S. Orogenic gold and geologic time: A global synthesis. Ore Geol. Rev. 2001, 18, 1–75. [Google Scholar] [CrossRef]
- Li, S.R.; Santosh, M.; Zhang, H.F.; Shen, J.F.; Dong, G.C.; Wang, J.Z.; Zhang, J.Q. Inhomogeneous lithospheric thinning in the central North China Craton: Zircon U-Pb and S-He-Ar isotopic record from magmatism and metallogeny in the Taihang Mountains. Gondwana Res. 2013, 23, 141–160. [Google Scholar] [CrossRef]
- Deng, J.; Wang, C.M.; Bagas, L.; Santosh, M.; Yao, E.Y. Crustal architecture and metallogenesis in the south-eastern North China Craton. Earth-Sci. Rev. 2018, 182, 251–272. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.F.; Santosh, M.; Liu, X.F.; Liang, Y.Y.; Yang, L.Q.; Zhao, R.; Yang, L. Remobilization of metasomatized mantle lithosphere: A new model for the Jiaodong gold province, eastern China. Miner. Depos. 2020, 55, 257–274. [Google Scholar] [CrossRef]
- Song, M.C.; Li, S.Z.; Santosh, M.; Zhao, S.J.; Yu, S.; Yi, P.H.; Cui, S.X.; Lv, G.X.; Xu, J.X.; Song, Y.X.; et al. Types, characteristics and metallogenesis of gold deposits in the Jiaodong Peninsula, eastern North China Craton. Ore Geol. Rev. 2015, 65, 612–625. [Google Scholar] [CrossRef]
- Sun, W.D. Decratonic gold deposits: A new concept and new opportunities. Natl. Sci. Rev. 2015, 2, 248–249. [Google Scholar] [CrossRef]
- Li, L.; Santosh, M.; Li, S.R. The ‘Jiaodong type’ gold deposits: Characteristics, origin and prospecting. Ore Geol. Rev. 2015, 65, 589–611. [Google Scholar] [CrossRef]
- Song, M.-C.; Li, J.; Yu, X.-F.; Song, Y.-X.; Ding, Z.-J.; Li, S.-Y. Metallogenic characteristics and tectonic setting of the Jiaodong gold deposit, China. Solid Earth Sci. 2021, 6, 385–405. [Google Scholar] [CrossRef]
- Sun, W.D.; Ding, X.; Hu, Y.H.; Li, X.H. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth Planet. Sci. Lett. 2007, 262, 533–542. [Google Scholar] [CrossRef]
- Sun, W.D.; Li, S.; Yang, X.Y.; Ling, M.X.; Ding, X.; Duan, L.A.; Zhan, M.Z.; Zhang, H.; Fan, W.M. Large-scale gold mineralization in eastern China induced by an early Cretaceous clockwise change in Pacific plate motions. Int. Geol. Rev. 2013, 55, 311–321. [Google Scholar] [CrossRef]
- Deng, J.; Liu, X.F.; Wang, Q.F.; Pan, R.G. Origin of the Jiaodong-type Xinli gold deposit, Jiaodong Peninsula, China: Constraints from fluid inclusion and C-D-O-S-Sr isotope compositions. Ore Geol. Rev. 2015, 65, 674–686. [Google Scholar] [CrossRef]
- Groves, D.I.; Santosh, M. The giant Jiaodong gold province: The key to a unified model for orogenic gold deposits? Geosci. Front. 2016, 7, 409–417. [Google Scholar] [CrossRef]
- Peng, N.; Shao, Y.; Liu, Z.; Wang, C. Metallogenic mechanism of Yixingzhai gold ore field in Fanshi county, Shanxi province: Evidences from isotopes and fluid inclusion. Chin. J. Nonferrous Met. 2017, 27, 305–317. [Google Scholar]
- Zhang, J.Q.; Li, S.R.; Santosh, M.; Lu, J.; Wang, C.L. Metallogenesis of precambrian gold deposits in the Wutai greenstone belt: Constrains on the tectonic evolution of the North China Craton. Geosci. Front. 2018, 9, 317–333. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Li, S.R.; Santosh, M.; Niu, S.D.; Li, Q.; Lu, J. The magmatic-hydrothermal mineralization systems of the Yixingzhai and Xinzhuang gold deposits in the central North China Craton. Ore Geol. Rev. 2017, 88, 416–435. [Google Scholar] [CrossRef]
- Zhu, X.Q.; Wang, J.B.; Pang, Z.S.; Zhen, S.M.; Yang, F.; Xue, J.L.; Jia, H.X.; Shi, G.Y. Ore geology, fluid inclusion microthermometry and H-O-S isotopes of the Liyuan gold deposit, central Taihang mountains, North China Craton. Minerals 2019, 9, 606. [Google Scholar] [CrossRef]
- Kusky, T.M.; Windley, B.F.; Zhai, M.G. Tectonic evolution of the North China block: From orogen to craton to orogen. Mesoz. Sub-Cont. Lithospheric Thinning Under East. Asia 2007, 280, 1–34. [Google Scholar] [CrossRef]
- Zhai, M.G. Lower crust and lithospheric mantle beneath the North China Craton before the Mesozoic lithospheric disruption. Acta Petrol. Sin. 2008, 24, 2185–2204. [Google Scholar]
- Zhai, M.-G.; Santosh, M. The early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Res. 2011, 20, 6–25. [Google Scholar] [CrossRef]
- Tang, L.; Santosh, M. Neoarchean-Paleoproterozoic terrane assembly and Wilson cycle in the North China Craton: An overview from the central segment of the Trans-North China Orogen. Earth-Sci. Rev. 2018, 182, 1–27. [Google Scholar] [CrossRef]
- Zhu, R.X.; Yang, J.H.; Wu, F.Y. Timing of destruction of the North China Craton. Lithos 2012, 149, 51–60. [Google Scholar] [CrossRef]
- Wu, F.-Y.; Yang, J.-H.; Xu, Y.-G.; Wilde, S.A.; Walker, R.J. Destruction of the North China Craton in the Mesozoic. Annu. Rev. Earth Planet. Sci. 2019, 47, 173–195. [Google Scholar] [CrossRef]
- Chu, X.L.; Sun, J.G.; Sun, F.T.; Mei, Y.X.; Liu, Y.; Men, L.; Zhao, K.Q.; Zhang, X.T. Petrogenesis of the early Cretaceous Hongshan complex in the southern Taihang Mountains: Constraints from element geochemistry, zircon U-Pb geochronology and Hf isotopes. Minerals 2021, 11, 1111. [Google Scholar] [CrossRef]
- Gao, Y.F.; Santosh, M.; Wei, R.H.; Ma, G.X.; Chen, Z.K.; Wu, J.L. Origin of high Sr/Y magmas from the northern Taihang Mountains: Implications for Mesozoic porphyry copper mineralization in the North China Craton. J. Asian Earth Sci. 2013, 78, 143–159. [Google Scholar] [CrossRef]
- Wu, F.Y.; Lin, J.Q.; Wilde, S.A.; Zhang, X.O.; Yang, J.H. Nature and significance of the early Cretaceous giant igneous event in eastern China. Earth Planet. Sci. Lett. 2005, 233, 103–119. [Google Scholar] [CrossRef]
- Wu, F.Y.; Xu, Y.G.; Gao, S.; Zheng, J.P. Lithospheric thinning and destruction of the North China Craton. Acta Petrol. Sin. 2008, 24, 1145–1174. [Google Scholar]
- Yang, J.H.; Wu, F.Y.; Wilde, S.A. A review of the geodynamic setting of large-scale late Mesozoic gold mineralization in the North China Craton: An association with lithospheric thinning. Ore Geol. Rev. 2003, 23, 125–152. [Google Scholar] [CrossRef]
- Zhu, R.X.; Chen, L.; Wu, F.Y.; Liu, J.L. Timing, scale and mechanism of the destruction of the North China Craton. Sci. China-Earth Sci. 2011, 54, 789–797. [Google Scholar] [CrossRef]
- Cai, J.; Yan, G.; Chang, Z.; Wang, X.; Shao, H.; Chu, Z. Petrological and geochemical characteristics of the Wanganzhen complex and discussion on its genesis. Acta Petrol. Sin. 2003, 19, 81–92. [Google Scholar]
- Shen, Z.C.; Hou, Z.Q.; Yu, F.; Chen, Z.K.; Li, Q.Y.; Ma, G.X.; Ge, F.; Wang, Z.M. Shrimp zircon U-Pb ages and Hf isotopes of the intermediate-acidic rocks of Wanganzhen complex in northern part of Taihang Mountains and their geological implications. Acta Petrol. Sin. 2015, 31, 1409–1420. [Google Scholar]
- Xue, F.; Santosh, M.; Kim, S.W.; Tsunogae, T.; Yang, F. Thermo-mechanical destruction of Archean cratonic roots: Insights from the Mesozoic Laiyuan granitoid complex, North China Craton. Lithos 2021, 400–401, 106394. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Li, S.R.; Santosh, M.; Li, Q.; Niu, S.D.; Li, Z.D.; Zhang, X.G.; Jia, L.B. Timing and origin of Mesozoic magmatism and metallogeny in the Wutai-Hengshan region: Implications for destruction of the North China Craton. J. Asian Earth Sci. 2015, 113, 677–694. [Google Scholar] [CrossRef]
- Qu, K.; Dong, G.; Li, S.; Shen, J.; Wang, Y.; Wang, X.; Luo, W. Lithogeochemistry and Sr-Nd-Pb isotopic characteristics of Mujicun porphyry Cu-Mo deposit in Taihang Mountains and their significances. Geoscience 2014, 28, 449–460. [Google Scholar]
- Lüders, V.; Ziemann, M. Possibilities and limits of infrared light microthermometry applied to studies of pyrite-hosted fluid inclusions. Chem. Geol. 1999, 154, 169–178. [Google Scholar] [CrossRef]
- Yang, J.-H.; Zhou, X.-H. Rb-Sr, Sm-Nd, and Pb isotope systematics of pyrite: Implications for the age and genesis of lode gold deposits. Geology 2001, 29, 711–714. [Google Scholar] [CrossRef]
- Li, Q.-L.; Chen, F.; Yang, J.-H.; Fan, H.-R. Single grain pyrite Rb–Sr dating of the linglong gold deposit, eastern China. Ore Geol. Rev. 2008, 34, 263–270. [Google Scholar] [CrossRef]
- Dong, L.; Wan, B.; Yang, W.; Deng, C.; Chen, Z.; Yang, L.; Cai, K.; Xiao, W. Rb-Sr geochronology of single gold-bearing pyrite grains from the Katbasu gold deposit in the south Tianshan, China and its geological significance. Ore Geol. Rev. 2018, 100, 99–110. [Google Scholar] [CrossRef]
- Zhang, P.; Kou, L.; Bi, Z.; Han, R.; Zhao, Y.; Sha, D. Rb–Sr dating of gold-bearing pyrite in the Jinchang porphyry Cu–Au deposit, Heilongjiang province, NE China. Resour. Geol. 2018, 68, 446–454. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, Q.; Liu, J.; Wu, L.; Qin, K. Porphyry Mo and epithermal Au–Ag–Pb–Zn mineralization in the Zhilingtou polymetallic deposit, South China. Miner. Depos. 2020, 55, 1385–1406. [Google Scholar] [CrossRef]
- Wang, C.; Deng, J.; Santosh, M.; Carranza, E.J.M.; Gong, Q.; Guo, C.; Xia, R.; Lai, X. Timing, tectonic implications and genesis of gold mineralization in the Xincheng gold deposit, china: C–H–O isotopes, pyrite Rb–Sr and zircon fission track thermochronometry. Ore Geol. Rev. 2015, 65, 659–673. [Google Scholar] [CrossRef]
- Ludwig, K.R. Isoplot 3.0: A geochronological toolkit for microsoft excel. Berkeley geochronology center special publication. US Geol. Sur. Open File Rep. 2003, 39, 91–445. [Google Scholar]
- Wang, Y.X.; Yang, J.D.; Chen, J.; Zhang, K.J.; Rao, W.B. The Sr and Nd isotopic variations of the Chinese Loess Plateau during the past 7 Ma: Implications for the East Asian winter monsoon and source areas of loess. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 249, 351–361. [Google Scholar] [CrossRef]
- Chen, B.H.; Wang, Z.L.; Li, H.L.; Li, J.K.; Li, J.L.; Wang, G.Q. Evolution of ore fluid of the Taishang gold deposit, Jiaodong: Constraints on REE and trace element component of auriferous pyrite. Acta Petrol. Sin. 2014, 30, 2518–2532. [Google Scholar]
- Guo, L.; Huang, C.; Zhang, L.; Chen, B.; Li, R.; Liu, Y. Source of ore-forming fluids in the Luoshan gold deposit, Jiaodong:Constrains from REE and trace element features of auriferous pyrite in the altered-rock type and auriferous quartz vein type ores. Geoscience 2019, 33, 121–136. [Google Scholar]
- Li, J.; Song, M.C.; Liang, J.L.; Jiang, M.Y.; Li, S.Y.; Ding, Z.J.; Su, F. Source of ore-forming fluids of the Jiaojia deeply seated gold deposit: Evidences from trace elements and Sulfur-Helium-Argon isotopes of pyrite. Acta Petrol. Sin. 2020, 36, 297–313. [Google Scholar]
- Xue, J.L.; Li, S.R.; Pang, Z.S.; Tao, W.; Sun, W.Y.; Chen, H.; Zhang, Y.Q. Ore-forming fluids, sources of materials in the Denggezhuang gold deposit, Jiaodong Penisula and implications for ore genesis. Acta Petrol. Sin. 2018, 34, 1453–1468. [Google Scholar]
- Sun, S.S.; McDonough, W.S. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes; Geological Society Special Publication: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. Treatise Geochem. 2003, 3, 1–64. [Google Scholar]
- Bajwah, Z.U.; Seccombe, P.K.; Offler, R. Trace element distribution, Co:Ni ratios and genesis of the big cadia iron-copper deposit, new south wales, australia. Miner. Depos. 1987, 22, 292–300. [Google Scholar] [CrossRef]
- Brill, B.A. Trace-element contents and partitioning of elements in ore minerals from the CSA Cu-Pb-Zn deposit, Australia, and implications for ore genesis. Can. Mineral. 1989, 27, 263–274. [Google Scholar]
- Chao, C.; Shu-yin, N.I.U.; Bao-de, W.; Ai-qun, S.U.N.; Bao-jun, M.A.; Wen-xue, W.; Yin-cang, G.A.O. A tentative discussion on ore-forming material sources and mineralization of the Shihu gold deposit in western Hebei province. Geol. China 2009, 36, 1340–1349. [Google Scholar]
- Cui, Y. The chemical composition and its genetic significance of the pyrite in Tuling–Shihu gold deposits. Acta Petrol. Mineral. 1993, 12, 371–381. [Google Scholar]
- Chen, C.; Wang, B.; Niu, S.; Zhang, F.; Ma, B.; Zhang, J.; Sun, A.; Wang, H.; Ma, G.; Chen, Z.; et al. Discussion on the ore-forming material sources of Mujicun copper (molybdenum)polymetallic orefield in Laiyuan county, Hebei province, China. J. Jilin Univ. Earth Sci. Ed. 2015, 45, 106–118. [Google Scholar]
- Dong, G.C.; Santosh, M.; Li, S.R.; Shen, J.F.; Mo, X.X.; Scott, S.; Qu, K.; Wang, X. Mesozoic magmatism and metallogenesis associated with the destruction of the North China Craton: Evidence from U-Pb geochronology and stable isotope geochemistry of the Mujicun porphyry Cu-Mo deposit. Ore Geol. Rev. 2013, 53, 434–445. [Google Scholar] [CrossRef]
- Ma, G.X. Geological characteristics and metallogenic model of copper deposit at Muji village of Laiyuan county, Hebei province. J. Geol. Miner. Resour. North China 1997, 12, 52–66. [Google Scholar]
- Zhen, S.; Pang, Z.; Zhu, X.; Xue, J.; Fang, Y.; Jia, H.; Shi, G.; Wang, D.; Zha, Z.; Song, X. The characteristics of trace elements and S, Pb, He and Ar isotopes in the Liyuan gold deposit in Shanxi province, and their significance. Earth Sci. Front. 2020, 27, 373–390. [Google Scholar]
- Chen, C.; Niu, S.; Wang, F.; Zhang, F.; Zhang, Q.; Ma, B.; Sun, A.; Zhang, J.; Cao, Y.; Zhang, X. Timing of mineralization at the Shihu gold deposit in the middle segment of the Taihang Mountain, China. Acta Geochim. 2018, 37, 80–89. [Google Scholar] [CrossRef]
- Chen, B.; Chen, Z.C.; Jahn, B.M. Origin of mafic enclaves from the Taihang Mesozoic Orogen, North China Craton. Lithos 2009, 110, 343–358. [Google Scholar] [CrossRef]
- Gao, Y.F.; Santosh, M.; Hou, Z.Q.; Wei, R.H.; Ma, G.X.; Chen, Z.K.; Wu, J.L. High Sr/Y magmas generated through crystal fractionation: Evidence from Mesozoic volcanic rocks in the northern Taihang Orogen, North China Craton. Gondwana Res. 2012, 22, 152–168. [Google Scholar] [CrossRef]
- Song, Y.; Ding, H.Y.; Qu, X.M.; Wang, R.J.; Zhou, W.; Wang, S.Z. Re-Os and U-Pb geochronology of the Dawan Mo-Zn-Fe deposit in northern Taihang Mountains, China. Resour. Geol. 2014, 64, 117–135. [Google Scholar] [CrossRef]
- Xue, F.; Santosh, M.; Tsunogae, T.; Yang, F. Geochemical and isotopic imprints of early Cretaceous mafic and felsic dyke suites track lithosphere-asthenosphere interaction and craton destruction in the North China Craton. Lithos 2019, 326, 174–199. [Google Scholar] [CrossRef]
- Bi, X.W.; Hu, R.Z.; Peng, J.T.; Li, H.L.; Hu, X.Y. REE and HFSE geochemical characteristics of pyrites in Yao’an gold deposit in western Yunnan, China: Tracing ore forming fluid signatures. Geochim. Cosmochim. Acta 2008, 72, A81. [Google Scholar]
- Liang, J.L.; Li, J.; Liu, X.M.; Zhai, W.; Huang, Y.; Zhao, J.; Sun, W.D.; Song, M.C.; Li, J.Z. Multiple element mapping and in-situ S isotopes of Au-carrying pyrite of Shuiyindong gold deposit, southwestern China using NanoSIMS: Constraints on Au sources, ore fluids, and mineralization processes. Ore Geol. Rev. 2020, 123, 103576. [Google Scholar] [CrossRef]
- Zhang, W.-D.; Li, B.; Lu, A.-H.; Zhao, K.-D.; Elatikpo, S.M.; Chen, X.-D.; Zhu, L.; Yu, M. In-situ pyrite trace element and sulfur isotope characteristics and metallogenic implications of the Qixiashan Pb-Zn-Ag polymetallic deposit, eastern China. Ore Geol. Rev. 2022, 144, 104849. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhen, S.; Wang, D.; Liu, J.; Wang, J.; Zha, Z.; Bai, H. In situ trace elements and sulfur isotopes of sulfides in the Dabaiyang Te-Au deposit, Hebei province, China: Implications for Au remobilization from pyrite. Ore Geol. Rev. 2022, 140, 104626. [Google Scholar] [CrossRef]
- Sun, G.; Zeng, Q.; Zhou, L.; Wang, Y.; Chen, P. Trace element contents and in situ sulfur isotope analyses of pyrite in the Baiyun gold deposit, NE China: Implication for the genesis of intrusion-related gold deposits. Ore Geol. Rev. 2020, 118, 103330. [Google Scholar] [CrossRef]
- Haas, J.R.; Shock, E.L.; Sassani, D.C. Rare-earth elements in hydrothermal systems—Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare-earth elements at high-pressures and temperatures. Geochim. Cosmochim. Acta 1995, 59, 4329–4350. [Google Scholar] [CrossRef]
- Keppler, H. Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature 1996, 380, 237–240. [Google Scholar] [CrossRef]
- Oreskes, N.; Einaudi, M.T. Origin of rare-earth element-enriched hematite breccias at the Olympic-Dam Cu-U-Au-Ag deposit, Roxby Downs, South Australia. Econ. Geol. Bull. Soc. Econ. Geol. 1990, 85, 1–28. [Google Scholar] [CrossRef]
- Bralia, A.; Sabatini, G.; Troja, F. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems. Miner. Depos. 1979, 14, 353–374. [Google Scholar] [CrossRef]
- Bau, M.; Dulski, P. Comparative-study of yttrium and rare-earth element behaviors in fluorine-rich hydrothermal fluids. Contrib. Mineral. Petrol. 1995, 119, 213–223. [Google Scholar] [CrossRef]
- Yaxley, G.M.; Green, D.H.; Kamenetsky, V. Carbonatite metasomatism in the southeastern Australian lithosphere. J. Petrol. 1998, 39, 1917–1930. [Google Scholar] [CrossRef]
- Zheng, Y.F. Carbon and oxygen isotopic convariations in hydrothermal calcite during of CO2: A quantitative evaluation and application to Kushikino gold mining area in Japan. Miner. Depos. 1990, 25, 246–250. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Hoefs, J. Carbon and oxygen isotopic covariations in hydrothermal calcites—Theoretical modeling on mixing processes and application to Pb-Zn deposits in the Harz mountains, Germany. Miner. Depos. 1993, 28, 79–89. [Google Scholar]
- Taylor, B.E. Magmatic volatiles; isotopic variation of C, H, and S. Rev. Mineral. Geochem. 1986, 16, 185–225. [Google Scholar]
- Veizer, J.; Holser, W.; Wilgus, C. Correlation of 13C/12C and 34S/32S secular variations. Geochim. Cosmochim. Acta 1980, 44, 579–587. [Google Scholar] [CrossRef]
- Ohmoto, H. Systematics of sulfur and carbon isotopes in hydrothermal ore-deposits. Econ. Geol. 1972, 67, 551–578. [Google Scholar] [CrossRef]
- Hoefs, J. Stable Isotope Geochemistry; Springer: Berlin/Heidelberg, Germany, 1997; Volume 201. [Google Scholar]
- Wu, K.; Hu, R.; Bi, X.; Peng, J. An oxygen and carbon isotope study on the formation mode of calcite in Beiya gold deposit, west Yunnan province, China. Acta Mineral. Sin. 2010, 30, 463–469. [Google Scholar]
- Li, J.; Li, C.-Y.; Liang, J.-L.; Song, M.-C.; Zhang, L.-P.; Song, Y.-X. Mineralization of the Shangjiazhuang Mo deposit in the Jiaodong Peninsula, China: Constraints from S–H–O isotopes and fluid inclusions. Solid Earth Sci. 2021, 6, 370–384. [Google Scholar] [CrossRef]
- Liang, J.L.; Li, J.; Sun, W.D.; Zhao, J.; Zhai, W.; Huang, Y.; Song, M.C.; Ni, S.J.; Xiang, Q.R.; Zhang, J.C.; et al. Source of ore-forming fluids of the Yangshan gold field, western Qinling orogen, China: Evidence from microthermometry, noble gas isotopes and in situ sulfur isotopes of Au-carrying pyrite. Ore Geol. Rev. 2019, 105, 404–422. [Google Scholar] [CrossRef]
- Ohmoto, H.; Goldhaber, M. Sulfur and carbon isotopes. In Geochemistry of Hydrothermal Ore Deposits; John Wiley & Sons: Hoboken, NJ, USA, 1997; pp. 517–612. [Google Scholar]
- Wang, Q.C.; Ma, J.L.; Zhang, J.Z. The geochemical characteristics of the Mapeng gold mine at the boundary between Lingshou and Fuping in Hebei province and the origin of the deposits. Geochimica 1995, 24, 57–68. [Google Scholar]
- Zhang, B.; Zhao, G.; Ma, G. The Metallogenetic System and Ore-Forming Models of the Main Metallogeneic Belts in Hebei Province; Petroleum Industrial Publishing, House: Beijing, China, 1996. [Google Scholar]
- Mao, J.W.; Wang, Y.T.; Zhang, Z.H.; Yu, J.J.; Niu, B.G. Geodynamic settings of Mesozoic large-scale mineralization in North China and adjacent areas—Implication from the highly precise and accurate ages of metal deposits. Sci. China Ser. D-Earth Sci. 2003, 46, 838–851. [Google Scholar] [CrossRef]
- Zhang, Z.-K.; Ling, M.-X.; Lin, W.; Sun, M.; Sun, W. “Yanshanian movement” induced by the westward subduction of the paleo–Pacific plate. Solid Earth Sci. 2020, 5, 103–114. [Google Scholar] [CrossRef]
- Hou, Q.-L.; Liu, Q.; Lin, W.; Xu, D.-R.; He, M.; Wang, Z.-L.; Wei, W.; Guo, Q.-Q. Mesozoic tectonic regime and evolution of eastern China: A mini-review based on the recent development. Solid Earth Sci. 2019, 4, 159–165. [Google Scholar] [CrossRef]
- Chang, J.; Audetat, A.; Li, J.W. Tectono-magmatic controls on decratonic gold deposits. Contrib. Mineral. Petrol. 2021, 176, 69. [Google Scholar] [CrossRef]
- Li, L.; Li, C.; Li, Q.; Yuan, M.W.; Zhang, J.Q.; Li, S.R.; Santosh, M.; Shen, J.F.; Zhang, H.F. Indicators of decratonic gold mineralization in the North China Craton. Earth-Sci. Rev. 2022, 228, 103995. [Google Scholar] [CrossRef]
Pyrite | Rb (ppm) | Sr (ppm) | 87Rb/87Sr | 87Sr/86Sr | 2σ |
---|---|---|---|---|---|
D6-1 | 0.3018 | 7.586 | 0.1176 | 0.712953 | 0.00005 |
D8-1 | 0.8907 | 0.6592 | 3.981 | 0.720021 | 0.00005 |
D9-1 | 0.5623 | 1.093 | 1.527 | 0.715513 | 0.00005 |
D11-1 | 0.2952 | 0.9964 | 0.8732 | 0.714215 | 0.00005 |
D6-1 | D7-1 | D9-2 | D10-1 | D14-2 | D16-1 | D17-2 | |
---|---|---|---|---|---|---|---|
La | 0.88 | 0.66 | 1.06 | 0.24 | 2.17 | 0.077 | 0.26 |
Ce | 1.55 | 1.32 | 2.50 | 0.59 | 4.18 | 0.16 | 0.37 |
Pr | 0.16 | 0.14 | 0.31 | 0.086 | 0.40 | 0.013 | 0.042 |
Nd | 0.68 | 0.45 | 1.66 | 0.45 | 1.25 | 0.051 | 0.17 |
Sm | 0.074 | 0.073 | 0.31 | 0.084 | 0.14 | 0.012 | 0.037 |
Eu | 0.014 | 0.010 | 0.019 | 0.004 | 0.037 | 0.004 | 0.010 |
Gd | 0.077 | 0.054 | 0.20 | 0.042 | 0.17 | 0.014 | 0.052 |
Tb | 0.008 | 0.008 | 0.025 | 0.005 | 0.016 | 0.002 | 0.008 |
Dy | 0.035 | 0.041 | 0.10 | 0.022 | 0.098 | 0.011 | 0.044 |
Ho | 0.006 | 0.007 | 0.009 | 0.003 | 0.019 | 0.003 | 0.013 |
Er | 0.024 | 0.018 | 0.029 | 0.013 | 0.061 | 0.007 | 0.035 |
Tm | 0.004 | 0.002 | 0.003 | 0.002 | 0.007 | 0.002 | 0.004 |
Yb | 0.024 | 0.016 | 0.023 | 0.008 | 0.044 | 0.006 | 0.024 |
Lu | 0.002 | 0.003 | 0.002 | 0.002 | 0.005 | 0.002 | 0.003 |
Y | 0.20 | 0.21 | 0.31 | 0.099 | 0.49 | 0.083 | 0.32 |
∑REE | 3.54 | 2.8 | 6.25 | 1.55 | 8.60 | 0.36 | 1.07 |
LREE/HREE | 18.6 | 17.8 | 15.0 | 15.0 | 19.5 | 6.74 | 4.86 |
(La/Yb)N | 26.2 | 29.5 | 33.1 | 21.5 | 35.4 | 9.21 | 7.77 |
δEu | 0.56 | 0.47 | 0.22 | 0.18 | 0.73 | 0.94 | 0.70 |
δCe | 0.94 | 1.02 | 1.06 | 1.01 | 1.02 | 1.13 | 0.79 |
Co | 2034 | 1360 | 24.5 | 56.4 | 4093 | 514 | 1066 |
Ni | 151 | 218 | 2.23 | 3.86 | 175 | 343 | 171 |
Cu | 128 | 125 | 24.2 | 57.8 | 246 | 148 | 287 |
Pb | 139 | 304 | 238 | 229 | 8.14 | 688 | 1402 |
Zn | 193 | 216 | 154 | 247 | 18.1 | 149 | 26.9 |
Nb | 0.020 | 0.014 | 0.012 | 0.009 | 0.14 | 0.015 | 0.21 |
Ta | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.048 |
Th | 0.024 | 0.078 | 0.050 | 0.11 | 0.13 | 0.033 | 0.53 |
Zr | 0.31 | 0.38 | 0.45 | 0.29 | 2.37 | 3.40 | 1.72 |
Hf | 0.016 | 0.016 | 0.009 | 0.003 | 0.069 | 0.014 | 0.059 |
Li | 5.46 | 5.33 | 8.19 | 7.21 | 5.67 | 5.17 | 5.63 |
Sc | 0.28 | 0.17 | 0.15 | 0.13 | 0.93 | 0.49 | 0.38 |
V | 9.08 | 0.82 | 2.12 | 1.99 | 3.27 | 2.64 | 5.90 |
Cr | 1.29 | 0.71 | 0.92 | 0.99 | 1.99 | 0.78 | 1.54 |
Mo | 3.47 | 2.79 | 0.29 | 0.39 | 7.22 | 1.27 | 1.12 |
W | 0.30 | 0.24 | 0.18 | 0.13 | 0.25 | 0.13 | 10.10 |
Cd | 0.82 | 0.87 | 0.39 | 0.75 | 0.048 | 0.49 | 0.12 |
Tl | 0.13 | 0.14 | 0.017 | 0.064 | 0.22 | 0.13 | 0.088 |
U | 0.035 | 0.032 | 0.013 | 0.12 | 2.77 | 0.044 | 0.16 |
Sr | 2.19 | 2.31 | 2.26 | 1.44 | 2.68 | 2.02 | 1.52 |
Ba | 2.86 | 2.48 | 0.10 | 1.73 | 5.14 | 2.17 | 2.70 |
Co/Ni | 13.47 | 6.24 | 10.99 | 14.61 | 23.39 | 1.50 | 6.23 |
Hf/Sm | 0.22 | 0.22 | 0.029 | 0.036 | 0.50 | 1.17 | 1.59 |
Nb/La | 0.023 | 0.021 | 0.011 | 0.038 | 0.065 | 0.19 | 0.81 |
Th/La | 0.027 | 0.12 | 0.047 | 0.46 | 0.060 | 0.43 | 2.04 |
Y/Ho | 33.3 | 30.0 | 34.4 | 33.0 | 25.8 | 27.7 | 24.6 |
Zr/Hf | 19.4 | 23.8 | 50.0 | 96.7 | 34.4 | 242.9 | 29.2 |
Nb/Ta | 10.00 | 7.00 | 6.00 | 4.50 | 70.00 | 7.50 | 4.38 |
Sample No. | Ore Type | Minerals | δ34SV-CDT (‰) |
---|---|---|---|
D6-1 | Hydrothermal vein type | Pyrite | 1.3 |
D7-1 | 0.9 | ||
D8-1 | 1.6 | ||
D9-2 | −0.6 | ||
D10-1 | −1.5 | ||
D16-1 | −2.0 | ||
D17-1 | −1.1 | ||
D11-1 | −5.5 | ||
D14-2 | −5.0 |
Sample No. | Mineral | δ13CV-PDB(‰) | δ18OV-PDB(‰) | δ18OV-SMOW(‰) |
---|---|---|---|---|
D6-1 | calcite | −3.9 | −16.7 | 13.7 |
D11-1 | −2.8 | −18.1 | 12.3 | |
D14-2 | −2.9 | −15.0 | 15.4 | |
D16-1 | −4.2 | −21.0 | 9.3 | |
D17-1 | −2.0 | −18.5 | 11.9 | |
D6-2 | ore | −6.3 | −20.9 | 9.3 |
D8-2 | −4.6 | −12.9 | 17.6 | |
D9-1 | −2.8 | −20.1 | 10.1 | |
D10-2 | −3.0 | −19.5 | 10.8 | |
D11-2 | −2.5 | −16.0 | 14.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Li, N.; Wang, M.; Song, Y.; Tang, Z.; Zhang, P.; Wang, G.; Zhang, L. Formation of the Miaoan Au-Polymetallic Deposit in the Northern Taihang Mountain, North China Craton: Ore Geology, Geochronological and Geochemical Perspectives. Minerals 2022, 12, 1144. https://doi.org/10.3390/min12091144
Li J, Li N, Wang M, Song Y, Tang Z, Zhang P, Wang G, Zhang L. Formation of the Miaoan Au-Polymetallic Deposit in the Northern Taihang Mountain, North China Craton: Ore Geology, Geochronological and Geochemical Perspectives. Minerals. 2022; 12(9):1144. https://doi.org/10.3390/min12091144
Chicago/Turabian StyleLi, Jie, Nan Li, Meiyun Wang, Yingxin Song, Zongyuan Tang, Pu Zhang, Guang Wang, and Lipeng Zhang. 2022. "Formation of the Miaoan Au-Polymetallic Deposit in the Northern Taihang Mountain, North China Craton: Ore Geology, Geochronological and Geochemical Perspectives" Minerals 12, no. 9: 1144. https://doi.org/10.3390/min12091144
APA StyleLi, J., Li, N., Wang, M., Song, Y., Tang, Z., Zhang, P., Wang, G., & Zhang, L. (2022). Formation of the Miaoan Au-Polymetallic Deposit in the Northern Taihang Mountain, North China Craton: Ore Geology, Geochronological and Geochemical Perspectives. Minerals, 12(9), 1144. https://doi.org/10.3390/min12091144