The Characteristics, Enrichment, and Migration Mechanism of Cadmium in Phosphate Rock and Phosphogypsum of the Qingping Phosphate Deposit, Southwest China
Abstract
:1. Introduction
2. Sampling and Methods
2.1. Sample Collection
2.2. Sample Analysis
2.2.1. pH Determination
2.2.2. Bulk Rock Compositional Analysis
2.2.3. X-ray Diffraction Analysis
2.2.4. Raman Spectroscopy Mapping Analysis
2.2.5. In Situ Elemental Analysis
3. Results
3.1. Characteristics of Major and Trace Elements in Phosphate Rock and Phosphogypsum
3.2. Types and Contents of Minerals in Phosphate rock and Phosphogypsum
3.3. Raman Spectral Characteristics of Apatite and Organic Matter
3.4. In Situ Element Characteristics of Different Carriers
3.4.1. Element Characteristics of Apatite Tested by EPMA
3.4.2. Element Characteristics of Apatite Tested by LA-ICP-MS
3.4.3. REE + Y Characteristics of Apatite Tested by LA-ICP-MS
3.4.4. Element Characteristics of Pyrite Tested by EPMA
4. Discussion
4.1. Element Transfer Factor (ETF) from Phosphate Rock to Phosphogypsum
4.2. Implications for Carrier Mineral Phases of Cd
4.3. Implications for Cd Enrichment Mechanism
5. Conclusions
- (1)
- The Cd concentration in phosphate rock from Qingping is much lower than the average world content (18 ppm) for this type of rock. Except for SiO2, SO3, and Zr, the elements in phosphogypsum are derived from phosphate rock, and only 10.58% of Cd migrates to phosphogypsum.
- (2)
- The strong peak of apatite is located at 960 cm−1, corresponding to the V1 (PO4) mode, and the other peaks are weak. The characteristic peak of organic matter does not appear alone, and a weak peak may appear at 960 cm−1. Compared to the Cd content in different regions of apatite to organic matter, Cd is mainly controlled by organic matter.
- (3)
- The main minerals in the phosphate rock are fluorapatite, svanbergite, and pyrite. The primary mineral of phosphogypsum is gypsum. Compared with apatite, pyrite has a higher Cd content and is an essential carrier of Cd. However, considering that the pyrite content in the ore is low (1.5–2.4 wt.%), it cannot be determined that pyrite has a controlling effect on Cd in the phosphate rock.
- (4)
- The high Cd content in type 1 is caused by the enrichment of organic matter, which is linked with Cd adsorbed on organic matter and then incorporated into sediments. Cd in pyrite is mainly controlled by the formation of pyrite under reducing conditions. Therefore, reducing the environment leads to the enrichment of Cd in phosphate rock.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nies, D.H. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 2003, 27, 313–339. [Google Scholar] [CrossRef] [PubMed]
- Waalkes, M.P. Cadmium carcinogenesis in review. J. Inorg. Biochem. 2000, 79, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; He, M. Theoretical study of heavy metal Cd, Cu, Hg, and Ni(II) adsorption on the kaolinite(001) surface. Appl. Surf. Sci. 2014, 317, 718–723. [Google Scholar] [CrossRef]
- Cao, X.; Hu, P.; Tan, C.; Wu, L.; Peng, B.; Christie, P.; Luo, Y. Effects of a natural sepiolite bearing material and lime on the immobilization and persistence of cadmium in a contaminated acid agricultural soil. Environ. Sci. Pollut. Res. Int. 2018, 25, 22075–22084. [Google Scholar] [CrossRef]
- Quezada Hinojosa, R.P.; Matera, V.; Adatte, T.; Rambeau, C.; Föllmi, K.B. Cadmium distribution in soils covering Jurassic oolitic limestone with high Cd contents in the Swiss Jura. Geoderma 2009, 150, 287–301. [Google Scholar] [CrossRef]
- Khan, S.; Rehman, S.; Zeb Khan, A.; Amjad Khan, M.; Tahir Shah, M. Soil and vegetables enrichment with heavy metals from geological sources in Gilgit, northern Pakistan. Ecotoxicol. Environ. Saf. 2010, 73, 1820–1827. [Google Scholar] [CrossRef]
- Rambeau, C.M.C.; Baize, D.; Saby, N.; Matera, V.; Adatte, T.; Föllmi, K.B. High cadmium concentrations in Jurassic limestone as the cause for elevated cadmium levels in deriving soils: A case study in Lower Burgundy, France. Environ. Earth Sci. 2010, 61, 1573–1585. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xiao, T.; Ning, Z.; Li, H.; Tang, J.; Zhou, G. High cadmium concentration in soil in the Three Gorges region: Geogenic source and potential bioavailability. Appl. Geochem. 2013, 37, 149–156. [Google Scholar] [CrossRef]
- Alina, K.P. Behavioural properties of trace metals in soils. Appl. Geochem. 1993, 8, 3–9. [Google Scholar] [CrossRef]
- Gnandi, K.; Tobschall, H. Heavy metals distribution of soils around mining sites of cadmium-rich marine sedimentary phosphorites of Kpogamé and Hahotoé (southern Togo). Environ. Geol. 2002, 41, 593–600. [Google Scholar] [CrossRef]
- Schwartz, M.O. Cadmium in Zinc Deposits: Economic Geology of a Polluting Element. Int. Geol. Rev. 2000, 42, 445–469. [Google Scholar] [CrossRef]
- Wang, D.; Jiang, X.; Rao, W.; He, J. Kinetics of soil cadmium desorption under simulated acid rain. Ecol. Complex. 2009, 6, 432–437. [Google Scholar] [CrossRef]
- Acosta, J.A.; Faz, A.; Martínez-Martínez, S.; Arocena, J.M. Enrichment of metals in soils subjected to different land uses in a typical Mediterranean environment (Murcia City, southeast Spain). Appl. Geochem. 2011, 26, 405–414. [Google Scholar] [CrossRef]
- Li, Z.; Feng, X.; Li, G.; Bi, X.; Sun, G.; Zhu, J.; Qin, H.; Wang, J. Mercury and other metal and metalloid soil contamination near a Pb/Zn smelter in east Hunan province, China. Appl. Geochem. 2011, 26, 160–166. [Google Scholar] [CrossRef]
- Jarvis, I.; Burnett, W.C.; Nathan, Y.; Almbaydin, F.S.; Attia, A.K.; Castro, L.N.; Flicoteaux, R.; Hilmy, M.E.; Husain, V.; Qutawnah, A.A. Phosphorite geochemistry: State-of-the-art and environmental concerns. Eclogae Geol. Helv. 1994, 87, 643–700. [Google Scholar]
- Al-Hwaiti, M.; Matheis, G.; Saffarini, G. Mobilization, redistribution and bioavailability of potentially toxic elements in Shidiya phosphorites, Southeast Jordan. Environ. Geol. 2005, 47, 431–444. [Google Scholar] [CrossRef]
- Zanin, Y.N.; Zamirailova, A.G. Trace elements in supergene phosphorites. Geochem. Int. 2007, 45, 758–769. [Google Scholar] [CrossRef]
- Mehmood, T.; Chaudhry, M.M.; Tufail, M.; Irfan, N. Heavy metal pollution from phosphate rock used for the production of fertilizer in Pakistan. Microchem. J. 2009, 91, 94–99. [Google Scholar] [CrossRef]
- Altschuler, Z.S. The geochemistry of trace elements in marine phosphorites: Part I. Characteristic abundances and enrichment. Soc. Econ. Paleontol. Mineral. Spec. Publ. 1980, 29, 19–30. [Google Scholar]
- Baturin, G.N. Cadmium and zinc in Namibian shelf phosphorites. Dokl. Earth Sci. 2006, 407, 330–334. [Google Scholar] [CrossRef]
- Ma, R. Pay attention to the hazardous cadmium in phosphate fertilizer. Phosphate Compd. Fertil. 2002, 17, 5–6. [Google Scholar]
- Xue, T.; Xiong, X.; Tian, S. Discussion on the principal phosphorite-concentrated districts and the resource potential in China. Geol. Chem. Miner. 2011, 33, 9–20. [Google Scholar]
- He, T. Discussion on the progressive mining rule and mining sequence in the middle section of Mountain Longmen. Geol. Chem. Miner. 2022, 44, 1–9. [Google Scholar]
- Jia, H.; Liu, J.; Jiao, S.; Shang, P. Situation analysis and countermeasures of phosphate rock resources exploitation and ecological protection in Yangtze River Economic Belt. China Min. Mag. 2021, 30, 67–72. [Google Scholar]
- Wang, L.; Tang, W.; Qin, B.; Ren, L.; Bi, X.; Ma, Z. The Survey of Cd and Other Elements in River Sediments Affected by Phosphorite Deposit and Coal Mine in the Area of Longmenshan Mountain, Sichuan Province. Geol. Sci. Technol. Inf. 2007, 26, 36–41. [Google Scholar]
- Pérez-López, R.; Nieto, J.M.; López-Coto, I.; Aguado, J.L.; Bolívar, J.P.; Santisteban, M. Dynamics of contaminants in phosphogypsum of the fertilizer industry of Huelva (SW Spain): From phosphate rock ore to the environment. Appl. Geochem. 2010, 25, 705–715. [Google Scholar] [CrossRef]
- Kubier, A.; Wilkin, R.T.; Pichler, T. Cadmium in soils and groundwater: A review. Appl. Geochem. 2019, 108, 1–16. [Google Scholar] [CrossRef]
- Li, Y. Present situation analysis of water and soil pollution in phosphate rock and sulfur mining area of China. Geol. Chem. Miner. 2018, 40, 241–246. [Google Scholar]
- Zhang, J.; Shi, Z.; Ni, S.; Wang, X.; Liao, C.; Wei, F. Source Identification of Cd and Pb in Typical Farmland Topsoil in the Southwest of China: A Case Study. Sustainability 2021, 13, 3729. [Google Scholar] [CrossRef]
- Gnandi, K.; Boroon, M.H.R.; Dimitri, D.D. Distribution, Speciation, and Extractability of Cadmium in the Sedimentary Phosphorite of Hahotoé-Kpogamé (Southern Togo). Aquat. Geochem. 2009, 15, 485–495. [Google Scholar] [CrossRef]
- Demandt, I. The World Phosphate Fertiliser Industry. Research Project ‘Environmental Regulation, Globalization of Production and Technology Change’, Background Report No. 10; The United Nations University, Institute for New Technologies Maastricht: Maastricht, Netherlands, 1999. [Google Scholar]
- Gnandi, K.; Tobschall, H.J. The pollution of marine sediments by trace elements in the coastal region of Togo caused by dumping of cadmium-rich phosphorite tailing into the sea. Environ. Geol. 1999, 38, 13–24. [Google Scholar] [CrossRef]
- Perkins, R.B.; Foster, A.L. Chapter 10 Mineral affinities and distribution of selenium and other trace elements in black shale and phosphorite of the phosphoria formation. In Handbook of Exploration and Environmental Geochemistry: Life Cycle of the Phosphoria Formation; Hein, J.R., Ed.; Elsevier Science B.V: Amsterdam, The Netherlands, 2004; pp. 251–295. ISBN 1874-2734. [Google Scholar]
- Perkins, R.B.; Mason, C.E. The relative mobility of trace elements from short-term weathering of a black shale. Appl. Geochem. 2015, 56, 67–79. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, T.; Perkins, R.B.; Zhu, J.; Zhu, Z.; Xiong, Y.; Ning, Z. Geogenic cadmium pollution and potential health risks, with emphasis on black shale. J. Geochem. Explor. 2017, 176, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Sokol, E.V.; Kozmenko, O.A.; Khoury, H.N.; Kokh, S.N.; Novikova, S.A.; Nefedov, A.A.; Sokol, I.A.; Zaikin, P. Calcareous sediments of the Muwaqqar Chalk Marl Formation, Jordan: Mineralogical and geochemical evidences for Zn and Cd enrichment. Gondwana Res. 2017, 46, 204–226. [Google Scholar] [CrossRef]
- Nathan, Y.; Soudry, D.; Levy, Y.; Shitrit, D.; Dorfman, E. Geochemistry of cadmium in the Negev phosphorites. Chem. Geol. 1997, 142, 87–107. [Google Scholar] [CrossRef]
- Prévôt, L. Geochemistry, petrography, genesis of Cretaceous-Eocene phosphorites: The Ganntour deposit (Morocco)—A type example. Soc. Geol. Fr. Mem. 1990, 158, 232. [Google Scholar]
- Bostick, B.C.; Fendorf, S.; Fendorf, M. Disulfide disproportionation and CdS formation upon cadmium sorption on FeS2. Geochim. Cosmochim. Acta 2000, 64, 247–255. [Google Scholar] [CrossRef]
- Tabelin, C.B.; Igarashi, T.; Villacorte-Tabelin, M.; Park, I.; Opiso, E.M.; Ito, M.; Hiroyoshi, N. Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: A review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies. Sci. Total Environ. 2018, 645, 1522–1553. [Google Scholar] [CrossRef]
- Wang, S.; Li, X. A discussion on the age and sedimentary environment of the shifang type phosphatic beds in Sichuan province. Prof. Pap. Stratigr. Palaeontol. 1988, 22, 1–8. [Google Scholar]
- Zheng, L.; Liu, L.; Zou, L.; Ma, Y. Geological characteristics and prospecting criteria of Shifang type phosphate deposit in Hongyan, Mianzhu, Sichuan Province. Miner. Explor. 2021, 12, 640–649. [Google Scholar]
- Blinova, A.I.; Zega, T.J.; Herd, C.D.K.; Stroud, R.M. Testing variations within the Tagish Lake meteorite—I: Mineralogy and petrology of pristine samples Testing variations within the Tagish Lake meteorite—I: Mineralogy and petrology of pristine samples. Meteorit. Planet. Sci. 2014, 49, 473–502. [Google Scholar] [CrossRef]
- He, T. Geological characteristics and metallogenic mode of Shifang-type. Geol. Chem. Miner. 2021, 43, 222–229. [Google Scholar]
- Li, X.; Wu, B.; Zhu, J. Study on activity and occurrence of impurities of iron and aluminum in Mianzhu collophanite, Sichuen. IM P 2017, 46, 8–12+16. [Google Scholar] [CrossRef]
- Anderson, P.R.; Christensen, T.H. Distribution coefficients of Cd, Co, Ni, and Zn in soils. J. Soil Sci. 1988, 39, 15–22. [Google Scholar] [CrossRef]
- Kubier, A.; Pichler, T. Cadmium in groundwater—A synopsis based on a large hydrogeochemical data set. Sci. Total Environ. 2019, 689, 831–842. [Google Scholar] [CrossRef] [PubMed]
- Ou, Y. The Research of Occurrence State of Rare-Earth Element in Typical Western Szechuan Phosphate Ore Deposit. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2015. [Google Scholar]
- Elgharbi, S.; Horchani-Naifer, K.; Férid, M. Investigation of the structural and mineralogical changes of Tunisian phosphorite during calcinations. J. Therm. Anal. Calorim. 2015, 119, 265–271. [Google Scholar] [CrossRef]
- Wang, M.; Qian, R.; Bao, M.; Gu, C.; Zhu, P. Raman, FT-IR and XRD study of bovine bone mineral and carbonated apatites with different carbonate levels. Mater. Lett. 2018, 210, 203–206. [Google Scholar] [CrossRef]
- Ciobotă, V.; Salama, W.; Vargas Jentzsch, P.; Tarcea, N.; Rösch, P.; El Kammar, A.; Morsy, R.S.; Popp, J. Raman investigations of Upper Cretaceous phosphorite and black shale from Safaga District, Red Sea, Egypt. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 118, 42–47. [Google Scholar] [CrossRef]
- Joosu, L.; Lepland, A.; Kirsimäe, K.; Romashkin, A.E.; Roberts, N.M.; Martin, A.P.; Črne, A.E. The REE-composition and petrography of apatite in 2Ga Zaonega Formation, Russia: The environmental setting for phosphogenesis The REE-composition and petrography of apatite in 2Ga Zaonega Formation, Russia: The environmental setting for phosphogenesis. Chem. Geol. 2015, 395, 88–107. [Google Scholar] [CrossRef]
- Alibert, C. Rare earth elements in Hamersley BIF minerals Rare earth elements in Hamersley BIF minerals. Geochim. Cosmochim. Acta 2016, 184, 311–328. [Google Scholar] [CrossRef]
- McLennan, S.M. Chapter 7. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. In Geochemistry and Mineralogy of Rare Earth Elements; Lipin, B.R., McKay, G.A., Eds.; De Gruyter: Berlin, Germany, 1989; pp. 169–200. ISBN 9781501509032. [Google Scholar]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell Scientific Publications: Palo Alto, CA, USA, 1985. [Google Scholar]
- Gundogar, D.Y.; Sasmaz, A. Geochemical Approach to Determine the Possible Precipitation Parameters of the Coniacian–Santonian Mazıdağı Phosphates, Mardin, Turkey. Minerals 2022, 12, 1544. [Google Scholar] [CrossRef]
- Abraitis, P.K.; Pattrick, R.; Vaughan, D.J. Variations in the compositional, textural and electrical properties of natural pyrite: A review. Int. J. Miner. Process. 2004, 74, 41–59. [Google Scholar] [CrossRef]
- Papageorgiou, F.; Godelitsas, A.; Xanthos, S.; Voulgaris, N.; Nastos, P.; Mertzimekis, T.J.; Argyraki, A.; Katsantonis, G. Characterization of phosphogypsum deposited in Schistos remediated waste site (Piraeus, Greece). In Uranium—Past and Future Challenges; Merkel, B.J., Arab, A., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 271–280. ISBN 978-3-319-11059-2. [Google Scholar]
- Pérez-López, R.; Alvarez-Valero, A.M.; Nieto, J.M. Changes in mobility of toxic elements during the production of phosphoric acid in the fertilizer industry of Huelva (SW Spain) and environmental impact of phosphogypsum wastes. J. Hazard. Mater. 2007, 148, 745–750. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, P.M.; Dudas, M.J.; Samek, R.A. Environmental impacts of phosphogypsum. Sci. Total Environ. 1994, 149, 1–38. [Google Scholar] [CrossRef]
- Al-Masri, M.S.; Amin, Y.; Ibrahim, S.; Al-Bich, F. Distribution of some trace metals in Syrian phosphogypsum. Appl. Geochem. 2004, 19, 747–753. [Google Scholar] [CrossRef]
- Li, J.; Shi, Z.; Zheng, L.; Ni, S. Evaluation on potential ecological risk of heavy metals pollution in sediments from Tuojiang drainage. Earth Environ. 2010, 38, 481–487. [Google Scholar] [CrossRef]
- Li, J.; Shi, Z.; Ni, S. Study and Evaluation on Forms of Heavy Metal Elements in Farmland Soil around Phosphogypsum Pile. Acta Mineral. Sin. 2011, 31, 715. [Google Scholar] [CrossRef]
- Vanmarcke, H.; Paridaens, J. (Eds.) The Radiological Impact of the Belgian Phosphate Industry. In Proceedings of the Second European IRPA Congress on Radiation Protection—Radiation Protection: From Knowledge to Action, Paris, France, 15–19 May 2006. [Google Scholar]
- Rentería-Villalobos, M.; Vioque, I.; Mantero, J.; Manjón, G. Radiological, chemical and morphological characterizations of phosphate rock and phosphogypsum from phosphoric acid factories in SW Spain. J. Hazard. Mater. 2010, 181, 193–203. [Google Scholar] [CrossRef]
- El Zrelli, R.; Rabaoui, L.; Daghbouj, N.; Abda, H.; Castet, S.; Josse, C.; van Beek, P.; Souhaut, M.; Michel, S.; Bejaoui, N.; et al. Characterization of phosphate rock and phosphogypsum from Gabes phosphate fertilizer factories (SE Tunisia): High mining potential and implications for environmental protection. Environ. Sci. Pollut. Res. Int. 2018, 25, 14690–14702. [Google Scholar] [CrossRef]
- Wei, Y. Study on the Release, Migration, Transformation and Enrichment Mechanism of Typical Heavy Metals during CoalCombustion. Ph.D. Thesis, University of Science and Technology of China, Hefei, China, 2021. [Google Scholar]
- Peng, M.; Xu, H. Application of Synchrotron Radiation X-ray Absorption Spectroscopy in Environmental Mineralogy. Bull. Mineral. Petrol. Geochem. 2005, 24, 217–221. [Google Scholar]
- Senes C.L. An Analysis of the Major Environmental and Health Concerns of Phosphogypsum Tailings in Canada and Methods for their Reduction. In Ont. Min. Environ. Alta. Environ. Environ. Can.; Senes Consultants Limited: Richmond Hill, ON, Canada, 1987. [Google Scholar]
- Carbonell-Barrachina, A.; DeLaune, R.; Jugsujinda, A. Phosphogypsum chemistry under highly anoxic conditions Phosphogypsum chemistry under highly anoxic conditions. Waste Manag. 2002, 22, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Turekian, K.K.; Wedepohl, K.H. Distribution of the Elements in Some Major Units of the Earth’s Crust. Geol. Soc. Am. Bull. 1961, 72, 175. [Google Scholar] [CrossRef]
- Sattouf, M. Identifying the Origin of Rock Phosphates and Phosphorus Fertilisers Using Isotope Ratio Techniques and Heavy Metal Patterns. Ph.D. Thesis, Technische Universität Braunschweig, Braunschweig, Germany, 2007. [Google Scholar]
- Tzifas, I.; Godelitsas, A.; Magganas, A.; Androulakaki, E.; Eleftheriou, G.; Mertzimekis, T.J.; Perraki, M. Uranium-bearing phosphatized limestones of NW Greece. J. Geochem. Explor. 2014, 143, 62–73. [Google Scholar] [CrossRef]
- Zmemla, R.; Chaurand, P.; Benjdidia, M.; Elleuch, B.; Bottero, J.Y. Characterization and pH Dependent Leaching Behavior of Tunisian Phosphogypsum. ASRJETS 2016, 24, 230–244. [Google Scholar]
- Hou, Y. Geochemical Characteristics and Chemical Speciation of Heavy Metals Elements Inareas Affected by Phosphogypsum. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2015. [Google Scholar]
- Saueia, C.H.R.; Mazzilli, B.P.; Le Bourlegat, F.M.; Costa, G.J.L. Distribution of potentially toxic elements in the Brazilian phosphogypsum and phosphate fertilizers. E3S Web Conf. 2013, 1, 4005. [Google Scholar] [CrossRef] [Green Version]
- Boumaza, B.; Kechiched, R.; Chekushina, T.V. Trace metal elements in phosphate rock wastes from the Djebel Onk mining area (Tébessa, eastern Algeria): A geochemical study and environmental implications Trace metal elements in phosphate rock wastes from the Djebel Onk mining area (Tébessa, eastern Algeria): A geochemical study and environmental implications. Appl. Geochem. 2021, 127, 104910. [Google Scholar] [CrossRef]
- Galfati, I.; Béji Sassi, A.; Zaier, A.; Bouchardon, J.L.; Bilal, E.; Joron, J.L.; Sassi, S. Geochemistry and mineralogy of Paleocene-Eocene Oum El Khecheb phosphorites (Gafsa-Metlaoui Basin) Tunisia. Geochem. J. 2010, 44, 189–210. [Google Scholar] [CrossRef] [Green Version]
- Kechiched, R.; Laouar, R.; Bruguier, O.; Kocsis, L.; Salmi-Laouar, S.; Bosch, D.; Ameur-Zaimeche, O.; Foufou, A.; Larit, H. Comprehensive REE + Y and sensitive redox trace elements of Algerian phosphorites (Tébessa, eastern Algeria): A geochemical study and depositional environments tracking. J. Geochem. Explor. 2020, 208, 106396. [Google Scholar] [CrossRef]
- Garnit, H.; Bouhlel, S.; Jarvis, I. Geochemistry and depositional environments of Paleocene–Eocene phosphorites: Metlaoui Group, Tunisia Geochemistry and depositional environments of Paleocene–Eocene phosphorites: Metlaoui Group, Tunisia. J. Afr. Earth Sci. 2017, 134, 704–736. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y. The Rare Earth Elements Characteristics and the Comprehensive Utilization Research of Devonian Shifang Phosphate Deposit. Master’s Thesis, Southwest University of Science and Technology, Chengdu, China, 2015. [Google Scholar]
- Zheng, L. The Study on Ore Deposit Geological Feature and Metallogenic Prediction of Red Rock Phosphate Deposit in Mianzhu City. Master’s Thesis, Southwest University of Science and Technology, Chengdu, China, 2018. [Google Scholar]
- Nathan, Y. Chapter 8 The Mineralogy and Geochemistry of Phosphorites. In Phosphate Minerals; Nriagu, J.O., Moore, P.B., Eds.; Springer: Berlin/Heidelberg, Germany, 1984; pp. 275–291. ISBN 978-3-642-61736-2. [Google Scholar]
- Mcarthur, J.M. Francolite geochemistry—Compositional controls during formation, diagenesis, metamorphism and weathering. Geochim. Cosmochim. Acta 1985, 49, 23–35. [Google Scholar] [CrossRef]
- Bradl, H.; Xenidis, A. Chapter 3 Remediation techniques. In Handbook of Exploration and Environmental Geochemistry: Life Cycle of the Phosphoria Formation; Hein, J.R., Ed.; Elsevier Science B.V: Amsterdam, The Netherlands, 2004; pp. 165–261. ISBN 1874-2734. [Google Scholar]
- Sery, A.; Manceau, A.; Greaves, G.N. Chemical state of Cd in apatite phosphate ores as determined by EXAFS spectroscopy. Am. Mineral. 1996, 81, 864–873. [Google Scholar] [CrossRef]
- Nounah, A.; Maroufi, N.; Ait Ichou, Y.; Lacout, J.L.; Savariault, J.M. X-ray diffraction study of cadmium hydroxyapatite. J. Phys. IV Fr. 2005, 123, 251–254. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.; Chen, Q.; Zhao, D.; Chen, Z.; Chen, Y.; Liu, K. Phosphorite rocks of China; Science Press: Beijing, China, 1989. [Google Scholar]
- Baturin, G.N.; Oreshkin, V.N. Behavior of cadmium in ocean-floor bone phosphate. Geochem. Int. 1985, 22, 69–74. [Google Scholar]
- Chi Fru, E.; Hemmingsson, C.; Callac, N.; Perez, N.; Panova, E.G.; Broman, C.; El Albani, A. Atmospheric weathering of Scandinavian alum shales and the fractionation of C, N and S isotopes. Appl. Geochem. 2016, 74, 94–108. [Google Scholar] [CrossRef]
- Derkowski, A.; Marynowski, L. Binding of heavy metals by oxidised kerogen in (palaeo)weathered black shales Binding of heavy metals by oxidised kerogen in (palaeo)weathered black shales. Chem. Geol. 2018, 493, 441–450. [Google Scholar] [CrossRef]
- Huston, D.L.; Sie, S.H.; Suter, G.F.; Cooke, D.R.; Both, R.A. Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; Part I, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II, Selenium levels in pyrite; comparison with delta 34 S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Econ. Geol. 1995, 90, 1167–1196. [Google Scholar] [CrossRef]
- Gujre, N.; Rangan, L.; Mitra, S. Occurrence, geochemical fraction, ecological and health risk assessment of cadmium, copper and nickel in soils contaminated with municipal solid wastes. Chemosphere 2021, 271, 129573. [Google Scholar] [CrossRef]
- Jung, J.; Choi, K.; Chung, C.; Kim, C.; Kim, S. Fractionation and risk assessment of metals in sediments of an ocean dumping site. Mar. Pollut. Bull. 2019, 141, 227–235. [Google Scholar] [CrossRef]
- Cao, J.; Ren, S.; Wang, C.; She, J.; Jiang, Y.; Liu, Y.; Zhou, Y.; Wang, L.; Wang, J.; Wang, Y.; et al. Cadmium and lead distribution in pyrite ores. Elem. Sci. Anth. 2021, 9, 00093. [Google Scholar] [CrossRef]
- Liang, K.; He, M.; Tian, H.; Zhang, F.; Zheng, M. The Geochemical Characterics of Rare Earth Elements in the Chuanyandong Oreblock of the Wengfu Phosphorus Deposit, Guizhou, China. Bull. Mineral. Petrol. Geochem. 2022, 41, 572–586. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Q.; Chen, D. REE geochemistry of the ore-bearing REE in Xinhua phosphorite, Zhijin, Guizhou. J. Mineral. Petrol. 2003, 23, 35–38. [Google Scholar] [CrossRef]
- Lécuyer, C.; Reynard, B.; Grandjean, P. Rare earth element evolution of Phanerozoic seawater recorded in biogenic apatites Rare earth element evolution of Phanerozoic seawater recorded in biogenic apatites. Chem. Geol. 2004, 204, 63–102. [Google Scholar] [CrossRef]
- Moffett, J.W. A radiotracer study of cerium and manganese uptake onto suspended particles in Chesapeake Bay. Geochim. Cosmochim. Acta 1994, 58, 695–703. [Google Scholar] [CrossRef]
- Lou, F.; Gu, S. Indication of the Ce anomaly of apatite in phosphorites to the evolution of oxygen in the Earth’s atmosphere. Acta Mineral. Sin. 2019, 39, 412–419. [Google Scholar] [CrossRef]
- Xiao, B.; Liu, S.; Ran, B.; Yang, D.; Han, Y. Identification of organic matter enrichment factors in marine sedimentary rocks based on elements Mn, Co, Cd and Mo: Application in the northern margin of Sichuan Basin, South China. Geol. Rev. 2019, 65, 1316–1330. [Google Scholar] [CrossRef]
- Bajwah, Z.U.; Seccombe, P.K.; Offler, R. Trace element distribution, Co:Ni ratios and genesis of the big cadia iron-copper deposit, new south wales, australia. Miner. Depos. 1987, 22, 292–300. [Google Scholar] [CrossRef]
- Guy, B.M.; Beukes, N.J.; Gutzmer, J. Paleoenvironmental controls on the texture and chemical composition of pyrite from non-conglomeratic sedimentary rocks of the mesoarchean witwatersrand Supergroup, South Africa. S. Afr. J. Geol. 2010, 113, 195–228. [Google Scholar] [CrossRef]
- Scott, R.J.; Meffre, S.; Woodhead, J.; Gilbert, S.E.; Berry, R.F.; Emsbo, P. Development of Framboidal Pyrite During Diagenesis, Low-Grade Regional Metamorphism, and Hydrothermal Alteration. Econ. Geol. 2009, 104, 1143–1168. [Google Scholar] [CrossRef]
- Sundararaman, P.; Boreham, C.J. Comparison of nickel and vanadyl porphyrin distributions of sediments Comparison of nickel and vanadyl porphyrin distributions of sediments. Geochim. Cosmochim. Acta 1993, 57, 1367–1377. [Google Scholar] [CrossRef]
Major Elements(%) | Phosphate Rock (PR) | Surrounding Rock | Hongyan 1 | Lanjiaping 2 | Mianzhu 3 | Phosphogypsum (PG) |
---|---|---|---|---|---|---|
CaO | 49.43 | 3.83 | 43.98 | 39.99 | 33.65 | |
P₂O₅ | 36.63 | 9.94 | 35.29 | 29.37 | 27.62 | 1.82 |
Al₂O₃ | 3.78 | 32.35 | 6.8 | 1.52–11.96 | 9.97 | 2.3 |
SO₃ | 3.7 | 7.89 | 3.09 | 34 | ||
F | 3.30 | 0.3 | 2.69 | 2.28 | 0.3 | |
SiO₂ | 2.50 | 24.88 | 4.94 | 7.59 | 4.74 | |
Fe₂O₃ | 1.73 | 4.99 | 0.24–7.15 | 3.11 | 1.38 | |
SrO | 0.43 | 1.17 | 0.66 | 0.42 | ||
K₂O | 0.35 | 0.32 | 1.55 | 0.21 | ||
TiO₂ | 0.20 | 1.61 | 0.17 | |||
MgO | 0.09 | 0.2 | 0.32 | 0.06–4.10 | 3.5 | 0.08 |
Na₂O | 0.08 | 0.08 | 0.11 | 0.05 | ||
MnO | 0.01 | 0.01 | 0.01 | |||
Ca/P | 1.71 | 1.58 | 1.83 | |||
F/P | 5.07 | 5.54 | 5.94 |
Trace Elements (ppm) | Phosphate Rock (PR) | Surrounding Rock | Phosphogypsum (PG) |
---|---|---|---|
Cd | 2.95 | 0.16 | 0.48 |
Ba | 216.67 | 813.33 | 215 |
Li | 161.10 | 306.83 | 38.6 |
Zn | 113.7 | 62 | 37.5 |
Ni | 98.10 | 215.53 | 16.6 |
Mn | 84 | 69.67 | 19 |
Cu | 76.40 | 197.43 | 27.6 |
La | 54.67 | 175.33 | 36.5 |
Co | 47.17 | 76.9 | 4.55 |
U | 45.50 | 79.8 | 4.75 |
Ce | 43.03 | 166.17 | 30.6 |
Pb | 42.70 | 132.5 | 28.15 |
Cr | 40.67 | 235.67 | 37 |
V | 25.33 | 192.67 | 27.5 |
As | 22.23 | 24.8 | 7.15 |
Rb | 6.10 | 3.3 | 3.65 |
Th | 5.25 | 25 | 2.67 |
Ga | 4.08 | 42.17 | 2.21 |
Sc | 3.77 | 23.7 | 1 |
Nb | 2.53 | 37.4 | 3.25 |
Zr | 0.73 | 325 | 28.3 |
Hg | 0.22 | 0.32 | 23.23 |
pH | 7.28 | 5.8 | 4.66 |
Elements (wt.%) | QP02 | QP03 | QP07-1 | QP07-2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Type 1 | Type 2 | Type 1/ Type 2 | Type 1 | Type 2 | Type 1/ Type 2 | Type 1 | Type 2 | Type 1/ Type 2 | Type 1 | Type 2 | Type 1/ Type 2 | |
CaO | 55.27 | 54.80 | 1.01 | 55.19 | 55.22 | 1.00 | 54.91 | 55.26 | 0.99 | 55.82 | 55.41 | 1.01 |
P2O5 | 40.85 | 40.51 | 1.01 | 41.41 | 41.32 | 1.00 | 41.22 | 41.21 | 1.00 | 41.70 | 41.35 | 1.01 |
F | 4.10 | 3.98 | 1.03 | 4.08 | 3.93 | 1.04 | 4.09 | 4.06 | 1.01 | 4.03 | 3.83 | 1.05 |
Al2O3 | 0.21 | 0.28 | 0.73 | 0.11 | 0.05 | 2.22 | 0.23 | 0.32 | 0.71 | 0.06 | 0.05 | 1.17 |
BaO | 0.08 | 0.16 | 0.48 | 0.04 | 0.10 | 0.40 | 0.05 | 0.08 | 0.60 | 0.05 | 0.13 | 0.42 |
FeO | 0.13 | 0.07 | 1.95 | 0.06 | 0.03 | 2.07 | 0.08 | 0.02 | 3.45 | 0.08 | 0.08 | 1.00 |
SiO2 | 0.12 | 0.28 | 0.44 | 0.14 | 0.01 | 11.84 | 0.10 | 0.18 | 0.54 | 0.03 | 0.06 | 0.43 |
SO3 | 0.15 | 0.12 | 1.20 | 0.09 | 0.05 | 1.81 | 0.11 | 0.09 | 1.15 | 0.04 | 0.07 | 0.61 |
Ca/P | 1.71 | 1.71 | 1.69 | 1.69 | 1.69 | 1.70 | 1.69 | 1.70 | ||||
Ca/F | 4.57 | 4.66 | 4.58 | 4.76 | 4.55 | 4.61 | 4.69 | 4.90 |
Elements (ppm) | QP02 | QP03 | QP07-1 | QP07-2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Type 1 | Type 2 | Type 1/ Type 2 | Type 1 | Type 2 | Type 1/ Type 2 | Type 1 | Type 2 | Type 1/ Type 2 | Type 1 | Type 2 | Type 1/ Type 2 | |
Cd | 3.27 | 1.77 | 1.85 | 1.76 | 0.92 | 1.91 | 1.03 | 0.92 | 1.11 | 1.17 | 1.02 | 1.15 |
P | 214,484 | 213,657 | 1.00 | 202,393 | 208,279 | 0.97 | 198,251 | 202,051 | 0.98 | 209,322 | 214,950 | 0.97 |
Al | 9191 | 4197 | 2.19 | 3402 | 1302 | 2.61 | 100,754 | 16,179 | 6.23 | 5560 | 865 | 6.43 |
Si | 8316 | 4029 | 2.06 | 2073 | 500 | 4.15 | 75,722 | 13,191 | 5.74 | 4273 | 466 | 9.18 |
K | 2596 | 1247 | 2.08 | 529 | 136 | 3.89 | 12,621 | 2346 | 5.38 | 1024 | 238 | 4.30 |
Fe | 1033 | 276 | 3.74 | 2050 | 682 | 3.01 | 1529 | 1551 | 0.99 | 834 | 241 | 3.46 |
Sr | 1013 | 430 | 2.36 | 984 | 542 | 1.81 | 7136 | 765 | 9.33 | 527 | 173 | 3.05 |
Na | 545.98 | 426.60 | 1.28 | 496.00 | 319.34 | 1.55 | 554.71 | 526.70 | 1.05 | 313.20 | 228.74 | 1.37 |
Ti | 365.52 | 25.66 | 14.24 | 545.38 | 132.63 | 4.11 | 2158.69 | 543.87 | 3.97 | 397.09 | 14.94 | 26.58 |
Mg | 263.92 | 149.09 | 1.77 | 157.51 | 371.71 | 0.42 | 588.56 | 562.05 | 1.05 | 134.22 | 91.09 | 1.47 |
Ba | 202.90 | 148.06 | 1.37 | 116.65 | 44.27 | 2.63 | 735.09 | 227.65 | 3.23 | 138.05 | 85.29 | 1.62 |
Mn | 127.01 | 31.11 | 4.08 | 45.21 | 40.60 | 1.11 | 49.05 | 34.93 | 1.40 | 30.62 | 26.49 | 1.16 |
Zn | 116.12 | 39.89 | 2.91 | 46.73 | 119.09 | 0.39 | 20.29 | 21.30 | 0.95 | 26.12 | 19.05 | 1.37 |
Y | 79.91 | 50.24 | 1.59 | 73.21 | 48.09 | 1.52 | 347.02 | 167.76 | 2.07 | 103.76 | 53.25 | 1.95 |
Zr | 21.93 | 4.57 | 4.80 | 24.77 | 12.66 | 1.96 | 104.17 | 27.07 | 3.85 | 23.82 | 4.02 | 5.93 |
Ga | 21.32 | 14.70 | 1.45 | 11.70 | 4.41 | 2.65 | 77.25 | 22.80 | 3.39 | 13.45 | 8.13 | 1.65 |
Cr | 19.48 | 14.11 | 1.38 | 34.25 | 29.46 | 1.16 | 198.05 | 25.12 | 7.88 | 13.43 | 1.26 | 10.68 |
Cu | 13.25 | 5.94 | 2.23 | 11.54 | 4.08 | 2.83 | 7.69 | 2.49 | 3.09 | 3.39 | 1.43 | 2.38 |
Pb | 10.65 | 6.07 | 1.76 | 16.14 | 6.08 | 2.65 | 52.96 | 21.03 | 2.52 | 18.74 | 4.82 | 3.89 |
Ni | 5.98 | 1.14 | 5.26 | 6.67 | 1.70 | 3.93 | 16.05 | 5.86 | 2.74 | 8.52 | 1.74 | 4.89 |
Rb | 5.08 | 2.34 | 2.17 | 1.43 | 0.40 | 3.58 | 29.01 | 4.94 | 5.88 | 2.63 | 0.57 | 4.62 |
As | 3.01 | 0.93 | 3.22 | 4.14 | 1.39 | 2.98 | 4.01 | 1.45 | 2.76 | 2.22 | 0.48 | 4.65 |
Sc | 2.24 | 1.82 | 1.23 | 3.42 | 2.05 | 1.67 | 7.58 | 4.60 | 1.65 | 3.11 | 2.09 | 1.49 |
Nb | 1.65 | 0.14 | 11.50 | 2.37 | 0.48 | 4.99 | 9.46 | 2.31 | 4.09 | 2.00 | 0.07 | 27.71 |
Co | 1.07 | 0.37 | 2.93 | 1.87 | 0.36 | 5.22 | 5.47 | 2.03 | 2.69 | 1.75 | 0.56 | 3.11 |
Ge | 0.55 | 0.10 | 5.71 | 0.78 | 0.33 | 2.39 | 3.69 | 0.66 | 5.55 | 0.67 | 0.05 | 13.08 |
Sn | 0.35 | 0.12 | 2.84 | 0.39 | 0.20 | 1.92 | 1.05 | 0.28 | 3.68 | 0.32 | 0.06 | 5.30 |
Elements (ppm) | QP02 | QP03 | QP07-1 | QP07-2 | ||||
---|---|---|---|---|---|---|---|---|
Type 1 | Type 2 | Type 1 | Type 2 | Type 1 | Type 2 | Type 1 | Type 2 | |
La | 14.92 | 2.80 | 19.22 | 7.24 | 205.63 | 31.24 | 27.52 | 1.12 |
Ce | 12.40 | 3.83 | 16.70 | 6.03 | 155.69 | 24.19 | 23.32 | 1.60 |
Pr | 3.05 | 0.84 | 3.65 | 1.47 | 40.12 | 6.49 | 5.62 | 0.38 |
Nd | 15.08 | 5.72 | 16.14 | 6.98 | 171.09 | 29.50 | 25.45 | 2.82 |
Sm | 5.53 | 3.11 | 4.16 | 2.36 | 33.31 | 8.89 | 6.39 | 2.21 |
Eu | 1.38 | 0.77 | 1.01 | 0.62 | 7.21 | 2.45 | 1.58 | 0.64 |
Gd | 8.22 | 4.97 | 6.48 | 4.06 | 39.06 | 15.84 | 9.67 | 4.57 |
Tb | 1.19 | 0.71 | 1.00 | 0.65 | 5.53 | 2.46 | 1.41 | 0.71 |
Dy | 7.93 | 4.85 | 7.13 | 4.61 | 35.93 | 17.03 | 9.97 | 5.16 |
Y | 79.91 | 50.24 | 73.21 | 48.09 | 347.02 | 167.76 | 103.76 | 53.25 |
Ho | 1.80 | 1.10 | 1.69 | 1.06 | 8.02 | 3.84 | 2.32 | 1.17 |
Er | 5.13 | 3.26 | 4.96 | 3.24 | 23.12 | 11.12 | 6.61 | 3.50 |
Tm | 0.66 | 0.42 | 0.67 | 0.40 | 2.76 | 1.36 | 0.87 | 0.42 |
Yb | 3.80 | 2.53 | 3.72 | 2.17 | 14.99 | 7.45 | 5.00 | 2.33 |
Lu | 0.51 | 0.33 | 0.51 | 0.30 | 1.91 | 0.96 | 0.66 | 0.31 |
δCe | 0.42 | 0.57 | 0.46 | 0.42 | 0.39 | 0.39 | 0.43 | 0.57 |
LaN/SmN | 0.40 | 0.13 | 0.68 | 0.45 | 0.91 | 0.52 | 0.63 | 0.07 |
DyN/SmN | 1.83 | 1.98 | 2.18 | 2.48 | 1.37 | 2.44 | 1.99 | 2.97 |
∑REE + Y | 161.51 | 85.49 | 160.24 | 89.28 | 1091.4 | 330.57 | 230.15 | 80.17 |
LREE/HREE | 0.48 | 0.25 | 0.61 | 0.38 | 1.28 | 0.45 | 0.64 | 0.12 |
Elements | ETF (%) | Elements | ETF (%) | Elements | ETF (%) |
---|---|---|---|---|---|
P2O5 | 3.31 | Th | 33.9 | MgO | 59.26 |
F | 6.06 | Ga | 36.11 | Cr | 60.65 |
Co | 6.43 | Rb | 39.89 | SrO | 65.12 |
U | 6.96 | K2O | 40 | Ba | 66.15 |
Cd | 10.85 | Al2O3 | 40.56 | MnO | 66.67 |
Ni | 11.28 | Na2O | 41.67 | V | 72.38 |
Mn | 15.08 | Pb | 43.95 | Nb | 85.64 |
Li | 15.97 | La | 44.51 | SiO2 | 126.4 |
Sc | 17.68 | CaO | 45.38 | SO3 | 619.31 |
As | 21.44 | Ce | 47.41 | Zr | 2584.47 |
Zn | 21.99 | Fe2O3 | 53.18 | ||
Cu | 24.08 | TiO2 | 56.67 |
Origin Of Phosphate Rock | Cd/ppm | Origin of Phosphogypsum | Cd/ppm (ETF) |
---|---|---|---|
Mianzhu (Present study) | 2.95 | Mianzhu (Present study) | 0.48 (10.85) |
Average Shale Composition 1 | 0.3 | Tunisia 4 | 17.70 (55.2) |
Average World Phosphorite 2 | 18 | Tunisian 9 | 12.23 |
Hahotoeé/Kpogameé 3 | 2~116 | Deyang, China 10 | 2.26 |
Tunisia 4 | 48.10 | Morocco 6 | 1.93 (12) |
Morocco 5 | 21.6 | Brazil 11 | <1.5 |
USA 5 | 12.5 | ||
Morocco 6 | 11 | ||
China 7 | 0.1~4.4 | ||
Greece 8 | 0.2~0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, C.; Shi, Z.; Yang, Y.; Zhang, J.; Hou, Y.; Zhang, N. The Characteristics, Enrichment, and Migration Mechanism of Cadmium in Phosphate Rock and Phosphogypsum of the Qingping Phosphate Deposit, Southwest China. Minerals 2023, 13, 107. https://doi.org/10.3390/min13010107
Zou C, Shi Z, Yang Y, Zhang J, Hou Y, Zhang N. The Characteristics, Enrichment, and Migration Mechanism of Cadmium in Phosphate Rock and Phosphogypsum of the Qingping Phosphate Deposit, Southwest China. Minerals. 2023; 13(1):107. https://doi.org/10.3390/min13010107
Chicago/Turabian StyleZou, Chengjie, Zeming Shi, Yulong Yang, Junji Zhang, Yun Hou, and Na Zhang. 2023. "The Characteristics, Enrichment, and Migration Mechanism of Cadmium in Phosphate Rock and Phosphogypsum of the Qingping Phosphate Deposit, Southwest China" Minerals 13, no. 1: 107. https://doi.org/10.3390/min13010107
APA StyleZou, C., Shi, Z., Yang, Y., Zhang, J., Hou, Y., & Zhang, N. (2023). The Characteristics, Enrichment, and Migration Mechanism of Cadmium in Phosphate Rock and Phosphogypsum of the Qingping Phosphate Deposit, Southwest China. Minerals, 13(1), 107. https://doi.org/10.3390/min13010107