Environmental Impact Assessment of the Subsurface in a Former W-Sn Mine: Integration of Geophysical Methodologies
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Previous Studies on Water and Soil Samples
4.2. Laboratory Electrical Resistivity Results
- The mine drainage gallery water has significantly higher resistivities (441 Ωm) than bottled water with higher salt concentrations (“Frize,” 4 Ωm);
- The mine drainage gallery water has slightly higher resistivities (441 Ωm) than the bottled water with low mineralization (“Serra da Estrela,” 298 Ωm);
- In the cases with the two types of soil matrices (fines tailings and other inert ore materials) saturated with mine drainage gallery water, the resistivity response is equivalent and of the same order of magnitude (693 Ωm and 785 Ωm respectively);
- For soil saturated with saline water (mineral water “Frize”), the resistivity values are quite low (31 and 29 Ωm for both soil types) compared to the responses of soil saturated with mine drainage gallery water (with a difference of one order of magnitude).
Parameter | pH (20 °C) | SiO2 | Cl− | F− | HCO3 | Na+ | Mg2+ | Ca2+ |
---|---|---|---|---|---|---|---|---|
Unit | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | |
Parametric value 1 | 6.5 ≤ pH ≤ 9.5 | - | 250 | 1.5 | - | 200 | - | - |
Frize | 6.14 ± 0.23 | 3090 ± 340 | 122 ± 12 | 1.9 ± 0.5 | 2100 ± 250 | 635 ± 82 | 31.4 ± 5.2 | 106 ± 29 |
Serra da Estrela | 5.8–7 | 17 ± 5.5 | 3.2 ± 0.9 | - | 16.5 ± 8 | 4.4 ± 1.1 | - | 2.7 ± 1.6 |
Mine drainage gallery 2 | 6.01 | - | 4.17 | - | 2.21 | 2.84 | 0.32 | 1.01 |
4.3. Electrical Resistivity Traverse Profiles (ERT)
4.4. Integration of Electrical Resistivity Data (Laboratory Data and Field Profiles ERT)
4.5. Electromagnetic Surveying Results (EM)
4.6. Seismic Surveying Results
4.6.1. Seismic Refraction Results
4.6.2. Multi-Channel Analysis of Surface Waves Results (MASW)
4.7. Integration of Seismic and Electrical Methods
4.8. Hydrogeological Conceptual Model and Representative Sections
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Correia, V.F.; Favas, P.J.C.; Sá, A. Impacto das Drenagens Ácidas das Minas de Regoufe e Rio de Frades (Geoparque Arouca) na Qualidade de Água Superficial; Centro de Estudos Clássicos e Humanísticos da Universidade de Coimbra: Coimbra, Portugal, 2012. [Google Scholar]
- Durães, N.; Portela, L.; Sousa, S.; Patinha, C.; Silva, E. Environmental Impact Assessment in the Former Mining Area of Regoufe (Arouca, Portugal): Contributions to Future Remediation Measures. Int. J. Environ. Res. Public Heal. 2021, 18, 1180. [Google Scholar] [CrossRef] [PubMed]
- Favas, P.; Sarkar, S.; Rakshit, D.; Venkatachalam, P.; Prasad, M. Acid Mine Drainages From Abandoned Mines: Hydrochemistry, Environmental Impact, Resource Recovery, and Prevention of Pollution, Environmental Materials and Waste; Academic Press: Cambridge, MA, USA, 2016; Chapter 17; pp. 413–462. [Google Scholar]
- Sousa, S.C. Avaliação do Impacte Ambiental das Minas de Volfrâmio de Regoufe—Arouca; Departamento de Geociências, Universidade de Aveiro: Aveiro, Portugal, 2016; p. 115. [Google Scholar]
- Candeias, C.; Da Silva, E.F.; Salgueiro, A.R.; Pereira, H.G.; Reis, A.P.; Patinha, C.; Matos, J.X.; Ávila, P.H. Assessment of soil contamination by potentially toxic elements in the aljustrel mining area in order to implement soil reclamation strategies. Land Degrad. Dev. 2011, 22, 565–585. [Google Scholar] [CrossRef] [Green Version]
- González, I.; Galán, E.; Romero, A. Assessing Soil Quality in Areas Affected by Sulfide Mining. Application to Soils in the Iberian Pyrite Belt (SW Spain). Minerals 2011, 1, 73–108. [Google Scholar] [CrossRef] [Green Version]
- Martínez, J.; Rey, J.; Hidalgo, M.C.; Benavente, J. Characterizing Abandoned Mining Dams by Geophysical (ERI) and Geochemical Methods: The Linares-La Carolina District (Southern Spain). Water Air Soil Pollut. 2012, 223, 2955–2968. [Google Scholar] [CrossRef]
- Patinha, C.; da Silva, E.F.; Fonseca, E.C. Mobilisation of arsenic at the Talhadas old mining area—Central Portugal. J. Geochem. Explor. 2004, 84, 167–180. [Google Scholar] [CrossRef]
- Lottermoser, B.G. Sulfidic Mine Wastes. In Mine Wastes: Characterization, Treatment, Environmental Impacts; Springer: Berlin, Germany, 2007; pp. 33–87. [Google Scholar]
- Eary, L.; Runnells, D.D.; Esposito, K. Geochemical controls on ground water composition at the Cripple Creek Mining District, Cripple Creek, Colorado. Appl. Geochem. 2003, 18, 1–24. [Google Scholar] [CrossRef]
- Paschke, S.S.; Harrison, W.J.; Walton-Day, K. Effects of acidic recharge on groundwater at the St. Kevin Gulch site, Leadville, Colorado. Geochem. Explor. Environ. Anal. 2001, 1, 3–14. [Google Scholar] [CrossRef]
- Lachmar, T.E.; Burk, N.I.; Kolesar, P.T. Groundwater Contribution of Metals from an Abandoned Mine to The North Fork of The American Fork River, Utah. Water Air Soil Pollut. 2006, 173, 103–120. [Google Scholar] [CrossRef]
- Rocha, D.; Brilha, J.; Sá, A. Inventariação e a Avaliação do Património Geológico na Fundamentação Científica do Geoparque Arouca (Norte de Portugal); Memórias e Notícias–Publicação do Departamento Ciências Terra e do Museu Mineralogia e Geologia da Universidade de Coimbra: Coimbra, Portugal, 2008; p. 3. [Google Scholar]
- Reynolds, J.M. An Introduction to Applied and Environmental Geophysics; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Fontoura, M.; Moura, R.; Dias, A. A Geologia e a Geofísica na avaliação da contaminação associada a Vazadouros Controlados-o caso do VC de Matosinhos no Norte de Portugal. Comun. Geol. 2011, 98, 83–92. [Google Scholar]
- Wagner, F.M.; Uhlemann, S. Chapter One—An overview of multimethod imaging approaches in environmental geophysics, In Advances in Geophysics; Schmelzbach, C., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–72. [Google Scholar]
- Casagrande, M.F.S.; Moreira, C.A.; Targa, D.A.; Alberti, H.L.C. Integration of Geophysical Methods in the Study of Acid Drainage in Uranium Mining Waste. Braz. J. Geophys. 2018, 36, 439–450. [Google Scholar] [CrossRef] [Green Version]
- Robles Arenas, V.; Candela Lledó, L. Hydrological conceptual model characterisation of an abandoned mine site in semiarid climate: The Sierra de Cartagena-La Unión (SE Spain). Geol. Acta 2010, 8, 235–248. [Google Scholar]
- Schmidt, S.E.A. Hydrologic evaluation of plugging Dinero Tunnel to improve water quality in Lake Fork Creek, Leadville, CO. 2000–2009; Mines Theses & Dissertations, Master of Science, Colorado School of Mines: Golden, CO, USA, 2007. [Google Scholar]
- Carrington da Costa, J. Notícia Sobre uma Carta Geológica do Buçaco, de Nery Delgado; Direcção Geral de Minas e Serviços Geológicos, Serviços Geológicos de Portugal: Lisboa, Portugal, 1950. [Google Scholar]
- Teixeira, C. Notas Sobre Geología de Portugal: O Complexo Xisto-Grauváquico Ante-Ordoviciano; Empresa Literaria Fluminense: Lisboa, Portugal, 1955. [Google Scholar]
- Ortega Gironés, E.; Hernández Urroz, J.; González Lodeiro, F. Distribución Paleogeográfica y Control Estructural de los Materiales Anteordovícicos en la Parte Suroriental del Autóctono de la Zona Centroibérica; Congreso geológico de España: Granada, Spain, 1988; p. 2. [Google Scholar]
- Ribeiro, A.; Silva, J.B.; Dias, R.; Pereira, E.; Oliveira, J.T.; Rebelo, J.; Romão, J.; Silva, A.F. Sardic inversion tectonics in the Centro-Iberian Zone. In III Congresso Nac. Geol, Resumos; Generalista: Coimbra, Portugal, 1991. [Google Scholar]
- Brun, J.-P.; Burg, J.-P. Combined thrusting and wrenching in the Ibero-Armorican arc: A corner effect during continental collision. Earth Planet. Sci. Lett. 1982, 61, 319–332. [Google Scholar] [CrossRef]
- Matte, P. Tectonics and plate tectonics model for the Variscan belt of Europe. Tectonophysics 1986, 126, 329–374. [Google Scholar] [CrossRef]
- Matte, P. The Variscan collage and orogeny (480-290 Ma) and the tectonic definition of the Armorica microplate: A review. Terra Nova 2001, 13, 122–128. [Google Scholar] [CrossRef]
- Matte, P.; Ribeiro, A. Forme et orientation de la virgation hercynienne de Galice. Relations avec le plissement et hypothèses sur la genèse de l’arc Ibero-Armoricain. Cr Seances Acad. Sci. Paris 1975, 280, 2825–2828. [Google Scholar]
- Ribeiro, A.; Pereira, E.; Severo, L. Análise da Deformação da Zona de Cisalhamento Porto-Tomar na Transversal de Oliveira de Azeméis; Comunicações dos Serviços Geológicos de Portugal: Lisboa, Portugal, 1980. [Google Scholar]
- Vera, J.A. Geología de España; Igme: Madrid, Spain, 2004; p. 884. [Google Scholar]
- Pinto, M.C.S.; Martín, C.C.; Ibarrola, E.; Castañón, L.G.C.; Portugal-Ferreira, M.R. Síntese geocronológica dos granitóides do Maciço Hespérico. In Geología de los granitoides y rocas asociadas del Macizo Hespérico Libro Homenaje a L.C. García de Figuerola; Editorial Rueda: Madrid, Spain, 1987. [Google Scholar]
- Vriend, S.P.; Oosterom, M.G.; Bussink, R.W.; Jansen, J.B.H. Trace-element behavior in the W-Sn granite of Regoufe, Portugal. J. Geochem. Explor. 1985, 23, 13–25. [Google Scholar] [CrossRef]
- Sluijk, D. Geology and Tin-tungsten Deposits of the Regoufe Area, Northern Portugal; Universiteit van Amsterdam: Amsterdam, The Netherlands, 1963. [Google Scholar]
- Tavares, J.I. Geologia da Região de Regoufe, in Departamento de Geociências; Universidade de Aveiro: Aveiro, Portugal, 2006; p. 142. [Google Scholar]
- Pereira, E. Notícia Explicativa da Folha 13-D Oliveira de Azeméis; INETI Instituto Nacional de Engenharia: Lisboa, Portugal, 2007. [Google Scholar]
- Van Gaans, P.; Vriend, S.; Poorter, R. Hydrothermal processes and shifting element association patterns in the W—Sn enriched \\granite of Regoufe, Portugal. J. Geochem. Explor. 1995, 55, 203–222. [Google Scholar] [CrossRef]
- Favas, P.J.C. Biogeoquímica em áreas minerais estano-volframíticas. Tese de Doutoramento; Universidade de Trás-os-Montes e Alto Douro: Vila Real, Portugal, 2008; p. 805. [Google Scholar]
- Favas, P.J.C.; Pratas, J.; Gomes, M.E.P. Hidroquímica das águas superficiais na área mineira de Regoufe (Arouca, Norte de Portugal), In VIII Congresso Nacional de Geologia; Revista Electrónica de Ciências da Terra Geosciences On-line Journal: Lisboa, Portugal, 2010. [Google Scholar]
- Marques, M.C. Contribuição da Resistividade Elétrica na Avaliação Ambiental do Subsolo da Zona Envolvente à Mina de Regoufe, Arouca, Portugal; Departamento de Geociências Ambiente e Ordenamento do Território, Universidade do Porto: Porto, Portugal, 2019; p. 56. [Google Scholar]
- Figueiredo, F.; Catarino, L. Prospecção de recursos hídricos em meio cristalino por métodos geofísicos. Caso de estudo da Senhora do castelo (Mangualde). In 11 Seminário Sobre Águas Subterrâneas; Instituto Superior de Engenharia do Porto: Porto, Portugal, 2017; p. 6. [Google Scholar]
- Telford, W.M.; Geldart, L.P.; Sheriff, R. Applied Geophysics; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Palacky, G. Resistivity Characteristics of Geologic Targets. Electromagn. Methods Appl. Geophys. 1988, 1, 53–129. [Google Scholar]
- Bergmann, P.; Ivandic, M.; Norden, B.; Rucker, C.; Kiessling, D.; Luth, S.; Schmidthattenberger, C.; Juhlin, C. Combination of seismic reflection and constrained resistivity inversion with an application to 4D imaging of the CO2 storage site, Ketzin, Germany. GEOPHYSICS 2014, 79, B37–B50. [Google Scholar] [CrossRef]
- Carvalho, J.M.; Chaminé, H.; Afonso, M.J.; Espinha Marques, J.M.; Medeiros, A.; Garcia, S.; Gomes, A.A.; Teixeira, J.; Fonseca, P. Productivity and Water Costs in Fissured-Aquifers from the Iberian Crystalline Basement (Portugal); Hydrogeological Constraints: Porto, Portugal, 2005. [Google Scholar]
- Chalise, S. High mountain hydrology in changing climates: Perspectives from the Hindu Kush-Himalayas. Developments in hydrology of mountain areas. In Proceedings of FRIEND AMHY Annual Report; UNESCO: New York, NY, USA, 1997; pp. 23–31. [Google Scholar]
- Gurtz, J.; Zappa, M.; Jasper, K.; Lang, H.; Verbunt, M.; Badoux, A.; Vitvar, T. A comparative study in modelling runoff and its components in two mountainous catchments. Hydrol. Process. 2003, 17, 297–311. [Google Scholar] [CrossRef]
- Marques, J.E.; Carreira, P.M.; Graça, R.C.; Aires-Barros, L.; Carvalho, J.M.; Chaminé, H.; Borges, F.S. Geothermal fluids circulation at Caldas do Moledo area, Northern Portugal: Geochemical and isotopic signatures. Geofluids 2003, 3, 189–201. [Google Scholar] [CrossRef]
- Marques, J.; Santos, M.F.; Graça, R.; Castro, R.; Aires-Barros, L.; Mendes Victor, L. A geochemical and geophysical approach to derive a conceptual circulation model of CO2-rich mineral waters: A case study of Vilarelho da Raia, northern Portugal. Hydrogeol. J. 2001, 9, 584–596. [Google Scholar]
- Ofterdinger, U.S.; Balderer, W.; Loew, S.; Renard, P. Environmental isotopes as indicators for ground water recharge to fractured granite. Ground Water 2004, 42, 868–879. [Google Scholar] [PubMed] [Green Version]
- Lubczynski, M.W.; Gurwin, J. Integration of various data sources for transient groundwater modeling with spatio-temporally variable fluxes—Sardon study case, Spain. J. Hydrol. 2005, 306, 71–96. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, H.D.; Gomes Marques, M.C.; Sant’Ovaia, H.; Moura, R.; Espinha Marques, J. Environmental Impact Assessment of the Subsurface in a Former W-Sn Mine: Integration of Geophysical Methodologies. Minerals 2023, 13, 55. https://doi.org/10.3390/min13010055
Almeida HD, Gomes Marques MC, Sant’Ovaia H, Moura R, Espinha Marques J. Environmental Impact Assessment of the Subsurface in a Former W-Sn Mine: Integration of Geophysical Methodologies. Minerals. 2023; 13(1):55. https://doi.org/10.3390/min13010055
Chicago/Turabian StyleAlmeida, Hender De, Maria Cristina Gomes Marques, Helena Sant’Ovaia, Rui Moura, and Jorge Espinha Marques. 2023. "Environmental Impact Assessment of the Subsurface in a Former W-Sn Mine: Integration of Geophysical Methodologies" Minerals 13, no. 1: 55. https://doi.org/10.3390/min13010055
APA StyleAlmeida, H. D., Gomes Marques, M. C., Sant’Ovaia, H., Moura, R., & Espinha Marques, J. (2023). Environmental Impact Assessment of the Subsurface in a Former W-Sn Mine: Integration of Geophysical Methodologies. Minerals, 13(1), 55. https://doi.org/10.3390/min13010055