CO2 Reaction-Diffusion Experiments in Shales and Carbonates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geological Structure, Rock Formations and Studied Samples
2.2. Sample Preparation and Characterization
2.3. Experimental Settings
3. Results
3.1. Cores Characterization
Spectrum | Mineral | O | Na | Mg | Al | Si | K | Ca | Ti | Mn | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|
1-Site1 | muscovite + quartz | 64.70 | 0.64 | - | 5.59 | 24.15 | 4.92 | - | - | - | - |
2-Site1 | Fe-dolomite + ankerite | 74.57 | - | 6.64 | - | 0.52 | - | 13.38 | - | 1.21 | 3.69 |
3-Site1 | Fe-dolomite + ankerite | 73.96 | - | 6.16 | - | 0.60 | - | 15.03 | - | - | 4.25 |
4-Site1 | anatase | 68.70 | 0.67 * | - | 0.25 * | 0.55 * | - | - | 29.83 | - | - |
1-Site2 | Fe-rich illite | 65.39 | 1.12 | 2.07 | 6.38 | 19.25 | 0.87 | 0.49 | - | - | 4.42 |
2-Site2 | quartz | 65.45 | - | - | 0.31 * | 34.24 | - | - | - | - | - |
3-Site2 | quartz | 66.55 | - | - | 0.38 * | 33.07 | - | - | - | - | - |
4-Site2 | Illite | 64.91 | 1.23 | 0.56 | 6.03 | 25.93 | 0.83 | - | - | - | 0.51 |
1-Site3 | siderite-dolomite | 68.06 | - | 7.62 | 1.82 * | 2.92 * | - | 1.79 | - | - | 17.78 |
2-Site3 | kaolinite on primary plagioclase | 68.35 | 4.65 | - | 7.79 | 17.56 | 0.17 | 1.49 | - | - | - |
3-Site3 | Fe-chlorite+illite | 68.84 | 2.85 | 3.44 | 4.81 | 11.50 | - | 1.55 | - | - | 7.03 |
4-Site3 | kaolinite | 66.30 | 2.17 | - | 5.60 | 24.52 | - | 1.23 | - | - | 0.19 |
3.2. Diffusion Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Metz, B. Carbon Dioxide Capture and Storage: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Metz, B.; Davidson, O.R.; Bosh, P.; Dave, R.; Meyer, L.A. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- IEA Greehouse Gas R&D Programme. Natural and Industrial Analugues for Geological Storage of Carbon Dioxide; IEA Greehouse Gas R&D Programme: Cheltenham, UK, 2009. [Google Scholar]
- Pachauri, R.K.; Meyer, L.A. IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Pruess, K.; García, J. Multiphase Flow Dynamics during CO2 Disposal into Saline Aquifers. Environ. Geol. 2002, 42, 282–295. [Google Scholar] [CrossRef]
- Rutqvist, J.; Tsang, C.-F. A Study of Caprock Hydromechanical Changes Associated with CO2-Injection into a Brine Formation. Environ. Geol. 2002, 42, 296–305. [Google Scholar] [CrossRef]
- Damen, K.; Faaij, A.; van Bergen, F.; Gale, J.; Lysen, E. Identification of Early Opportunities for CO2 Sequestration—Worldwide Screening for CO2-EOR and CO2-ECBM Projects. Energy 2005, 30, 1931–1952. [Google Scholar] [CrossRef]
- Voltattorni, N.; Sciarra, A.; Caramanna, G.; Cinti, D.; Pizzino, L.; Quattrocchi, F. Gas Geochemistry of Natural Analogues for the Studies of Geological CO2 Sequestration. Appl. Geochem. 2009, 24, 1339–1346. [Google Scholar] [CrossRef]
- Balashov, V.N.; Guthrie, G.D.; Lopano, C.L.; Hakala, J.A.; Brantley, S.L. Reaction and Diffusion at the Reservoir/Shale Interface during CO2 Storage: Impact of Geochemical Kinetics. Appl. Geochem. 2015, 61, 119–131. [Google Scholar] [CrossRef]
- Gunter, W.D.; Perkins, E.H.; McCann, T.J. Aquifer Disposal of CO2-Rich Gases: Reaction Design for Added Capacity. Energy Convers. Manag. 1993, 34, 941–948. [Google Scholar] [CrossRef]
- Shafeen, A.; Carter, T. Geological Sequestration of Greenhouse Gases. In Environmentally Conscious Fossil Energy Production; Kutz, M., Elkamel, A., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; pp. 207–241. ISBN 978-0-470-43274-7. [Google Scholar]
- Amann-Hildenbrand, A.; Bertier, P.; Busch, A.; Krooss, B.M. Experimental Investigation of the Sealing Capacity of Generic Clay-Rich Caprocks. Int. J. Greenh. Gas Control. 2013, 19, 620–641. [Google Scholar] [CrossRef]
- Shogenov, K.; Shogenova, A.; Vizika-Kavvadias, O.; Nauroy, J.-F. Experimental Modeling of CO2-Fluid-Rock Interaction: The Evolution of the Composition and Properties of Host Rocks in the Baltic Region: EXPERIMENTAL MODELING OF CO2 STORAGE. Earth Space Sci. 2015, 2, 262–284. [Google Scholar] [CrossRef]
- Masoudi, R.; Jalil, M.A.A.; Press, D.; Lee, K.H.; Tan, C.P.; Anis, L.; Darman, N.; Othman, M. An Integrated Reservoir Simulation-Geomechanical Study on Feasibility of CO2 Storage in M4 Carbonate Reservoir, Malaysia. In Proceedings of the Society of Petroleum Engineers—International Petroleum Technology Conference 2012, IPTC 2012, Bangkok, Thailand, 7–9 February 2012; Volume 3, pp. 2583–2600. [Google Scholar] [CrossRef]
- Piochi, M.; Cantucci, B.; Montegrossi, G.; Currenti, G. Hydrothermal Alteration at the San Vito Area of the Campi Flegrei Geothermal System in Italy: Mineral Review and Geochemical Modeling. Minerals 2021, 11, 810. [Google Scholar] [CrossRef]
- Cantucci, B.; Montegrossi, G.; Buttinelli, M.; Vaselli, O.; Scrocca, D.; Quattrocchi, F. Geochemical Barriers in CO2 Capture and Storage Feasibility Studies. Transp. Porous Med. 2015, 106, 107–143. [Google Scholar] [CrossRef]
- Doust, H. Geology and Exploration History of Offshore Central Sarawak. In Energy Resources of the Pacific Region; American Association of Petroleum Geologists: Tulsa, OK, USA, 1981; ISBN 978-1-62981-180-2. [Google Scholar]
- Vahrenkamp, V.C. Miocene Carbonates of the Luconia Province, Offshore Sarawak: Implications for Regional Geology and Reservoir Properties from Strontium-Isotope Stratigraphy. BGSM 1998, 42, 1–13. [Google Scholar] [CrossRef]
- Ho, K.F. Stratigraphic Framework for Oil Exploration in Sarawak. Bull. Geol. Soc. Malays. 1978, 10, 1–13. [Google Scholar] [CrossRef]
- Shapiro, L.; Brannock, W.W. Rapid Analysis of Silicates, Carbonates and Phosphate Rocks; US Government Printing Office: Washington, DC, USA, 1962.
- Lutterotti, L.; Bortolotti, M.; Ischia, G.; Lonardelli, I.; Wenk, H.R. Rietveld Texture Analysis from Diffraction Images. Z. Fur Krist. Suppl. 2007, 1, 125–130. [Google Scholar] [CrossRef]
- Wigand, M.; Carey, J.W.; Schütt, H.; Spangenberg, E.; Erzinger, J. Geochemical Effects of CO2 Sequestration in Sandstones under Simulated in Situ Conditions of Deep Saline Aquifers. Appl. Geochem. 2008, 23, 2735–2745. [Google Scholar] [CrossRef]
- Kim, Y.; Caumon, M.-C.; Barres, O.; Sall, A.; Cauzid, J. Identification and Composition of Carbonate Minerals of the Calcite Structure by Raman and Infrared Spectroscopies Using Portable Devices. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 261, 119980. [Google Scholar] [CrossRef]
- Madejová, J.; Komadel, P. Baseline studies of the clay minerals society source clays: Infrared methods. Clays Clay Miner. 2001, 49, 410–432. [Google Scholar] [CrossRef]
- Madejová, J. FTIR Techniques in Clay Mineral Studies. Vib. Spectrosc. 2003, 31, 1–10. [Google Scholar] [CrossRef]
- Meunier, A.; El Albani, A. The Glauconite-Fe-Illite-Fe-Smectite Problem: A Critical Review. Terra Nova 2007, 19, 95–104. [Google Scholar] [CrossRef]
- Vaculíková, L.; Plevová, E. Identification of Clay Minerals and Micas in Sedimentary Rocks. Acta Geodyn. Geomater. 2005, 2, 167–175. [Google Scholar]
- Di Pietro, S.A.; Emerson, H.P.; Katsenovich, Y.P.; Johnson, T.J.; Francis, R.M.; Mason, H.E.; Marple, M.A.; Sawvel, A.M.; Szecsody, J.E. Solid Phase Characterization and Transformation of Illite Mineral with Gas-Phase Ammonia Treatment. J. Hazard. Mater. 2022, 424, 127657. [Google Scholar] [CrossRef]
- Palandri, J.L.; Kharaka, Y.K. A Compilation of Rate Parameters of Water-Mineral Interaction Kinetics for Application to Geochemical Modeling; Geological Survey: Menlo Park, CA, USA, 2004.
- Kutchko, B.G.; Strazisar, B.R.; Dzombak, D.A.; Lowry, G.V.; Thaulow, N. Degradation of Well Cement by CO2 under Geologic Sequestration Conditions. Environ. Sci. Technol. 2007, 41, 4787–4792. [Google Scholar] [CrossRef] [PubMed]
- Huet, B.M.; Prevost, J.H.; Scherer, G.W. Quantitative Reactive Transport Modeling of Portland Cement in CO2-Saturated Water. Int. J. Greenh. Gas Control. 2010, 4, 561–574. [Google Scholar] [CrossRef]
- Hernández-Rodríguez, A.; Orlando, A.; Montegrossi, G.; Huet, B.; Virgili, G.; Vaselli, O. Experimental Analysis on the Carbonation Rate of Portland Cement at Room Temperature and CO2 Partial Pressure from 1 to 51 Bar. Cem. Concr. Compos. 2021, 124, 104271. [Google Scholar] [CrossRef]
- Kampman, N.; Busch, A.; Bertier, P.; Snippe, J.; Hangx, S.; Pipich, V.; Di, Z.; Rother, G.; Harrington, J.F.; Evans, J.P.; et al. Observational Evidence Confirms Modelling of the Long-Term Integrity of CO2-Reservoir Caprocks. Nat. Commun. 2016, 7, 12268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cadogan, S.P.; Maitland, G.C.; Trusler, J.P.M. Diffusion Coefficients of CO2 and N2 in Water at Temperatures between 298. 15 K and 423.15 K at Pressures up to 45 MPa. J. Chem. Eng. Data 2014, 59, 519–525. [Google Scholar] [CrossRef] [Green Version]
- Wollenweber, J.; Alles, S.a.; Kronimus, A.; Busch, A.; Stanjek, H.; Krooss, B.M. Caprock and Overburden Processes in Geological CO2 Storage: An Experimental Study on Sealing Efficiency and Mineral Alterations. Energy Procedia 2009, 1, 3469–3476. [Google Scholar] [CrossRef] [Green Version]
- Busch, A.; Alles, S.; Gensterblum, Y.; Prinz, D.; Dewhurst, D.N.; Raven, M.D.; Stanjek, H.; Krooss, B.M. Carbon Dioxide Storage Potential of Shales. Int. J. Greenh. Gas Control. 2008, 2, 297–308. [Google Scholar] [CrossRef]
- Busch, A.; Alles, S.; Krooss, B.M.; Stanjek, H.; Dewhurst, D. Effects of Physical Sorption and Chemical Reactions of CO2 in Shaly Caprocks. Energy Procedia 2009, 1, 3229–3235. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.G.; Peng, Y. Numerical Modeling for the Combined Effects of Two-Phase Flow, Deformation, Gas Diffusion and CO2 Sorption on Caprock Sealing Efficiency. J. Geochem. Explor. 2014, 144, 154–167. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Liu, H.; Zeng, F.; Guo, P.; Jiang, W. Study on the Adsorption, Diffusion and Permeation Selectivity of Shale Gas in Organics. Energies 2017, 10, 142. [Google Scholar] [CrossRef]
Minerals | Seal 6 | Seal 4 | Reservoir |
---|---|---|---|
C1 | C2 | C3 | |
Quartz | 35.96 | 31.27 | 10.04 |
Siderite | 4.29 | 9.64 | 0.64 |
Dolomite | 2.05 | 3.16 | 11.63 |
Calcite | 1.07 | 1.07 | 63.94 |
Ankerite | - | - | <1 |
Plagioclase | 14.98 | 4.32 | 2.05 |
Muscovite | 10.83 | 10.78 | 1.57 |
Anatase | <1 | - | - |
Pyrite | <1 | <1 | <1 |
Chlorite | 3.04 | 1.16 | 1.59 |
Kaolinite | 5.43 | 14.14 | 4.70 |
Illite | 22.35 | 24.46 | 3.85 |
Oxides | C1 | C2 | C3 | C1-Corrected | C2-Corrected | C3-Corrected |
---|---|---|---|---|---|---|
B2O3 | 2.41 | - | 2.11 | 1.61 | - | 1.41 |
Na2O | 0.81 | 0.23 | 0.25 | 0.54 | 0.15 | 0.16 |
MgO | 1.40 | 1.10 | 0.81 | 0.93 | 0.74 | 0.54 |
Al2O3 | 19.09 | 22.89 | 8.90 | 12.77 | 15.31 | 5.95 |
SiO2 | 61.49 | 57.31 | 19.57 | 41.12 | 38.32 | 13.09 |
P2O5 | 0.15 | 0.15 | 0.11 | 0.10 | 0.10 | 0.07 |
SO3 | 0.50 | 0.90 | 1.99 | 0.34 | 0.60 | 1.33 |
Cl | 0.04 | 0.02 | 0.24 | 0.03 | 0.01 | 0.16 |
K2O | 3.85 | 4.25 | 1.03 | 2.57 | 2.84 | 0.69 |
CaO | 0.82 | 1.41 | 60.05 | 0.55 | 0.94 | 40.15 |
TiO2 | 1.28 | 1.13 | 0.42 | 0.85 | 0.76 | 0.28 |
V2O5 | - | - | 0.03 | - | - | 0.02 |
Cr2O3 | 0.05 | 0.03 | 0.02 | 0.03 | 0.02 | 0.01 |
MnO | 0.12 | 0.09 | 0.03 | 0.08 | 0.06 | 0.02 |
Fe2O3 | 7.76 | 10.25 | 2.39 | 5.19 | 6.85 | 1.60 |
NiO | 0.013 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 |
CuO | 0.01 | 0.01 | 0.01 | 0.01 | 0.06 | 0.01 |
ZnO | 0.02 | 0.02 | 0.01 | 0.01 | 0.02 | <0.01 |
Rb2O | 0.03 | 0.03 | 0.01 | - | - | <0.001 |
Ga2O3 | - | 0.01 | - | - | - | - |
As2O3 | 0.01 | 0.01 | - | - | - | - |
SrO | 0.03 | 0.04 | 0.60 | 0.017 | 0.03 | 0.40 |
ZrO2 | 0.05 | 0.03 | - | - | - | - |
Nb2O5 | - | <0.01 | - | - | - | - |
BaO | 0.09 | 0.07 | 1.40 | 0.06 | 0.05 | 0.93 |
PbO | - | - | 0.014 | - | - | 0.01 |
CO2 | - | - | - | 3.55 | 6.55 | 34.716 |
Spectrum | Mineral | O | Na | Mg | Al | Si | K | S | Ca | Ti | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|
2-Site1 | quartz | 68.48 | - | - | - | 31.52 | - | - | - | - | - |
3-Site1 | quartz | 68.45 | - | - | 0.39 * | 31.16 | - | - | - | - | - |
4-Site1 | quartz | 66.96 | - | - | - | 33.04 | - | - | - | - | - |
1-Site2 | dolomite-siderite | 74.03 | - | 9.90 | 1.16 * | 1.76 * | 0.20 * | - | 2.06 | - | 10.90 |
2-Site2 | illite | 68.57 | 0.71 | 0.30 | 11.84 | 15.83 | 2.39 | - | - | - | 0.36 |
3-Site2 | anatase | 73.52 | - | - | 4.78 * | 9.44 * | 0.65 * | - | - | 11.34 | 0.26 * |
4-Site2 | dolomite-siderite | 73.38 | - | 9.69 | 1.19 * | 1.29 * | - | - | 2.11 | - | 12.34 |
1-Site3 | kaolinite | 68.56 | 0.42 * | 0.54 * | 11.11 | 17.00 | 1.86 * | - | - | - | 0.51 * |
2-Site3 | dolomite-siderite | 74.49 | - | 8.40 | 2.42 * | 3.43 * | - | - | 1.86 | - | 9.41 |
3-Site3 | muscovite | 68.34 | 0.44 * | 0.31 * | 8.80 | 19.87 | 1.56 | - | - | 0.21 | 0.46 |
4-Site3 | illite-chlorite | 70.14 | - | 2.47 | 7.95 | 14.48 | 1.37 | - | 0.51 | 0.25 | 2.83 |
Spectrum | Mineral | O | Na | Mg | Al | Si | K | P | S | Ca | Cl | Ti | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2-Site1 | calcite | 79.92 | - | - | 1.85 * | 2.85 * | 0.32 * | - | 0.28* | 14.79 | - | - | - |
3-Site1 | kaolinite - illite | 74.55 | 0.49 * | 0.39 * | 7.06 | 14.59 | 1.10 * | - | - | 1.45 * | 0.18 * | - | 0.19 * |
4-Site1 | quartz | 73.69 | - | 0.27 * | 1.43 | 23.49 | 0.20 * | - | - | 0.92 * | - | - | - |
2-Site2 | calcite | 77.71 | - | - | - | 0.34 * | - | - | - | 21.94 | - | - | - |
3-Site2 | calcite | 74.84 | - | - | - | - | - | - | - | 24.86 | 0.30 * | - | - |
4-Site2 | kaolinite-illite | 69.35 | 0.45 * | 0.59 * | 11.01 | 14.47 | 2.06 | - | 0.46 * | 1.31 | - | - | 0.31 |
1-Site3 | kaolinite | 75.92 | - | - | 9.53 | 13.07 | 0.20 * | - | - | 1.17 * | - | - | 0.11 |
2-Site3 | illite | 71.24 | 0.27 | 0.51 | 9.75 | 14.88 | 1.35 | 0.28 | - | 1.48 | - | - | 0.23 |
4-Site3 | muscovite | 72.98 | - | 0.87 | 7.88 | 13.07 | 2.10 | - | - | 2.38 * | - | 0.26 | 0.46 |
Temperature, °C | Penetration Length, mm | Depletion Length, mm | Draw, m2s−1 | De, m2s−1 | |
---|---|---|---|---|---|
C1 | |||||
2 days | 75 | 2.99 ± 0.01 | 0.67 ± 0.01 | 5.17 ± 0.035 × 10−11 | 9.77 × 10−11 |
5 days | 75 | 3.48 ± 0.01 | 1.48 ± 0.01 | 2.80 ± 0.016 × 10−11 | |
C2 | |||||
2 days | 105 | 2.60 ± 0.01 | 0.66 ± 0.01 | 3.91 ± 0.03 × 10−11 | 1.53 × 10−10 |
5 days | 105 | 3.50 ± 0.01 | 1.24 ± 0.01 | 2.84 ± 0.016 × 10−11 | |
C3 | |||||
2 days | 145 | 2.41 ± 0.01 | 1.44 ± 0.01 | 3.36 ± 0.028 × 10−11 | 2.51 × 10−10 |
5 days | 145 | 3.67 ± 0.01 | 0.94 ± 0.01 | 3.12 ± 0.017 × 10−11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montegrossi, G.; Cantucci, B.; Piochi, M.; Fusi, L.; Misnan, M.S.; Rashidi, M.R.A.; Abu Bakar, Z.A.; Tuan Harith, Z.Z.; Bahri, N.H.S.; Hashim, N. CO2 Reaction-Diffusion Experiments in Shales and Carbonates. Minerals 2023, 13, 56. https://doi.org/10.3390/min13010056
Montegrossi G, Cantucci B, Piochi M, Fusi L, Misnan MS, Rashidi MRA, Abu Bakar ZA, Tuan Harith ZZ, Bahri NHS, Hashim N. CO2 Reaction-Diffusion Experiments in Shales and Carbonates. Minerals. 2023; 13(1):56. https://doi.org/10.3390/min13010056
Chicago/Turabian StyleMontegrossi, Giordano, Barbara Cantucci, Monica Piochi, Lorenzo Fusi, M. Shahir Misnan, M. Rashad Amir Rashidi, Zainol Affendi Abu Bakar, Zuhar Zahir Tuan Harith, Nabila Hannah Samsol Bahri, and Noorbaizura Hashim. 2023. "CO2 Reaction-Diffusion Experiments in Shales and Carbonates" Minerals 13, no. 1: 56. https://doi.org/10.3390/min13010056
APA StyleMontegrossi, G., Cantucci, B., Piochi, M., Fusi, L., Misnan, M. S., Rashidi, M. R. A., Abu Bakar, Z. A., Tuan Harith, Z. Z., Bahri, N. H. S., & Hashim, N. (2023). CO2 Reaction-Diffusion Experiments in Shales and Carbonates. Minerals, 13(1), 56. https://doi.org/10.3390/min13010056