Major and Trace-Element Composition of Minerals in the Paleoproterozoic Tiksheozero Ultramafic–Alkaline–Carbonatite Complex, Russia: Insight into Magma Evolution
Abstract
:1. Introduction
2. Geology
3. Materials and Methods
4. Results
4.1. Clinopyroxene
4.2. Amphibole
4.3. Apatite
4.3.1. Petrography
4.3.2. Chemistry
4.3.3. Zoning
4.4. Carbonates
5. Discussion
5.1. Relations of Ultramafic–Mafic and Alkaline Series Based on Comparison of Clinopyroxenes
5.2. Magmatic and Post-Magmatic Evolution of Massif Deduced from Apatite Study
5.3. Relations of Silicate Rocks and Carbonatites
5.4. Comparison with Carbonatite Complexes Worldwide
6. Conclusions
- (1)
- Examination of clinopyroxene in the rocks of the Tiksheozero complex allowed us to suggest that the low-alkali ultramafic–mafic rocks of the complex are comagmatic to alkaline rocks and were formed from an alkaline basaltic melt under close moderate pressures.
- (2)
- Cathodoluminescence imaging revealed different apatite textures in different rock types, which correspond to a distinct trace-element composition. Apatite from melteigite shows no zoning. Apatite from theralite reveals a clearly observed normal magmatic zoning with an outward LREE decrease, which is related to the closed-system fractional crystallization from residual melt pockets. Apatite in syenite retained weak normal magmatic zoning, which was slightly disturbed by the interaction of this rock with fluid. Apatite from carbonatite is characterized by an insignificant LREE increase to margins, which is likely related to the re-equilibration of previously formed apatite with fresh batches of REE-enriched carbonatite magma.
- (3)
- The absence of signs of liquid immiscibility in combination with a common trend of apatites from alkaline rocks and carbonatites in the Y–Ho diagram, a decrease in the Y/Ho ratio in apatites from foidolites to carbonatites, and different trace-element compositions of apatite in silicate rocks and carbonatites, as well as the accumulation of incompatible elements in apatites from carbonatites, serve as arguments in support of their origin through fractional crystallization rather than through liquid immiscibility.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sharkov, E.; Bogina, M.; Chistyakov, A. Magmatic systems of large continental igneous provinces. Geosci. Front. 2017, 8, 621–640. [Google Scholar] [CrossRef]
- Corfu, F.; Bayanova, T.; Shchiptsov, V.; Frantz, N. U-Pb ID-TIMS age of the Tikshozero carbonatite: Expression of the 2.0 Ga alkaline magmatism in Karelia, Russia. Cent. Eur. J. Geosci. 2011, 3, 302–308. [Google Scholar]
- Tichomirowa, M.; Whitehouse, M.; Gerdes, A.; Götze, J.; Schulz, B.; Belyatsky, B. Different zircon recrystallization types in carbonatites caused by magma mixing: Evidence from U-Pb dating, trace element and isotope composition (Hf and O) of zircons from two Precambrian carbonatites from Fennoscandia. Chem. Geol. 2013, 353, 173–198. [Google Scholar] [CrossRef]
- Rodionov, N.V.; Belyatsky, B.A.; Antonov, A.V.; Presnyakov, S.L.; Sergeev, S.A. Baddeleyite U-Pb SHRIMP II age determination as a tool for carbonatite massifs dating. Dokl. Earth Sci. 2009, 428, 1166–1170. [Google Scholar] [CrossRef]
- Sharkov, E.V.; Chistyakov, A.V.; Bogina, M.M.; Shchiptsov, V.V.; Belyatsky, B.V.; Frolov, P.V. Petrology of the Mid-Paleoproterozoic Tiksheozero ultramafic-alkaline-carbonatite complex (Northern Karelia). Petrology 2021, 29, 478–507. [Google Scholar] [CrossRef]
- Bogina, M.; Belyatsky, B.; Sharkov, E.; Chistyakov, A.; Krymsky, R. Origin of the Middle Paleoproterozoic Tiksheozero ultramafic-alkaline-carbonatite complex, NE Fennoscandian Shield: Evidence from geochemical and isotope Sr-Nd-Hf-Pb-Os data. Minerals 2021, 11, 570. [Google Scholar] [CrossRef]
- Ivashchenko, V.I.; Golubev, A.I. Gold and Platinum of Karelia: Genetic Types of Mineralization and Prospects; Karelian Science Centre: Petrozavodsk, Russia, 2011. (In Russian) [Google Scholar]
- Reguir, E.P.; Chakhmouradian, A.R.; Pisiak, L.; Halden, N.M. Trace-element composition and zoning in clinopyroxene- and amphibole-group minerals: Implications for element partitioning and evolution of carbonatites. Lithos 2012, 128–131, 27–45. [Google Scholar] [CrossRef]
- Morimoto, N. Nomenlcature of pyroxenes. Mineral. Mag. 1988, 52, 535–550. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.-S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Leake, B.E.; Woolley, A.R.; Arps, C.E.; Birch, W.D.; Gilbert, M.C.; Grice, J.D. Nomenclature of amphiboles: Report of the subcommittee on amphiboles if the International Mineralogical Association on new minerals and mineral names. Can. Mineral. 1997, 35, 219–246. [Google Scholar]
- Decrée, S.; Savolainen, M.; Mercadier, J.; Debaille, V.; Hohn, S.; Frimmel, H.; Baele, J.-M. Geochemical and spectroscopic investigation of apatite in the Siilinjarvi carbonatite complex: Keys to understanding apatite forming processes and accessing potential for rare-earth elements. Appl. Geochem. 2020, 123, 104778. [Google Scholar] [CrossRef]
- Brassinness, S.; Balaganskaya, E.; Demaiffe, D. Magmatic evolution of the differentiated ultramafic, alkaline and carbonatite intrusion of Vuoriyärvi (Kola Peninsula, Russia). A LA-ICP-MS study of apatite. Lithos 2005, 85, 76–92. [Google Scholar] [CrossRef]
- Decrée, S.; Cawthorn, G.; Deloule, E.; Mecadier, J.; Frimmel, H.; Baele, J.-M. Unravelling the processes controlling the apatite formation in the Phalaborwa Complex (South Africa) based on combined cathodoluminescence, LA-ICPMS and in-situ O and Sr isotope analyses. Contrib. Mineral. Petrol. 2020, 175, 34. [Google Scholar] [CrossRef]
- Doroshkevich, A.G.; Veksler, I.V.; Klemd, R.; Chromova, E.A.; Izbrodin, A.A. Trace-element composition of minerals and rocks in the Belaya Zima carbonatite complex (Russia): Implications for the mechanisms of magma evolution and carbonatite formation. Lithos 2017, 284–285, 91–108. [Google Scholar] [CrossRef]
- Ruberti, E.; Enrich, G.E.R.; Azzone, R.G.; Comin-Chiaramonti, P.; de Min, A.; Gomes, C.B. The Banhadao alkaline complex, southeastern Brazil: Source and evolution of potassic SiO2 -undersaturated high-Ca and low-Ca magmatic series. Mineral. Petrol. 2012, 104, 63–80. [Google Scholar] [CrossRef]
- Chmyz, L.; Arnaud, N.; Biondi, J.C.; Azzone, R.G.; Delphine, B.; Ruberti, E. Ar-Ar ages, Sr-Nd isotope geochemistry, and implications for the origin of the silicate rocks of the Jacupiranga ultramafic-alkaline complex (Brazil). J. S. Am. Earth Sci. 2017, 77, 286–309. [Google Scholar] [CrossRef]
- Kushiro, I. Si-Al relation in clinopyroxenes from igneous rock. Am. J. Sci. 1960, 258, 548–554. [Google Scholar] [CrossRef]
- Verhoogen, J. Distribution of titanium between silicates and oxides in igneous rocks. Am. J. Sci. 1962, 260, 211–220. [Google Scholar] [CrossRef]
- Aoki, K.; Shiba, I. Clinopyroxenes from alkaline rocks of Japan. Am. Mineral. 1964, 49, 1199–1223. [Google Scholar]
- Gibb, F.G.F. The zoned clinopyroxenes of the Shiant Isles sill, Scotland. J. Petrol. 1973, 14, 203–230. [Google Scholar] [CrossRef]
- Leterrier, J.; Maury, R.C.; Thonon, P.; Girard, D.; Marchal, M. Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series. Earth Planet. Sci. Lett. 1982, 59, 139–154. [Google Scholar] [CrossRef]
- Irving, A.J.; Frey, F.A. Trace element abundances in megacrysts and their host basalts: Constraints on partition coefficients and megacryst genesis. Geochim. Cosmochim. Acta. 1984, 48, 1201–1221. [Google Scholar] [CrossRef]
- Akinin, V.V.; Sobolev, A.V.; Ntaflos, T.; Richter, W. Clinopyroxene megacrysts from Enmelen melanephelinitic volcanoes (Chukchi Peninsula, Russia): Application to composition and evolution of mantle melts. Contrib. Mineral. Petrol. 2005, 150, 85–101. [Google Scholar] [CrossRef]
- Harlov, D.E.; Andersson, U.B.; Forster, H.-J. Apatite‒monazite relations in the Kiirunavaara magnetite-apatite ore, northern Sweden. Chem. Geol. 2002, 191, 47–52. [Google Scholar] [CrossRef]
- Lu, J.; Chen, W.; Ying, Y.; Ying, Y.-C.; Jiang, S. Apatite texture and trace element chemistry of carbonatite-related REE deposits in China: Implications for petrogenesis. Lithos 2021, 398–399, 106276. [Google Scholar] [CrossRef]
- Gittins, J. The origin and evolution of carbonatite magmas. In Carbonatites Genesis and Evolution; Bekk, K., Ed.; Unwin Hyman: London, UK, 1989; pp. 580–600. [Google Scholar]
- Veksler, I.V.; Nielsen, T.F.D.; Sokolov, S.V. Mineralogy of crystallized melt inclusions from Gardiner and Kovdor ultramafic alkaline complexes: Implications for carbonatite genesis. J. Petrol. 1988, 39, 2015–2031. [Google Scholar] [CrossRef]
- Stoppa, F.; Rosatelli, G.; Wall, F.; Jeffries, T. Geochemistry of carbonatite‒silicate pairs in nature: A case history from Central Italy. Lithos 2005, 85, 279–281. [Google Scholar] [CrossRef]
- Veksler, I.V.; Dorfman, A.M.; Dulski, P.; Kamenetsky, V.S.; Danyushevsky, L.V.; Jeffries, T.; Dingwel, D. Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite. Geochim. Cosmochim. Acta 2012, 79, 20–40. [Google Scholar] [CrossRef]
- Borisova, A.Y.; Tilhac, R. Derivation of Hawaiian rejuvenated magas from deep carbonated mantle sources: A review of experimental and natural constraints. Earth Sci. Rev. 2021, 222, 103819. [Google Scholar] [CrossRef]
- Bayanova, T.B. Baddeleyite: A promising geochronometer for alkaline and basic magmatism. Petrology 2006, 14, 187–200. [Google Scholar] [CrossRef]
- O’Brien, H.; Heilimov, E.; Heino, P. The Archean Siilinjärvi carbonatite complex. In Mineral Deposits of Finland; Maier, W.D., Lahtinen, R., O’Brien, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 327–343. [Google Scholar]
- Wu, F.J.; Yang, Y.H.; Li, Q.L.; Mitchell, R.H.; Dawson, J.B.; Brandl, G.; Yuhara, M. In situ determination of U-Pb ages and Sr-Nd-Hf isotopic constraints on the petrogenesis of the Phalaborwa carbonatite complex, South Africa. Lithos 2011, 127, 209–327. [Google Scholar] [CrossRef]
- Gogol, O.; Delinitzin, A. New Rb-Sr data for Kola alkaline province. In Proceedings of the 10th Kratz Conference; Kola Science Centre: Apatity, Russia, 1999; pp. 43–47. [Google Scholar]
- Yaxley, G.M.; Anenburg, M.; Tappe, S.; Decree, S.; Guzmics, T. Carbonatites: Classification, Sources, Evolution, and Emplacement. Annu. Rev. Earth Planet. Sci. 2022, 50, 261–293. [Google Scholar] [CrossRef]
- Hawkesworth, C.J.; Cawood, P.A.; Dhuime, B.; Kemp, A.I.S. Earth’s continental lithosphere through time. Annu. Rev. Earth Planet. Sci. 2017, 45, 169–198. [Google Scholar] [CrossRef]
- Belousova, E.A.; Griffin, W.L.; O’Reilly, S.Y.; Fisher, N.I. Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationship to host rock type. J. Geochem. Explor. 2002, 76, 45–69. [Google Scholar] [CrossRef]
Sample No., Rock | Brief Characteristics |
---|---|
T2 Ol+Cpx cumulate (wehrlite) | Medium-grained rock. Olivine (60–70 vol %) and Cpx form anhedral grains up to 5–6 mm. Single small Fe-Ti oxides and sulfides (pentlandite). Secondary minerals are serpentine and actinolite. |
T4 Ol clinopyroxenite | Scarce olivine grains of irregular shape form aggregates (2–6 mm) among Cpx (up to 5 mm). Single small Fe-Ti oxides and calcite veinlets. |
T18 Ol clinopyroxenite | Massive rock. Cpx (>80%, up to 5 mm). Scarce Ol—grains of irregular shape up to 2–3 mm in size. Accessory small Fe-Ti oxides. Secondary minerals: serpentine and actinolite. |
T22 Ol gabbro | Ol (10 vol %) and Cpx (70 vol %) form grains of irregular shape from 0.2 to 6–7 mm. Pl forms aggregates of small grains. Fe-Ti (up to 5 vol %)—small inclusions, mainly in Cpx. |
21–35 Alkaline clinopyroxenite | Fine to medium-grained inequigranular rock. Composition: Cpx (~20 vol %, up to 1 mm), Ferro-Krs (30–40 vol%, up to 3–4 mm), interstitial Pl, small Fe-Ti oxides (up to 5%), accessory F-Ap. |
T15 Jacupirangite | Fine to medium-grained inequigranular rock. Composition: Cpx (70 vol %, from 0.1 to 3 mm), interstitial Ne (~10 vol %), small Fe-Ti oxides (10 vol%), Krs—grains up to 1–2 mm and oikocrysts with inclusions of Cpx and Fe-Ti. |
834 Jacupirangite | Fine to medium-grained inequigranular rock. Composition: Cpx Ti-augite (subhedral grans~ 50 vol%, size from 0.1 to 2 mm), Krs (30–40 vol %, oikocrysts up to 3–4 mm, with inclusions Cpx and single Ol), small interstitial Ne (up to 5 vol%), Fe-Ti oxides (3–5 vol%, up to 0.5 mm), single Phl and accessory F-Ap. |
T32 Melteigite–ijolite | Fine to medium-grained inequigranular rock. Composition: Cpx (Ti-augite, up to 2–3 mm), Krs (up to 1 cm, frequently oikocrysts) and Ne (small interstices and large oikocrysts) approximately in equal amounts compose almost whole rock volume. Chadacrysts—Cpx. Single small Fe-Ti oxides, accessory F-Ap. |
32-1 Melteigite | Fine to medium-grained rock. Cpx (35 vol%)–Ti-augite, Ne (30–35 vol %), Fe-Ti oxides (up to 10 vol %), phlogopite (up to 20 vol%), single grains of calcite, accessory: F-Ap, Spn, Prv. |
32-2 Melteigite–ijolite | Fine to medium-grained inequigranular rock. Cpx and Ne amount 80 vol %, show uneven distribution. Cpx forms accumulations (up to 8 mm) of subhedral grains with interstitial Ne and grains up to 3–4 mm in size among finer-grained (1–2 mm) Ne grains. Bt forms grains or intergrowths with Fe-Ti oxides. Accessory: F-Ap and Spn, Cal veinlets. |
T32a Theralite | Fine to medium-grained inequigranular rock. Composition: Ti-Aug (40–50 vol %, up to 1 mm) and Pl (20 vol %) form accumulations of small grains; small Fe-Ti oxides (up to 10 vol %) with single Bt; other minerals—Ne (up to 2–3 mm); accessory –F-Ap. |
26-7 Theralite | Medium-grained rock consisting of Cpx (40 vol %, 0.1 to 1.5–2 mm), Pl (0.2 to 3 mm) and Ne (frequently > 3 mm) approximately in equal amounts—up to 50 vol %; Bt and Fe-Ti oxides, frequently with small F-Ap inclusions. |
T46 Syenite | Massive medium-grained leucocratic rock. Composition: Kfs (~60 vol %, frequently > 6 mm); Ne (~20 vol %, 2–6 mm); fine to medium-grained Kfs between large grains, mafic minerals (up to 20 vol %, up to 2–3 mm)—accumulations of pargasitic amphibole, accessory F-Ap. |
835 Carb–Sil rock | “Patchy” rock. Mafic patches (3–7 mm) are composed of fine-grained aggregate of mainly alkaline Amp with Bt; leucocratic patches—Cal, or fine-grained cancrinite-albite-sodalite composition. Accessory F-Ap. |
839 Carb–Sil rock | “Patchy” rock. Composition: alkaline Amp and Aeg (mafic “spots”); carbonate (grains up to 2–3 mm, veinlets and leucocratic “spots”); small (a few tenths of mm) and large (up to 2–3 mm) grains of Fe-apatite; Ilm—single small grains or their accumulations; accessory titanite. |
37-9 Carb–Sil rock | Clusters of fine-grained Phl and alkaline amphibole account for up to half of rock volume, remaining volume is occupied by calcite grains, single Fe-Ti oxides, accessory F-Ap. |
169/200 154/133 154/99 Carbonatite | Fine to medium-grained inequigranular rock. Anhedral calcites compose up to 80 vol %. ~10% are grains of F-apatite from a tenth of mm to 0.5 mm in size that occur as inclusions in calcite and in interstices between carbonate grains. Remaining volume is occupied by magnetite (up to 0.5 mm) and phlogopite, amphibole (richterite-cataphorite) and F-Ap, which sometimes form clusters surrounded by Fe-Mg carbonate—dolomite. |
Sample | T2 | T4 | T18 | T22 | 21/35 | T15 | 834 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rock | Ol+Cpx Cumulates | Ol Gabbro | Alk. Cpyx | Jacupirangite | |||||||||||
Rb | 2.39 | 0.71 | 2.20 | 0.18 | 1.51 | 2.04 | 0.16 | 0.32 | 0.49 | 0.06 | 0.33 | 4.80 | |||
Sr | 51.7 | 100 | 75.5 | 70.0 | 50.0 | 40.1 | 41.7 | 135 | 152 | 146 | 152 | 141 | 186 | 382 | |
Y | 10.0 | 6.79 | 8.08 | 13.1 | 5.01 | 10.8 | 10.3 | 15.8 | 15.0 | 17.1 | 22.7 | 22.1 | 23.8 | 35.8 | |
Zr | 15.5 | 20.8 | 19.9 | 29.0 | 11.4 | 36.1 | 47.1 | 209 | 187 | 207 | 176 | 165 | 189 | 228 | |
Nb | 6.15 | 0.40 | 0.74 | 0.77 | 0.30 | 0.35 | 0.58 | 1.66 | 1.44 | 1.11 | 1.68 | 2.40 | 17.5 | 3.78 | |
Ba | 53.2 | 128 | 4.28 | 1.35 | 0.71 | 15.1 | 21.5 | 2.5 | 2.82 | 2.58 | 0.10 | 3.00 | 151 | 40.8 | |
La | 3.81 | 3.75 | 4.13 | 4.18 | 1.99 | 3.75 | 4.26 | 20.8 | 18.5 | 19.7 | 11.4 | 16.8 | 24.6 | 52.4 | |
Ce | 14.1 | 9.87 | 10.7 | 13.4 | 6.34 | 11.9 | 12.8 | 60.6 | 53.3 | 58.9 | 46.9 | 52.0 | 67.1 | 135.4 | |
Pr | 1.95 | 1.45 | 1.65 | 2.3 | 1.16 | 1.98 | 2.04 | 7.36 | 6.67 | 7.67 | 8.11 | 8.65 | 9.64 | 17.1 | |
Nd | 10.5 | 7.60 | 8.68 | 13.8 | 6.24 | 10.8 | 10.2 | 35.5 | 30.2 | 34.6 | 44.9 | 45.2 | 52.1 | 74.7 | |
Sm | 2.73 | 1.52 | 2.21 | 3.78 | 1.63 | 2.83 | 2.63 | 5.33 | 5.54 | 6.84 | 10.5 | 10.2 | 12.4 | 14.3 | |
Eu | 0.57 | 0.59 | 0.81 | 1.10 | 0.56 | 0.84 | 0.65 | 1.96 | 1.95 | 1.99 | 2.96 | 2.63 | 2.96 | 4.33 | |
Gd | 3.08 | 1.84 | 2.83 | 3.53 | 1.78 | 2.59 | 2.86 | 4.69 | 4.26 | 4.73 | 8.56 | 9.92 | 8.63 | 10.7 | |
Tb | 0.32 | 0.24 | 0.48 | 0.74 | 0.37 | 0.46 | 0.33 | 0.69 | 0.57 | 0.66 | 1.03 | 1.05 | 1.18 | 2.81 | |
Dy | 2.24 | 1.49 | 1.73 | 2.73 | 1.36 | 2.29 | 2.13 | 4.26 | 3.72 | 4.02 | 5.81 | 6.17 | 6.64 | 8.20 | |
Ho | 0.32 | 0.27 | 0.30 | 0.54 | 0.28 | 0.43 | 0.41 | 0.66 | 0.70 | 0.87 | 1.04 | 1.05 | 1.12 | 1.54 | |
Er | 0.89 | 0.80 | 0.78 | 1.63 | 0.66 | 0.98 | 1.11 | 1.94 | 1.73 | 2.04 | 2.49 | 2.51 | 2.70 | 4.25 | |
Tm | 0.16 | 0.11 | 0.12 | 0.16 | 0.27 | 0.21 | 0.25 | 0.25 | 0.29 | 0.32 | |||||
Yb | 0.86 | 0.59 | 0.76 | 1.27 | 0.54 | 1.01 | 1.02 | 1.82 | 1.47 | 1.56 | 1.92 | 1.91 | 2.08 | 3.52 | |
Lu | 0.09 | 0.09 | 0.12 | 0.18 | 0.09 | 0.14 | 0.12 | 0.31 | 0.18 | 0.27 | 0.26 | 0.25 | 0.29 | 0.54 | |
Hf | 0.77 | 0.81 | 1.02 | 2.05 | 0.81 | 1.28 | 1.51 | 5.94 | 5.89 | 5.75 | 6.45 | 6.06 | 6.53 | 8.12 | |
Ta | 0.10 | 0.03 | 0.18 | 0.20 | 0.09 | 0.03 | 0.06 | 0.50 | 0.47 | 0.41 | 0.38 | 0.40 | 1.86 | 0.97 | |
Pb | 3.30 | 6.59 | 1.16 | 1.51 | 0.36 | 0.39 | 0.24 | 0.05 | 0.78 | 3.30 | |||||
Th | 0.50 | 0.30 | 0.24 | 0.06 | 0.03 | 0.46 | 0.66 | 0.51 | 0.37 | 0.54 | 0.14 | 0.96 | 1.81 | 5.81 | |
U | 0.06 | 0.09 | 0.10 | 0.12 | 0.02 | 0.27 | 0.28 | 0.11 | 0.12 | 0.12 | 0.04 | 0.16 | 0.31 | 0.41 | |
Sample | T32 | 32-1 | 32-2 | T32a | 26-7 | 27-15 | 835 | 839 | |||||||
Rock | Ijolite–Melteigite | Theralite | Syenite | Carb–Sil | |||||||||||
Rb | 2.32 | 2.45 | 1.83 | 0.21 | 7.61 | 1.17 | 0.17 | 1.22 | 1.34 | 4.47 | 1.77 | ||||
Sr | 634 | 340 | 306 | 764 | 153 | 336 | 349 | 340 | 198 | 164 | 120 | 130 | 180 | 84.56 | 19.8 |
Y | 35.1 | 29.63 | 16.3 | 36.5 | 8.73 | 14.6 | 50.1 | 40.8 | 25.0 | 22.9 | 51.1 | 53.3 | 2.88 | 2.76 | 3.44 |
Zr | 313 | 250.6 | 352 | 640 | 155 | 340 | 302 | 219 | 131 | 157 | 718 | 628 | 108 | 112 | 107 |
Nb | 31.9 | 5.22 | 6.22 | 16.9 | 2.64 | 5.50 | 7.77 | 4.31 | 3.15 | 2.51 | 18.4 | 11.69 | 207 | 210 | 1.52 |
Ba | 3.41 | 7.46 | 7.97 | 9.60 | 20.0 | 3.88 | 6.75 | 2.05 | 34.9 | 12.0 | 1.92 | 2.54 | 117 | 302 | 49.6 |
La | 55.2 | 50.6 | 21.7 | 47.6 | 8.64 | 18.8 | 48.8 | 40.5 | 25.8 | 22.3 | 74.9 | 66.8 | 6.06 | 6.22 | 3.77 |
Ce | 173 | 123 | 76.0 | 163 | 24.3 | 1.00 | 153 | 123 | 95.9 | 72.7 | 201 | 198 | 14.2 | 12.9 | 9.28 |
Pr | 20.6 | 14.4 | 10.6 | 22.0 | 4.00 | 8.36 | 21.4 | 18.0 | 12.6 | 10.4 | 26.0 | 27.0 | 1.59 | 1.68 | 1.32 |
Nd | 83.9 | 62.5 | 49.8 | 97.6 | 17.9 | 41.6 | 107 | 85.4 | 57.0 | 49.2 | 101.7 | 111 | 6.80 | 6.15 | 4.82 |
Sm | 17.3 | 12.2 | 9.12 | 18.8 | 3.29 | 8.08 | 22.3 | 17.5 | 10.4 | 9.41 | 16.73 | 19.0 | 1.27 | 1.20 | 1.05 |
Eu | 4.59 | 3.27 | 2.70 | 5.67 | 0.93 | 2.74 | 6.08 | 4.61 | 3.22 | 2.42 | 2.97 | 3.26 | 0.29 | 0.25 | 0.29 |
Gd | 9.62 | 8.80 | 7.14 | 13.7 | 3.27 | 6.87 | 19.4 | 14.3 | 8.21 | 8.01 | 13.44 | 14.7 | 0.78 | 0.83 | 0.86 |
Tb | 1.59 | 2.24 | 0.83 | 1.81 | 0.35 | 0.63 | 4.21 | 3.38 | 1.05 | 1.04 | 1.78 | 1.94 | 0.11 | 0.13 | 0.13 |
Dy | 8.51 | 6.99 | 4.10 | 8.48 | 2.21 | 3.90 | 11.8 | 10.1 | 5.88 | 5.68 | 11.09 | 11.6 | 0.92 | 0.71 | 0.65 |
Ho | 1.55 | 1.24 | 0.68 | 1.45 | 0.37 | 0.74 | 2.38 | 1.77 | 0.97 | 0.91 | 2.05 | 2.19 | 0.13 | 0.13 | 0.10 |
Er | 4.24 | 3.34 | 1.57 | 3.55 | 0.86 | 1.59 | 6.28 | 4.51 | 2.41 | 2.19 | 5.64 | 5.87 | 0.26 | 0.33 | 0.31 |
Tm | 0.61 | 0.18 | 0.36 | 0.10 | 0.17 | 0.33 | 0.28 | 1.04 | 0.95 | 0.03 | 0.05 | 0.04 | |||
Yb | 2.69 | 2.98 | 1.17 | 2.70 | 0.85 | 1.31 | 4.35 | 3.67 | 1.93 | 1.68 | 7.82 | 7.84 | 0.27 | 0.42 | 0.37 |
Lu | 0.42 | 0.54 | 0.19 | 0.43 | 0.11 | 0.17 | 0.74 | 0.72 | 0.31 | 0.30 | 1.58 | 1.34 | 0.08 | 0.10 | 0.07 |
Hf | 8.40 | 8.49 | 8.10 | 18.0 | 4.04 | 9.16 | 11.5 | 7.58 | 3.93 | 4.33 | 18.4 | 13.9 | 2.28 | 2.60 | 2.18 |
Ta | 3.10 | 0.92 | 1.65 | 2.93 | 0.58 | 1.39 | 1.49 | 1.28 | 0.48 | 0.47 | 2.57 | 2.12 | 1.89 | 1.98 | 0.12 |
Pb | 1.31 | 0.62 | 1.58 | 3.85 | 0.30 | 0.52 | 0.90 | 0.91 | 0.29 | 4.15 | 3.36 | 3.72 | |||
Th | 1.38 | 1.01 | 0.62 | 3.07 | 0.57 | 0.47 | 0.57 | 0.47 | 0.45 | 0.53 | 0.26 | 0.19 | 2.37 | 1.26 | 0.61 |
U | 0.23 | 0.23 | 0.05 | 0.26 | 0.30 | 0.07 | 0.09 | 0.08 | 0.10 | 0.19 | 0.04 | 0.01 | 0.50 | 0.29 | 0.25 |
Sample | 21/35 | 834 | T15 | T32 | T46 | 154/99 | 169/200 | 154/133 | 37-9 | 839 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rock | Alk Cpyx | Jacupirangite | Melteigite–Ijolite | Syenite | Carbonatite | Carb–Sil | ||||||||||
Rb | 15.9 | bdl | 10.5 | 0.08 | 11.2 | 13.4 | 7.35 | 27.2 | 0.48 | 0.4 | 0.2 | 0.43 | 0.34 | 3.4 | 6.54 | 1.77 |
Sr | 2190 | 1289 | 363 | 71.4 | 777 | 1712 | 1726 | 183 | 18.4 | 24.7 | 29.2 | 9.13 | 49.6 | 193 | 73.3 | 19.8 |
Y | 63.4 | 54.6 | 34.7 | 17.1 | 28.9 | 37.1 | 52.7 | 24.8 | 0.5 | 0.05 | 0.47 | 0.03 | 0.23 | 0.89 | 1.8 | 3.44 |
Zr | 380 | 296 | 189 | 197 | 233 | 239 | 271 | 751 | 1078 | 359 | 310 | 122 | 496 | 298 | 271 | 107 |
Nb | 630 | 123 | 37.3 | 1.23 | 128 | 216 | 298 | 615 | 185 | 36.1 | 24.2 | 19.4 | 110 | 1006 | 329 | 1.52 |
Ba | 5980 | 1961 | 318 | 1.58 | 1518 | 2785 | 3048 | 153 | 14.2 | 2.69 | 11.3 | 1.22 | 11.9 | 206 | 173 | 49.6 |
La | 98.2 | 89.8 | 40.9 | 16.8 | 61.7 | 78.6 | 97.8 | 121 | 0.39 | 0.08 | 0.37 | 0.04 | 0.42 | 6.9 | 4.41 | 3.77 |
Ce | 305 | 206 | 99.1 | 45.2 | 135 | 171 | 239 | 263 | 1.97 | 0.47 | 1.17 | 0.18 | 1.36 | 22.5 | 9.48 | 9.28 |
Pr | 37.7 | 26.3 | 13.3 | 7.13 | 16.5 | 19.8 | 28.8 | 32.6 | 0.31 | 0.04 | 0.15 | 0.02 | 0.19 | 2.05 | 1.42 | 1.32 |
Nd | 172 | 114 | 63.9 | 33.4 | 68.0 | 83.5 | 117 | 121 | 1.56 | 0.31 | 0.42 | 0.16 | 0.73 | 6.72 | 6.84 | 4.82 |
Sm | 28.6 | 20.6 | 13.8 | 7.63 | 13.1 | 15.8 | 20 | 19.1 | 0.28 | bdl | 0.10 | bdl | 0.30 | 1.10 | 1.24 | 1.05 |
Eu | 9.62 | 6.51 | 3.68 | 1.86 | 3.54 | 4.76 | 5.13 | 3.42 | 0.10 | 0.03 | 0.03 | 0.01 | 0.03 | 0.31 | 0.24 | 0.29 |
Gd | 21.2 | 13.4 | 13 | 6.68 | 10.1 | 10.8 | 14.2 | 15.6 | 0.2 | bdl | 0.18 | bdl | 0.15 | 0.64 | 0.56 | 0.86 |
Tb | 2.65 | 4.82 | 2.88 | 0.77 | 1.24 | 1.51 | 4.32 | 4.72 | 0.02 | bdl | bdl | bdl | 0.04 | 0.08 | 0.08 | 0.13 |
Dy | 16.6 | 13.0 | 8.64 | 4.84 | 7.22 | 7.76 | 11.1 | 8.56 | 0.14 | 0.02 | 0.03 | bdl | 0.08 | 0.23 | 0.48 | 0.65 |
Ho | 2.80 | 2.40 | 1.42 | 0.76 | 1.21 | 1.37 | 2.29 | 1.47 | 0.02 | bdl | bdl | bdl | 0.01 | 0.03 | 0.10 | 0.10 |
Er | 6.18 | 6.54 | 4.19 | 1.96 | 3.23 | 3.59 | 6.16 | 3.68 | bdl | bdl | 0 | bdl | 0.02 | 0.07 | 0.18 | 0.31 |
Tm | 0.91 | 0.19 | 0.41 | 0.48 | 0.01 | bdl | 0 | bdl | 0 | 0.04 | 0.04 | |||||
Yb | 5.46 | 4.85 | 2.4 | 1.35 | 2.65 | 2.56 | 4.22 | 2.26 | 0.05 | bdl | 0.05 | bdl | 0.02 | 0.05 | 0.19 | 0.37 |
Lu | 0.63 | 0.83 | 0.5 | 0.2 | 0.36 | 0.42 | 0.79 | 0.81 | bdl | 0.02 | 0 | 0.01 | 0.02 | 0.1 | 0.07 | |
Hf | 9.39 | 11.5 | 7.19 | 6.47 | 6.28 | 5.51 | 9.65 | 14.8 | 9.65 | 5.28 | 5.38 | 2.92 | 6.96 | 2.24 | 6.77 | 2.18 |
Ta | 25.2 | 4.82 | 2.65 | 0.34 | 6.94 | 8.77 | 9.99 | 18.6 | 7.01 | 1.74 | 1.93 | 0.46 | 7.44 | 172 | 7.96 | 0.12 |
Pb | 2.22 | 0.65 | 2.28 | 2.02 | 0.17 | 0.19 | 0.49 | 0.11 | 1.15 | 2.27 | 3.72 | |||||
Th | 1.16 | 1.95 | 2.72 | 1.47 | 0.79 | 1.17 | 0.99 | 0.01 | 0.04 | 0.01 | 0.04 | 0.01 | 0.32 | 20.7 | 2.43 | 0.61 |
U | 0.38 | 0.35 | 0.37 | 0.17 | 0.16 | 0.18 | 0.16 | 0.01 | 0.10 | 1.19 | bdl | 10.3 | 136 | 0.30 | 0.25 |
Sample | 32-1 | 32-2 | 154/99 | 169/200 | 154/133 | 839 | 37-9 | 835 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rock | Melteigite–Ijolite | Carbonatite | Carb–Sil | |||||||||||
Rb | 170 | 3.08 | 2.56 | 0.01 | 0.00 | 0.02 | bdl | bdl | bdl | bdl | 33.7 | 30.40 | 2.80 | 3.09 |
Sr | 486 | 36.43 | 32.9 | 6503 | 2577 | 5908 | 2471 | 6515 | 6487 | 7486 | 394 | 350 | 36.7 | 34.0 |
Y | 19.8 | 4.09 | 3.60 | 40.15 | 3.15 | 25.3 | 2.93 | 56.2 | 32.8 | 40.9 | 42.9 | 40.7 | 4.65 | 3.95 |
Zr | 353 | 28.89 | 26.6 | bdl | 0.05 | bdl | bdl | 0.09 | bdl | bdl | 297 | 281 | 32.9 | 26.3 |
Nb | 4.70 | 0.55 | 0.50 | bdl | 0.44 | bdl | bdl | 0.05 | bdl | bdl | 4.97 | 4.60 | 0.54 | 0.49 |
Ba | 1930 | 34.80 | 33.7 | 922 | 27.0 | 549 | 22.6 | 603 | 445 | 587 | 378 | 345 | 34.3 | 33.2 |
La | 43.0 | 3.39 | 3.47 | 66.7 | 24.9 | 16.4 | 24.2 | 20.5 | 18.5 | 106 | 36.7 | 33.7 | 3.70 | 3.39 |
Ce | 68.0 | 6.33 | 5.84 | 148 | 46.6 | 48.1 | 43.2 | 59.9 | 52.5 | 213 | 67.5 | 66.4 | 6.14 | 6.33 |
Pr | 7.03 | 0.82 | 0.72 | 19.5 | 4.76 | 6.3 | 4.37 | 8.74 | 7.33 | 23.6 | 7.05 | 6.19 | 0.85 | 0.78 |
Nd | 30.1 | 3.50 | 2.92 | 77.3 | 17.2 | 29.9 | 16.6 | 45.3 | 37.6 | 98.7 | 33.4 | 32.50 | 3.74 | 2.90 |
Sm | 2.40 | 0.59 | 0.38 | 14.8 | 2.46 | 8.22 | 2.54 | 15.0 | 9.47 | 17.3 | 5.80 | 3.40 | 0.51 | 0.58 |
Eu | 0.99 | 0.13 | 0.10 | 4.32 | 0.56 | 2.24 | 0.65 | 4.61 | 2.65 | 4.35 | 1.38 | 1.10 | 0.11 | 0.12 |
Gd | 3.30 | 0.72 | 0.36 | 11.9 | 1.15 | 6.56 | 1.53 | 13.5 | 7.65 | 11.6 | 5.60 | 6.00 | 0.62 | 0.60 |
Tb | bdl | 0.09 | 0.06 | 1.41 | 0.15 | 0.80 | 0.13 | 1.96 | 0.98 | 1.47 | 0.71 | 0.62 | 0.08 | 0.06 |
Dy | 3.20 | 0.55 | 0.46 | 7.77 | 0.63 | 4.45 | 0.68 | 11.1 | 6.03 | 8.05 | 5.20 | 5.70 | 0.62 | 0.61 |
Ho | 0.64 | 0.06 | 0.12 | 1.34 | 0.10 | 0.84 | 0.12 | 1.97 | 1.10 | 1.43 | 0.93 | 0.94 | 0.15 | 0.09 |
Er | 1.42 | 0.35 | 0.28 | 3.40 | 0.18 | 2.18 | 0.31 | 4.86 | 2.94 | 3.90 | 2.32 | 2.95 | 0.31 | 0.41 |
Tm | 0.18 | 0.04 | 0.03 | 0.37 | 0.03 | 0.31 | 0.02 | 0.72 | 0.41 | 0.52 | 0.46 | 0.34 | 0.05 | 0.05 |
Yb | 2.20 | 0.30 | 0.23 | 2.53 | 0.12 | 1.82 | 0.10 | 3.52 | 2.61 | 2.78 | 2.17 | 1.64 | 0.38 | 0.31 |
Lu | 0.12 | 0.05 | 0.02 | 0.33 | 0.02 | 0.28 | 0.03 | 0.55 | 0.38 | 0.46 | 0.51 | 0.62 | 0.03 | 0.05 |
Hf | 7.90 | 0.73 | 0.66 | bdl | bdl | bdl | bdl | bdl | bdl | bdl | 6.30 | 6.20 | 0.78 | 0.63 |
Ta | 0.60 | 0.04 | 0.04 | bdl | 0.03 | bdl | bdl | bdl | bdl | bdl | 0.39 | 0.51 | 0.05 | 0.06 |
Pb | 36.6 | 6.26 | 5.77 | 3.02 | 1.22 | 1.16 | 1.41 | 1.50 | 0.74 | 2.99 | 67.0 | 67.8 | 5.79 | 6.52 |
Th | 8.19 | 0.79 | 0.77 | bdl | bdl | bdl | 0.01 | 0.00 | bdl | bdl | 8.29 | 7.83 | 0.93 | 0.78 |
U | 2.44 | 0.59 | 0.49 | bdl | 0.06 | bdl | 0.00 | 0.00 | bdl | bdl | 4.88 | 5.41 | 0.45 | 0.48 |
Sample | 32-1 | 32-2 | 154/99 | 169/200 | 154/133 | 839 | 37-9 | 835 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rock | Melteigite–Ijolite | Carbonatite | Carb–Sil | |||||||||||
Rb | 170 | 3.08 | 2.56 | 0.01 | 0.00 | 0.02 | bdl | bdl | bdl | bdl | 33.7 | 30.40 | 2.80 | 3.09 |
Sr | 486 | 36.43 | 32.9 | 6503 | 2577 | 5908 | 2471 | 6515 | 6487 | 7486 | 394 | 350 | 36.7 | 34.0 |
Y | 19.8 | 4.09 | 3.60 | 40.15 | 3.15 | 25.3 | 2.93 | 56.2 | 32.8 | 40.9 | 42.9 | 40.7 | 4.65 | 3.95 |
Zr | 353 | 28.89 | 26.6 | bdl | 0.05 | bdl | bdl | 0.09 | bdl | bdl | 297 | 281 | 32.9 | 26.3 |
Nb | 4.70 | 0.55 | 0.50 | bdl | 0.44 | bdl | bdl | 0.05 | bdl | bdl | 4.97 | 4.60 | 0.54 | 0.49 |
Ba | 1930 | 34.80 | 33.7 | 922 | 27.0 | 549 | 22.6 | 603 | 445 | 587 | 378 | 345 | 34.3 | 33.2 |
La | 43.0 | 3.39 | 3.47 | 66.7 | 24.9 | 16.4 | 24.2 | 20.5 | 18.5 | 106 | 36.7 | 33.7 | 3.70 | 3.39 |
Ce | 68.0 | 6.33 | 5.84 | 148 | 46.6 | 48.1 | 43.2 | 59.9 | 52.5 | 213 | 67.5 | 66.4 | 6.14 | 6.33 |
Pr | 7.03 | 0.82 | 0.72 | 19.5 | 4.76 | 6.3 | 4.37 | 8.74 | 7.33 | 23.6 | 7.05 | 6.19 | 0.85 | 0.78 |
Nd | 30.1 | 3.50 | 2.92 | 77.3 | 17.2 | 29.9 | 16.6 | 45.3 | 37.6 | 98.7 | 33.4 | 32.50 | 3.74 | 2.90 |
Sm | 2.40 | 0.59 | 0.38 | 14.8 | 2.46 | 8.22 | 2.54 | 15.0 | 9.47 | 17.3 | 5.80 | 3.40 | 0.51 | 0.58 |
Eu | 0.99 | 0.13 | 0.10 | 4.32 | 0.56 | 2.24 | 0.65 | 4.61 | 2.65 | 4.35 | 1.38 | 1.10 | 0.11 | 0.12 |
Gd | 3.30 | 0.72 | 0.36 | 11.9 | 1.15 | 6.56 | 1.53 | 13.5 | 7.65 | 11.6 | 5.60 | 6.00 | 0.62 | 0.60 |
Tb | bdl | 0.09 | 0.06 | 1.41 | 0.15 | 0.80 | 0.13 | 1.96 | 0.98 | 1.47 | 0.71 | 0.62 | 0.08 | 0.06 |
Dy | 3.20 | 0.55 | 0.46 | 7.77 | 0.63 | 4.45 | 0.68 | 11.1 | 6.03 | 8.05 | 5.20 | 5.70 | 0.62 | 0.61 |
Ho | 0.64 | 0.06 | 0.12 | 1.34 | 0.10 | 0.84 | 0.12 | 1.97 | 1.10 | 1.43 | 0.93 | 0.94 | 0.15 | 0.09 |
Er | 1.42 | 0.35 | 0.28 | 3.40 | 0.18 | 2.18 | 0.31 | 4.86 | 2.94 | 3.90 | 2.32 | 2.95 | 0.31 | 0.41 |
Tm | 0.18 | 0.04 | 0.03 | 0.37 | 0.03 | 0.31 | 0.02 | 0.72 | 0.41 | 0.52 | 0.46 | 0.34 | 0.05 | 0.05 |
Yb | 2.20 | 0.30 | 0.23 | 2.53 | 0.12 | 1.82 | 0.10 | 3.52 | 2.61 | 2.78 | 2.17 | 1.64 | 0.38 | 0.31 |
Lu | 0.12 | 0.05 | 0.02 | 0.33 | 0.02 | 0.28 | 0.03 | 0.55 | 0.38 | 0.46 | 0.51 | 0.62 | 0.03 | 0.05 |
Hf | 7.90 | 0.73 | 0.66 | bdl | bdl | bdl | bdl | bdl | bdl | bdl | 6.30 | 6.20 | 0.78 | 0.63 |
Ta | 0.60 | 0.04 | 0.04 | bdl | 0.03 | bdl | bdl | bdl | bdl | bdl | 0.39 | 0.51 | 0.05 | 0.06 |
Pb | 36.6 | 6.26 | 5.77 | 3.02 | 1.22 | 1.16 | 1.41 | 1.50 | 0.74 | 2.99 | 67.0 | 67.8 | 5.79 | 6.52 |
Th | 8.19 | 0.79 | 0.77 | bdl | bdl | bdl | 0.01 | 0.00 | bdl | bdl | 8.29 | 7.83 | 0.93 | 0.78 |
U | 2.44 | 0.59 | 0.49 | bdl | 0.06 | bdl | 0.00 | 0.00 | bdl | bdl | 4.88 | 5.41 | 0.45 | 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogina, M.; Chistyakov, A.; Sharkov, E.; Kovalchuk, E.; Golovanova, T. Major and Trace-Element Composition of Minerals in the Paleoproterozoic Tiksheozero Ultramafic–Alkaline–Carbonatite Complex, Russia: Insight into Magma Evolution. Minerals 2023, 13, 1318. https://doi.org/10.3390/min13101318
Bogina M, Chistyakov A, Sharkov E, Kovalchuk E, Golovanova T. Major and Trace-Element Composition of Minerals in the Paleoproterozoic Tiksheozero Ultramafic–Alkaline–Carbonatite Complex, Russia: Insight into Magma Evolution. Minerals. 2023; 13(10):1318. https://doi.org/10.3390/min13101318
Chicago/Turabian StyleBogina, Maria, Alexey Chistyakov, Evgenii Sharkov, Elena Kovalchuk, and Tatiana Golovanova. 2023. "Major and Trace-Element Composition of Minerals in the Paleoproterozoic Tiksheozero Ultramafic–Alkaline–Carbonatite Complex, Russia: Insight into Magma Evolution" Minerals 13, no. 10: 1318. https://doi.org/10.3390/min13101318
APA StyleBogina, M., Chistyakov, A., Sharkov, E., Kovalchuk, E., & Golovanova, T. (2023). Major and Trace-Element Composition of Minerals in the Paleoproterozoic Tiksheozero Ultramafic–Alkaline–Carbonatite Complex, Russia: Insight into Magma Evolution. Minerals, 13(10), 1318. https://doi.org/10.3390/min13101318