Genetic Mechanism of Tabular-Shaped Orebody of the Hailijin Sandstone-Type Uranium Deposit in the Songliao Basin: Constraints on the Clay Mineralogy of Ore-Bearing Sandstone
Abstract
:1. Introduction
2. Geological Setting
3. Methods
3.1. Trace Elements Analysis
3.2. XRD Analysis
3.3. SEM Analysis
3.4. EPMA Analysis
4. Results
4.1. Mineralogy
4.2. Clay Minerals
4.3. Trace Elements
5. Discussion
5.1. The Fluid Property and Sources Related to the Formation of Kaolinite
5.2. Genetic Mechanism of Tabular-Shaped Uranium Orebody
6. Conclusions
- (1)
- The kaolinite content in gray sandstone is obviously higher than that in oxidized sandstone, and is highest in the ore. Kaolinite, illite, and I/S alternate with one another in gray sandstones of reduced zones.
- (2)
- The ore-bearing sandstones of the HLJ uranium deposit have undergone at least one transformation of acidic fluids, and the transformation of I/S to kaolinite occurred during the uranium mineralization period.
- (3)
- The genesis of the tabular-shaped orebody of the HLJ sandstone-type uranium deposit is strongly related to the upward exudation of uranium-rich acidic reduced organic fluids from deep source rocks along the deep-seated fault connecting the overlying target layers.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, L.; Cai, C.F.; Jin, R.S.; Li, J.G.; Li, H.L.; Wei, J.L.; Guo, H.; Zhang, B. Mineralogical and Geochemical Evidence for Biogenic and Petroleum-related Uranium Mineralization in the Qianjiadian Deposit, NE China. Ore Geol. Rev. 2018, 101, 273–292. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Wang, S.Y.; Zhang, T.F.; Teng, X.M.; Ao, C.; Jin, R.S.; Li, H.L. Regional Sandstone-type Uranium Mineralization Rooted in Oligo-Miocene Tectonic Inversion in the Songliao Basin, NE China. Gondwana Res. 2020, 88, 88–105. [Google Scholar] [CrossRef]
- Li, Z.Y.; Zhang, J.D.; Qin, M.K.; Fan, H.H. Uranium Metallogenic Model in China; Geological Publishing House: Beijing, China, 2014; pp. 3–15. (In Chinese) [Google Scholar]
- Li, Z.Y.; Qin, M.K.; Fan, H.H.; Cai, Y.Q.; Guo, D.F.; Ye, F.W.; Fan, G.; Liu, X.Y. The Main Process of Uranium Mining Geology Science and Technology in the Past 10 Years. Bull. Mineral. Petrol. Geochem. 2021, 40, 845–857, (In Chinese with English abstract). [Google Scholar]
- Yang, D.G.; Wu, J.H.; Nie, F.J.; Bonnetti, C.; Xia, F.; Yan, Z.B.; Cai, J.F.; Wang, C.D.; Wang, H.T. Petrogenetic Constraints of Early Cenozoic Mafic Rocks in the Southwest Songliao Basin, NE China: Implications for the Genesis of Sandstone-hosted Qianjiadian Uranium Deposits. Minerals 2020, 10, 1014–1029. [Google Scholar] [CrossRef]
- Luo, Y.; He, Z.B.; Ma, H.F.; Sun, X. Metallogenic Characteristics of Qianjiadian Sandstone Uranium Deposit in Songliao Basin. Miner. Depos. 2012, 31, 391–400, (In Chinese with English abstract). [Google Scholar]
- Pang, Y.Q.; Chen, X.L.; Fang, X.H.; Sun, Y. Discussion on the Interlayer Oxidation and Uranium Metallogenesis in Qianjiadian Uranium Deposit, Songliao Basin. Uranium Geol. 2010, 26, 9–16, (In Chinese with English abstract). [Google Scholar]
- Ding, B.; Liu, H.X.; Liu, Z.Y.; Jia, L.C.; Zhang, Z.M.; Huang, S.H. Study of the Ore-controlling Function and Metallogenic Model of Local Excretion Sources in Sandstone-type Uranium Deposits in the Southwestern Songliao Basin. Acta Geol. Sin. 2021, 95, 3820–3827, (In Chinese with English abstract). [Google Scholar]
- Li, Z.Y.; Fang, X.H.; Cheng, A.P.; Ou, G.X.; Xiao, X.J.; Sun, Y.; Liu, C.Y.; Wang, Y. Origin of Gray-green Sandstone in Ore Bed of Sandstone Type Uranium Deposit in North Ordos Basin. Sci. China Ser. D Earth Sci. 2007, 50, 165–173. [Google Scholar] [CrossRef]
- Zhang, X. Study on the Genesis of Mengqiguer Uranium Deposit in the Southern Margin of Yili Basin. Master’s Thesis, Beijing Research Institute of Uranium Geology, Beijing, China, 2012; pp. 40–60, (In Chinese with English abstract). [Google Scholar]
- Hou, B.H.; Keeling, J.; Li, Z.Y. Paleovalley-related Uranium Deposit in Australia and China: A Review of Geological and Exploration Models and Methods. Ore Geol. Rev. 2017, 88, 201–234. [Google Scholar] [CrossRef]
- Zhang, F.; Jiao, Y.Q.; Wang, S.M.; Wu, L.Q.; Rong, H. Origin of Dispersed Organic Matter within Sandstones and Its Implication for Uranium Mineralization: A Case Study from Dongsheng Uranium Ore Field in China. J. Earth Sci. 2022, 33, 325–341. [Google Scholar] [CrossRef]
- Cuney, M.; Mercadier, J.; Bonnetti, C. Classification of Sandstone-related Uranium Deposits. J. Earth Sci. 2022, 33, 236–256. [Google Scholar] [CrossRef]
- Si, Q.H.; Li, J.G.; Zhang, B.; Miao, P.S.; Li, H.L.; Cao, M.Q.; Zhu, Q. Characteristics and H-O Isotopes of Kaolinite in the Uranium-bearing Rocks from the Yaojia Formation, Qianjiadian Depression and Its Implication. Geotecton. Metallog. 2020, 44, 667–681, (In Chinese with English abstract). [Google Scholar]
- Li, J.G.; Jin, R.S.; Zhang, B.; Miao, P.S.; Yang, K.; Li, H.L.; Wei, J.L.; Ao, C.; Cao, M.Q.; Zhang, H.L.; et al. Characteristics of Primary Clay Minerals in the Upper Cretaceous Yaojia Formation of Southwest Songliao Basin and Their Significance. Acta Geosci. Sin. 2018, 39, 295–305, (In Chinese with English abstract). [Google Scholar]
- Li, J.G.; Zhang, B.; Jin, R.S.; Si, Q.H.; Miao, P.S.; Li, H.L.; Cao, M.Q.; Wei, J.L.; Chen, Y. Uranium Mineralization of Coupled Supergene Oxygen-uranium Bearing Fluids and Deep Acidic Hydrocarbon Bearing Fluids in the Qianjiadian Uranium Deposits, Kailu Basin. Geotecton. Metallog. 2020, 44, 576–589, (In Chinese with English abstract). [Google Scholar]
- Adams, S.S. Organic-related Alteration and Authigenesis Associated with Epigenetic-humate Sandstone Uranium Deposits, San Juan Basin, New Mexico; Denver Regional Exploration Geologists Society: Lakewood, CO, USA, 1986; pp. 205–212. [Google Scholar]
- Turner-Peterson, C.E.; Fishman, N.S. Geologic Synthesis and Genetic Models for Uranium Mineralization in the Morrison Formation, Grants Uranium Region, New Mexico. Am. Assoc. Pet. Geol. Bull. 1986, 69, 1999–2020. [Google Scholar]
- Sanford, R.F. Hydrogeology of An Ancient Arid Closed Basin: Implications for Tabular Sandstone-hosted Uranium Deposit. Geology 1990, 18, 1099–1102. [Google Scholar] [CrossRef]
- Sanford, R.F. A New Model for Tabular-type Uranium Deposits. Econ. Geol. 1992, 87, 2041–2055. [Google Scholar] [CrossRef]
- Sanford, R.F. A Quantitative Model of Ground-water Flow during Formation of Tabular Sandstone Uranium Deposits. Econ. Geol. 1994, 89, 341–360. [Google Scholar] [CrossRef]
- Northrop, H.R.; Goldhaber, M.B. Genesis of the Tabular-type Vanadium-uranium Deposits of the Henry Basin, Utah. Econ. Geol. 1990, 85, 215–269. [Google Scholar] [CrossRef]
- Hall, S.M.; Van Gosen, B.S.; Zielinski, R.A. Sandstone-hosted Uranium deposits of the Colorado Plateau, USA. Ore Geol. Rev. 2023, 155, 39. [Google Scholar] [CrossRef]
- Cai, J.F.; Yan, Z.B.; Zhang, L.L. Relationship Between Grey Sandstone and Uranium Mineralization in Yaojia Formation of Upper Cretaceous in Tongliao, Inner Mongolia. J. East China Univ. Technol. 2018, 41, 328–335, (In Chinese with English abstract). [Google Scholar]
- Feng, Q.Z.; Yildirim, D.; Han, L.C.; Shu, F.Y.; Qi, A.M. Structural Architecture and Stratigraphic Record of Late Mesozoic Sedimentary Basins in NE China: Tectonic Archives of the Late Cretaceous Continental Margin Evolution in East Asia. Earth-Sci. Rev. 2017, 171, 598–620. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Descriptive Uranium Deposit and Mineral System Models; International Atomic Energy Agency: Vienna, Austria, 2020; pp. 165–180. [Google Scholar]
- Zhang, R.X.; Yang, S.Y. A Mathematical Model for Determining Carbon Coating Thickness and Its Application in Electron Probe Microanalysis. Microsc. Microanal 2016, 22, 1374–1380. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.X.; Ding, B.; Liu, Z.Y.; Zhang, X.; Pan, C.Y. Genesis of Strong Kaolinization in Ore-bearing Sandstone from Mnegqiguer uranium deposit, Yili Basin, China. Acta Mineral. Sin. 2017, 37, 40–48, (In Chinese with English abstract). [Google Scholar]
- Ding, B.; Liu, H.X.; Li, P.; Wang, M.M.; Jiang, H.; Zhang, X.; Pan, C.Y. The Organic-inorganic Fluid Coupling Uranium Mineralization in the Southern Margin of Yili Basin. Chin. J. Geol. 2017, 52, 871–894, (In Chinese with English abstract). [Google Scholar]
- Ding, B.; Liu, H.X.; Li, P.; Zhang, H.J.; Zhang, B.; Pan, C.Y. The Feature of Diagenetic Alteration of Ore-bearing Sandstone in Mengqiguer Uranium Deposit, Yili Basin, and the Effect of Diagenetic and Mineralization of Its Organic-inorganic Fluid. Geol. Rev. 2018, 6, 150–165, (In Chinese with English abstract). [Google Scholar]
- Ding, B.; Liu, H.X.; Li, P.; Jiang, H.; Zhang, H.J.; Zhang, B. The Genetic Mechanism of Kaolinite in Ore-bearing Sandstone in the Mengqiguer Uranium deposit, Yili, and Its Relation with Uranium mineralization. Acta Geol. Sin. 2019, 93, 2021–2036, (In Chinese with English abstract). [Google Scholar]
- Sun, Q.F.; Collin, C.; Zhang, J.W. A Discussion on the Factors Affecting Formation and Quantity of Clay Minerals in Climatic and Environmental Researches. Acta Petrol. Mineral. 2011, 30, 291–300, (In Chinese with English abstract). [Google Scholar]
- Zhang, Z.Y.; Huang, L.; Lu, S.; Fu, Q.L. Characteristics of Clay Minerals in the Zonal Soil from Two Kinds of Parent Rock. J. Huazhong Agric. Univ. 2015, 34, 51–58, (In Chinese with English abstract). [Google Scholar]
- Shan, Z.B.; Lei, A.G.; Song, B.R.; Ao, C.; Yang, S.L.; Han, H.D. Features of Clay Minerals in the Upper Cretaceous Yaojia Formation Sandstones of the Qianjiadian Area in the Songliao Basin and Its Relation to Uranium Mineralization. Geol. China 2019, 49, 271–283, (In Chinese with English abstract). [Google Scholar]
- Luo, Y.; Ma, H.F.; Xia, Y.L.; Zhang, Z.G. Geologic Characteristics and Metallogenic Model of Qianjiadian Uranium Deposit in Songliao Basin. Uranium Geol. 2007, 23, 193–200, (In Chinese with English abstract). [Google Scholar]
- Pang, Y.Q.; Xiang, W.D.; Li, T.G.; Chen, X.L.; Xia, Y.L. Discussion on the Origin of Bleached sandstone of Qianjiadian Uranium Deposit. World Nucl. Geosci. 2007, 24, 142–146+171, (In Chinese with English abstract). [Google Scholar]
- Lin, J.R.; Tian, H.; Dong, W.M.; Xia, Y.L.; Zheng, J.W.; Ou, G.X.; Pang, Y.Q. Characteristics of Sulfur Isotope During the Epigenetic Alteration of Oil-gas and Coalbed Methane in the Southeastern Songliao Basin. World Nucl. Geosci. 2009, 26, 63–67, (In Chinese with English abstract). [Google Scholar]
- Chamberlain, C.P.; Wan, X.Q.; Graham, S.A.; Carroll, A.R.; Doebbert, A.C.; Sageman, B.B.; Blisniuk, P.; Kent-Corson, M.L.; Wang, Z.; Wang, C.S. Stable Isotopic Evidence for Climate and Basin Evolution of the Late Cretaceous Songliao basin, China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 385, 106–124. [Google Scholar] [CrossRef]
- Wan, X.Q.; Zhao, J.; Scott, R.W.; Wang, P.J.; Feng, Z.H.; Huang, Q.H.; Xi, D.P. Late Cretaceous Stratigraphy, Songliao Basin, NE China: SK1 cores. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 385, 31–43. [Google Scholar] [CrossRef]
- Cao, H.R.; Lei, Y.; Wang, X.Y.; Guo, X.L. Late Cretaceous Paleoclimate and Paleoenvironment in the Songliao Basin, China. J. Paleolimnol. 2021, 66, 313–331. [Google Scholar] [CrossRef]
- Xiao, J.; Qin, M.K.; Guo, Q.; Yan, Z.L.; Jia, L.C.; Liu, X.; Xing, Z.C. Red-colored Uranium Target Horizon Reclassification and Its Significance in Qianjiadian Uranium Deposit and Surrounding Area. Earth Sci. 2021, 1–25, (In Chinese with English abstract). [Google Scholar]
- Rong, H.; Jiao, Y.Q.; Wu, L.Q.; Ji, D.M.; Li, H.L.; Zhu, Q.; Cao, M.Q.; Wang, X.M.; Li, Q.C.; Xie, H.L. Epigenetic Alteration and Its Constrains on Uranium Mineralization from the Qianjiadian Uranium deposit, Southern Songliao Basin. Earth Sci. 2016, 41, 153–166, (In Chinese with English abstract). [Google Scholar]
- Li, Z.Y.; Liu, W.S.; Li, W.T.; Li, X.D.; Qin, M.K.; Cai, Y.Q.; Zhang, Y.L.; He, S.; Wu, Q.B.; Qiu, L.F.; et al. Exudative Metallogeny of the Hadatu Uranium Deposit in the Erlian Basin, Inner Mongolia. Geol. China 2022, 49, 1009–1047, (In Chinese with English abstract). [Google Scholar]
- Nie, F.J.; Yan, Z.B.; Xia, F.; Li, M.G.; Lu, Y.Y.; Cai, J.F.; Guo, F.N.; Ning, J. Hot Fluid Flows in the Sandstone- type Uranium Deposit in the Kailu Basin, Northeast China. Geol. Bull. China 2017, 36, 1850–1866, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Zhao, L.; Chen, H.; Cai, C.F.; Jin, R.S.; Wei, J.L. Geochemical Characteristics of Hydrocarbons in Ore-rich Sandstones in the Qianjiadian Uranium Deposit, Southwestern Songliao Basin. Geol. Bull. China 2022, 41, 498–508, (In Chinese with English abstract). [Google Scholar]
- Didy, B.M.; Simoneit, B.R.T.; Brassell, S.C.; Eglinton, G. Organic Geochemical Indicators of Palaeoenvironmental Conditions of Sedimentation. Nature 1978, 272, 216–222. [Google Scholar] [CrossRef]
- Li, H.T.; Wu, S.X.; Cai, C.F.; Luo, X.R. Forming Process of Petroleum-related Sandstone-type Uranium Ore: Example from Qianjiadian Uranium Deposit. Geochemica 2008, 37, 523–532, (In Chinese with English abstract). [Google Scholar]
- Li, H.T.; Wu, S.X.; Cai, C.F.; Luo, X.R.; Bao, R.M. Geochemical Characteristics and Origin of Inclusions and Adsorbed Hydrocarbons in Yaojia Formation Sandstones in Qianjiadian Area, the Kailu Basin. Pet. Geol. Exp. 2008, 30, 375–381, (In Chinese with English abstract). [Google Scholar]
- Xiu, X.Q.; Zhang, Y.Y. Experimental Study on Adsorption of Uranium by Clay Minerals. Acta Mineral. 2013, 33, 574, (In Chinese with English abstract). [Google Scholar]
- Liao, R.; Wang, X.Y.; Yang, L.H.; Cheng, K. Research Progress on Factors Affecting the Adsorption of Uranium by Clay Minerals. Guangzhou Chem. Ind. 2017, 45, 10–12+27. (In Chinese) [Google Scholar]
- Ma, Y.P.; Liu, C.Y.; Wang, J.Q.; Zhao, J.F.; Fang, J.J.; Gui, X.J.; Yu, L. Effects of Hydrocarbon Migration and Dissipation in Later Reformation of a Basin: Formation of Mesozoic Bleached Sandstone in Northeastern Ordos Basin. Oil Gas Geol. 2006, 27, 233–238+243, (In Chinese with English abstract). [Google Scholar]
- Ma, Y.P.; Liu, C.Y.; Si, W.L.; Wu, J. Indication of Petrologic Records of Fluid-rock Interaction to Migration and Escaping of Hydrocarbons in Northeastern Ordos Basin. J. Xi’an Shiyou Univ. 2014, 29, 37–42+49, (In Chinese with English abstract). [Google Scholar]
- Wu, B.L.; Wei, A.J.; Liu, C.Y.; Song, Z.S.; Hu, L.; Wang, D.; Cun, X.N.; Sun, L.; Luo, J.J. Stable Isotope Tracing on the Formation of White Sandstone in Yan’an Group, Northern Ordos Basin, and Its Geological Significance. Earth Sci. Front. 2015, 22, 205–214, (In Chinese with English abstract). [Google Scholar]
- Zhang, W.L. Hydrocarbon Source Rock = Uranium Source Rock: New Thinking About Metallogenic Material Source of Sandstone Type Uranium Deposit. Miner. Resour. Geol. 2018, 32, 1–7, (In Chinese with English abstract). [Google Scholar]
- Timofeev, A.; Migdisov, A.A.; Williams-Jones, A.E.; Roback, R.; Nelson, A.T.; Xu, H.W. Uranium Transport in Acidic brines Under Reducing Conditions. Nat. Commun. 2018, 9, 1–7. [Google Scholar] [CrossRef]
- Feng, Z.H.; Fang, W.; Li, Z.G.; Wang, X.; Huo, Q.L.; Huang, C.Y.; Zhang, J.H.; Zeng, H.S. Depositional Environment of Terrestrial Petroleum Source Rocks and Geochemical Indicators in the Songliao Basin. Sci China Earth Sci 2011, 41, 1253–1267, (In Chinese with English abstract). [Google Scholar]
- Wu, Y.M.; Yin, Z.J. Evaluation of Source Rocks in Manghan Depression of Kailu Basin and Its Exploration Potential. J. Southwest Pet. Univ. 2011, 33, 37–41, (In Chinese with English abstract). [Google Scholar]
- Wang, Z.H.; Li, J.; Xia, L. Distribution Forecast of Source Rocks and Gas Generation Potential of Shahezi Formation in Deep Fault Depressions of Songliao Basin. Glob. Geol. 2014, 33, 630–639, (In Chinese with English abstract). [Google Scholar]
- Dong, Z. Sedimentary Environment and Organic Matter Enrichment of Shale in Upper Jiufotang, Ludong Sag, Kailu Basin. Master’s Thesis, China University of Geosciences, Beijing, China, 2022; pp. 22–28, (In Chinese with English abstract). [Google Scholar]
- Rong, H.; Jiao, Y.Q.; Wu, L.Q.; Wan, D.; Cui, Z.J.; Guo, X.J.; Jia, J.M. Origin of the Carbonaceous Debris and Its Implication for Mineralization within the Qianjiadian Uranium Deposit, Southern Songliao Basin. Ore Geol. Rev. 2019, 107, 336–352. [Google Scholar] [CrossRef]
No. | Sample No. | Lithology | Depth (m) | Geological Zone | Relative Content of Clay Minerals (%) | U (ppm) | ||
---|---|---|---|---|---|---|---|---|
Kl | Ilt | I/S | ||||||
1 | L14-3-11 | Red fine-grained sandstone | 585.5 | Oxidized zone | 56 | 25 | 19 | 2.25 |
2 | L14-3-12 | Red fine-grained sandstone | 589.9 | Oxidized zone | 51 | 28 | 21 | 2.06 |
3 | L14-3-13 | Red fine-grained sandstone | 592.74 | Oxidized zone | 53 | 23 | 24 | 10.6 |
4 | L16-1-4 | Red fine-grained sandstone | 553 | Oxidized zone | 48 | 23 | 29 | 3.22 |
5 | L16-1-13 | Red medium-grained sandstone | 592 | Oxidized zone | 52 | 25 | 23 | 2.2 |
6 | L16-1-14 | Red medium-grained sandstone | 592.7 | Oxidized zone | 53 | 25 | 22 | 2.2 |
7 | L16-1-15 | Red medium-grained sandstone | 595 | Oxidized zone | 53 | 16 | 31 | 1.57 |
8 | L14-3-1 | Gray fine-grained sandstone | 562.8 | Reduced zone | 69 | 13 | 18 | 13.6 |
9 | L14-3-2 | Light-gray fine-grained sandstone | 567.1 | Reduced zone | 56 | 20 | 24 | 2.62 |
10 | L14-3-3 | Light-gray fine-grained sandstone | 569.1 | Reduced zone | 65 | 15 | 20 | 5.63 |
11 | L14-3-4 | Light-gray fine-grained sandstone | 570.1 | Reduced zone | 62 | 20 | 18 | 3.02 |
12 | L14-3-8 | Light-gray fine-grained sandstone | 580 | Reduced zone | 74 | 18 | 8 | 22.7 |
13 | L14-3-9 | Light-gray fine-grained sandstone | 583.5 | Reduced zone | 74 | 8 | 18 | 26.7 |
14 | L14-3-10 | Light-gray fine-grained sandstone | 584.5 | Reduced zone | 76 | 5 | 19 | 65.2 |
20 | L14-3-5 | Gray fine-grained sandstone | 575 | Ore | 74 | 14 | 12 | 137 |
21 | L14-3-6 | Gray fine-grained sandstone | 578.4 | Ore | 81 | 14 | 5 | 219 |
22 | L14-3-7 | Gray fine-grained sandstone | 578.6 | Ore | 86 | 10 | 4 | 62.8 |
23 | ZKL-16 | Gray medium-grained sandstone | 582.3 | Ore | 70 | 30 | / | 303 |
24 | ZKL-17 | Gray medium-grained sandstone | 584.3 | Ore | 82 | 11 | 7 | 1164 |
25 | ZKL-18 | Gray medium-grained sandstone | 583.3 | Ore | 82 | 12 | 6 | 1654 |
26 | ZKL1-2 | Gray fine-grained sandstone | 573 | Ore | 74 | 13 | 13 | 823 |
27 | ZKL1-3 | Gray fine-grained sandstone | 574 | Ore | 61 | 24 | 15 | 393 |
Trace Element | Average Content of Trace Element (ppm) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Geochemical Zone | V | Cr | Co | Cu | Ni | Zn | Re | Mo | Pb | Th | U | Zr | Hf |
Upper oxidized zone (15) | 32.41 | 16.35 | 4.45 | 7.67 | 6.97 | 44.56 | 0.01 | 0.59 | 17.73 | 9.49 | 2.76 | 134.73 | 4.96 |
Non-ore-bearing gray sandstone (70) | 34.62 | 20.35 | 6.25 | 9.24 | 9.04 | 51.50 | 0.02 | 0.67 | 20.12 | 9.42 | 20.21 | 146.04 | 4.98 |
Ore-bearing gray sandstone (68) | 38.67 | 19.62 | 7.65 | 11.02 | 11.15 | 58.06 | 0.23 | 6.01 | 22.48 | 9.12 | 468.70 | 137.79 | 4.21 |
Lower oxidized zone (22) | 31.80 | 14.43 | 5.12 | 7.56 | 7.55 | 48.04 | 0.01 | 0.72 | 16.74 | 8.37 | 4.57 | 121.82 | 4.34 |
Test No. | Y2O3 | SiO2 | TiO2 | K2O | Na2O | MgO | FeO | CaO | As2O5 | Al2O3 | Ce2O3 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.47 | 0.82 | 4.68 | 0.13 | 0.68 | 0.35 | 0.39 | 3.68 | 0.89 | 0.14 | 0.41 |
2 | 0.56 | 0.71 | 4.32 | 0.13 | 1.93 | 0.29 | 0.62 | 3.89 | 1.14 | / | 0.38 |
3 | 0.51 | 0.74 | 4.56 | 0.12 | 2.20 | 0.25 | 0.36 | 3.02 | 1.06 | / | 0.32 |
4 | 0.51 | 0.70 | 4.37 | 0.13 | 1.62 | 0.35 | 0.31 | 3.02 | 0.83 | 0.03 | 0.37 |
5 | 0.61 | 0.76 | 4.55 | 0.34 | 2.94 | 0.28 | 0.43 | 4.42 | 1.14 | 0.05 | 0.52 |
Test No. | P2O5 | Pr2O3 | ZrO2 | Nd2O3 | ThO2 | Cr2O3 | UO2 | CuO | PbO | La2O3 | Total |
1 | 2.99 | 0.03 | 4.30 | 0.31 | 0.17 | / | 69.11 | 0.16 | 1.38 | 0.11 | 91.20 |
2 | 2.87 | 0.04 | 4.06 | 0.36 | 0.23 | / | 67.35 | 0.07 | 0.49 | / | 89.44 |
3 | 2.45 | 0.04 | 3.60 | 0.33 | 0.26 | / | 62.72 | 0.07 | 2.81 | 0.11 | 85.53 |
4 | 2.80 | / | 3.55 | 0.51 | 0.21 | 0.04 | 67.11 | / | 1.86 | / | 88.32 |
5 | 2.90 | / | 4.14 | 0.42 | 0.31 | / | 71.11 | 0.06 | 0.16 | / | 95.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, M.; Li, Z.; Zhang, Y.; Jia, L.; Ning, J.; Li, J.; He, H.; Tang, G. Genetic Mechanism of Tabular-Shaped Orebody of the Hailijin Sandstone-Type Uranium Deposit in the Songliao Basin: Constraints on the Clay Mineralogy of Ore-Bearing Sandstone. Minerals 2023, 13, 1324. https://doi.org/10.3390/min13101324
Tian M, Li Z, Zhang Y, Jia L, Ning J, Li J, He H, Tang G. Genetic Mechanism of Tabular-Shaped Orebody of the Hailijin Sandstone-Type Uranium Deposit in the Songliao Basin: Constraints on the Clay Mineralogy of Ore-Bearing Sandstone. Minerals. 2023; 13(10):1324. https://doi.org/10.3390/min13101324
Chicago/Turabian StyleTian, Mingming, Ziying Li, Yunlong Zhang, Licheng Jia, Jun Ning, Jimu Li, Hanghang He, and Guolong Tang. 2023. "Genetic Mechanism of Tabular-Shaped Orebody of the Hailijin Sandstone-Type Uranium Deposit in the Songliao Basin: Constraints on the Clay Mineralogy of Ore-Bearing Sandstone" Minerals 13, no. 10: 1324. https://doi.org/10.3390/min13101324
APA StyleTian, M., Li, Z., Zhang, Y., Jia, L., Ning, J., Li, J., He, H., & Tang, G. (2023). Genetic Mechanism of Tabular-Shaped Orebody of the Hailijin Sandstone-Type Uranium Deposit in the Songliao Basin: Constraints on the Clay Mineralogy of Ore-Bearing Sandstone. Minerals, 13(10), 1324. https://doi.org/10.3390/min13101324