Metallogenic Model for Pb-Zn Deposits in Clastic Rocks of the Dahai Mining Area, Northeast Yunnan: Evidence from H-O-S-Sr-Pb Isotopes
Abstract
:1. Introduction
2. Regional Geology
3. Geology of the Dahai Mining Area
4. Sample Characteristics and Analysis Methods
4.1. Sample Collection
4.2. Analysis and Test Methods
5. Results
5.1. S Isotopic Composition
5.2. Pb Isotopic Composition
5.3. Rb-Sr Isotope Results
6. Discussion
6.1. S Source
6.2. Sources of Ore-Forming Materials
6.2.1. Source of Ore-Forming Fluid
Deposit | Mineral | Sample Quantity | δD‰ | δ18Ofluid‰ | Source |
---|---|---|---|---|---|
Maliping | Quartz | 7 | −98.2~−57.8 | 6.27–11.07 | [19] |
Laoyingqing | Quartz | 8 | −93.9~−70.9 | 4.69–6.79 | [67] |
Jinniuchang | Quartz | 3 | −96.4~−75.5 | 8.49–8.80 | [17] |
Huize | Calcite | 15 | −59.8–43.5 | 6.9~9.3 | [13,68] |
Maoping | Calcite | 3 | −64.0~−35.0 | −3.7~−1.1 | [69] |
Maozu | Sphalerite, fluorite, quartz | 3 | −78.1~−47.9 | −6.7~6.9 | [2,70] |
Daliangzi | Calcite, sphalerite, quartz | 6 | −74.6~−40.3 | −5.3~3.3 | [71] |
Tianbaoshan | Sphalerite, quartz | 5 | −51.2~−47.6 | −1.9~3.7 | [28,72] |
Chipu | Quartz | 32 | −151.4~−48.3 | 5.1~8.2 | [26] |
6.2.2. Mineral Sources
6.3. Metallogenic Mechanism
Deposits | Position | Host Rocks | Pb + Zn Reserves/Grade | Ore-Controlling Structures | Orebody | Salinity (wt.% NaCl)/Th (°C) | Symbiotic Minerals | Ore-Forming Age (Ma) and Test Method | Source |
---|---|---|---|---|---|---|---|---|---|
Huize | NE Yunnan | Early Carboniferous dolostone | >5 Mt/25%–30% | NE-trending thrust faults | Stratiform, lenticular | 13–18 and 6–12/150–221 and 250–350 | Galena, sphalerite, pyrite, arsenopyrite, chalcopyrite, limonite, calcite, dolomite, quartz | Sphalerite Rb-Sr: 223.5 ± 3.9, 226 ± 6.4, 196.3 ± 1.8 | [7,22,80] |
Maoping | Upper Devonian dolostone and limestone | 3 Mt/>25% | Anticline and NW-trending faults | Stratoid, lenticular, vein | 0.8–23/200–215 and 260–300 | Sphalerite, galena, pyrite, calcite, quartz | Sphalerite Rb-Sr: 321.7±5.8 | [7,69,82] | |
Maozu | Late Sinian dolostone | 2 Mt/12%–14% | NE-trending fold | Stratoid | 2.8–5.3/153–248 | Sphalerite, galena, calcite, dolomite, quartz, fluorite | Calcite Sm-Nd: 196 ±13 | [7,24] | |
Lehong | Late Sinian dolostone | 2.4 Mt/>15% | NW-trending faults | Stratoid, lenticular, vein | 11.3–14.5/165–229 | Sphalerite, galena, pyrite, arsenopyrite, dolomite, quartz | Sphalerite Rb-Sr: 200.9 ± 8.3 | [7,26,79] | |
Maliping | Interface between Early Cambrian siliceous dolomite and clastic rock | >0.5 Mt/ 15.89% | NE-trending anticline | Stratoid, lenticular, large lentil-like | 5.6–15.7/220–309 | Sphalerite, galena, pyrite, dolomite, calcite, quartz, barite | No data | This paper; [19] | |
Laoyingqing | Carbonaceous slate of the Middle Proterozoic Kunyang Group | <0.1 Mt/<10% | NE-trending fold | Finely vein | 7.2–20.7 /130–275 | Sphalerite, galena, pyrite, quartz, calcite | Sphalerite Rb-Sr: 209.8 ± 5.2 | [17] | |
Jinniuchang | Early Cambrian argillaceous siltstone | <0.1 Mt/<10%Pb + Zn | NE-trending fault-fold structure | Vein | 6.5~14.0/165–274 | Galena, sphalerite, pyrite, calcite, quartz | No data | [18] | |
Daliangzi | SW Sichuan | Late Sinian dolostone | 4.5 Mt/10%–12% | NW-trending faults | Lenticular, vein | 18/170–225 | Sphalerite, galena, pyrite, chalcopyrite, quartz, calcite, dolomite | Calcite Sm-Nd: 204.4 ± 1.2 | [26,34] |
Tianbaoshan | Late Sinian dolostone | 2.6 Mt/10%–15% | NNE-trending faults | Stratoid, lenticular, vein | 12.4–20/157–267 | Sphalerite, galena, chalcopyrite, dolomite, calcite, quartz | Zircon U-Pb age of diabase: >166 | [28,51] | |
Chipu | Late Sinian dolostone | 0.65 Mt/10.4% | NW-trending faults and NE-trending faults | Stratoid, lenticular | 8.5–17/130–250 | Sphalerite, galena, pyrite, dolomite, calcite, quartz, asphalt | Bitumen Re-Os: 292.0 ± 9.7, 165.7 ± 9.9 | [26,88] | |
Shanshulin | NW Guizhou | Late Carboniferous dolomitic limestone | >0.5 Mt/>20% | NW-trending thrust faults | Stratoid, vein | <15/150–280 | Sphalerite, galena, pyrite, dolomite, calcite | No data | [31,89] |
Shaojiwan | Permian and Devonian dolomitic limestone and dolostone | 0.5 Mt/15%–20% | NW-trending fold | Stratoid | 0.9–17.5/115–170 | Sphalerite, galena, pyrite, dolomite, calcite | No data | [32,89] | |
Tianqiao | Carboniferous dolostone | 0.4 Mt/15%–18% | NW-trending fold | Stratoid | 9.6–14.2/150–270 | Sphalerite, galena, pyrite, dolomite, calcite | Sphalerite Rb-Sr: 191.9 ± 6.9 | [14,75] |
7. Conclusions
- (1)
- The ore-forming fluids of the three Pb-Zn deposits in clastic rocks in the Dahai mining area are derived from mixed hydrothermal fluid consisting of deep-source fluid flowing through the deep-fold basement (Kunyang Group) and basin brine that leaches organic matter from the wall rock during its migration process.
- (2)
- The reduced S of the Maliping and Jinniuchang Pb-Zn deposits in clastic rocks is derived from reduced S generated by seawater sulfate by the TSR in the Lower Cambrian Yuhucun and Sinian Dengying formations. The reduced S of the Laoyingqing Pb-Zn deposit is mainly derived from the reduced S generated by the pyrolysis of S-bearing organic matter in the carbonaceous slate of the Kunyang Group. The metals in the ore-forming fluids of the three deposits are derived from basement rocks (Kunyang Group) and a small portion is derived from Devonian–Permian carbonate rocks and dolomite of the Dengying Formation.
- (3)
- The three deposits belong to the same metallogenic system as other major Pb-Zn deposits in the SYGT and formed synchronously with other local Pb-Zn deposits under a regional hydrothermal event triggered by collision orogeny in the Late Indosinian Period (~200 Ma). A unified metallogenic model of Pb-Zn deposits in clastic rocks in the Dahai mining area in which two fluids successively migrate and mix for mineralization is established.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, R.S.; Hu, Y.Z.; Wang, X.K.; Hou, B.H.; Huang, Z.L.; Chen, J.; Wang, F.; Wu, P.; Li, B.; Wang, H.J.; et al. Mineralisation model of rich Ge-Ag bearing Zn-Pb polymetallic deposit concentrated district in northeastern Yunnan, China. Acta Geol. Sin. 2012, 86, 280–294, (In Chinese with English Abstract). [Google Scholar]
- Liu, H.C.; Lin, W.D. Regularity Research of Pb-Zn-Ag Ore Deposits Northeastern Yunnan; Yunnan University Press: Kunming, China, 1999; pp. 1–468. (In Chinese) [Google Scholar]
- Chen, S.J. A discussion on the sedimentary origin of Pb-Zn deposits in western Guizhou and northeastern Yunnan. J. Guizhou Geol. 1984, 8, 35–39, (In Chinese with English Abstract). [Google Scholar]
- Zhou, C.X.; Wei, S.S.; Guo, J.Y.; Li, C.Y. The source of metalsin the Qilinchang Zn-Pb deposit, Northeastern Yunnan, China: Pb-Sr isotope constrains. Econ. Geol. 2001, 96, 583–598. [Google Scholar] [CrossRef]
- Zhang, C.Q.; Wu, Y.; Hou, L.; Mao, J.W. Geodynamic setting of mineralization of Mississippi Valley-type deposits in world-class Sichuan-Yunnan-Guizhou Zn-Pb triangle, southwest China: Implications from age-dating studies in the past decade and the Sm-Nd age of Jinshachang deposit. J. Asian Earth Sci. 2014, 103, 103–114. [Google Scholar] [CrossRef]
- Wu, T.; Huang, Z.L.; He, Y.F.; Yang, M.; Fan, H.F.; Wei, C.; Ye, L.; Hu, Y.S.; Xiang, Z.Z.; Lai, C.K. Metal source and ore-forming process of the Maoping carbonate-hosted Pb-Zn deposit in Yunnan, SW China: Evidence from deposit geology and sphalerite Pb-Zn-Cd isotopes. Ore Geol. Rev. 2021, 135, 104214. [Google Scholar] [CrossRef]
- Han, R.S.; Zhang, Y.; Wang, F.; Wu, P.; Qiu, W.L.; Li, W.Y. The Metallogenic Mechanism of the Germanium-Rich Lead-Zinc Deposit and Prediction of Concealed Ore Location in the Ore Concentration Area of Northeastern Yunnan; Science Press: Beijing, China, 2019; pp. 1–510. (In Chinese) [Google Scholar]
- Hu, Y.G. Ag Occurrence, Source of Ore-Forming Metals and Mechanism of Yinchangpo Ag-Pb-Zn Deposit, Guizhou; Institute of Geochemistry, CAS: Guiyang, China, 1999; pp. 10–55, (In Chinese with English Abstract). [Google Scholar]
- Deng, H.L.; Li, C.Y.; Tu, G.Z.; Zhou, Y.M.; Wang, C.W. Strontium isotope geochemistry of the Lemachang independent silver ore deposit, northeastern Yunnan. China. Sci. China Ser. D Earth Sci. 1999, 29, 496–503, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Tu, S.Y. The Mineralography Characteristics and its Genetic Significance of the Tianbaoshan Pb-Zn Deposit in Huili Sichuan; Chengdu University of Technology: Chengdu, China, 2014; (In Chinese with English Abstract). [Google Scholar]
- Huang, Z.L.; Chen, J.; Han, R.S. Geochemistry and Ore-Formation of the Huize Giant Lead-Zinc Deposit, Yunnan Province, China: Discussion on the Relationship between the Emeishan Flood Basalts and Lead-Zinc Mineralization; Geological Publishing House: Beijing, China, 2004; pp. 1–145. (In Chinese) [Google Scholar]
- Zhang, C.Q. The Genetic Model of Mississippi Valley-Type Deposits in the Boundary Area of Sichuan, Yunnan and Guizhou Provinces, China. Ph.D. Thesis, Chinese Academy of Geological Sciences, Beijing, China, 2008; pp. 1–177, (In Chinese with English Abstract). [Google Scholar]
- Li, W.B.; Huang, Z.L.; Zhang, G. Sources of the ore metals of the Huize ore field in Yunnan Province: Constrains from Pb, S, C, H, O and Sr isotope geochemistry. Acta Petrol. Sin. 2006, 22, 2567–2580, (In Chinese with English Abstract). [Google Scholar]
- Zhou, J.X.; Huang, Z.L.; Zhou, M.F.; Li, X.B.; Jin, Z.G. Constraints of C-O-S-Pb isotope compositions and Rb-Sr isotopic age on the origin of the Tianqiao carbonate-hosted Pb-Zn deposit, SW China. Ore Geol. Rev. 2013, 53, 77–92. [Google Scholar] [CrossRef]
- Zhou, J.X.; Bai, J.H.; Huang, Z.L.; Zhu, D.; Yan, Z.F.; Lv, Z.C. Geology, isotope geochemistry and geochronology of the Jinshachang carbonate-hosted Pb-Zn deposit, southwest China. J. Asian Earth Sci. 2015, 98, 272–284. [Google Scholar] [CrossRef]
- Lo, C.H.; Chung, S.L.; LEE, T.Y. Age of the Emeishan flood magmatism and relations to Permian-Triassicboundary events. Earth Planet. Sci. Lett. 2002, 198, 449–458. [Google Scholar] [CrossRef]
- Gong, H.S.; Han, R.S.; Wu, P.; Chen, G.; Li, L.J. Constraints of S-Pb-Sr isotope compositions and Rb-Sr isotopic age on the origin of the Laoyingqing noncarbonate-hosted Pb-Zn deposit in the Kunyang Group, SW China. Geofluids 2021, 2021, 8844312. [Google Scholar] [CrossRef]
- Gong, H.S.; Han, R.S.; Wu, P.; Ma, L.; Chen, G. Constraints of fluid inclusion and H-O-S-Pb isotope compositions on the metallogenic model of the Jinniuchang Pb-Zn deposit, SW China. Chin. J. Nonferrous Met. 2022, 32, 3206–3226, (In Chinese with English Abstract). [Google Scholar]
- Yao, Y.S.; Gong, H.S.; Han, R.S.; Zhang, C.Q.; Wu, P.; Chen, G. Metallogenesis and Formation of the Maliping Pb-Zn deposit in Northeastern Yunnan: Constraints from H-O Isotopes, Fluid Inclusions, and Trace Elements. Minerals 2023, 13, 780. [Google Scholar] [CrossRef]
- Yang, H.M.; Liu, C.P.; Cai, H.; Duan, R.C.; Cai, Y.X.; Lu, S.S.; Tan, J.J.; Zhang, L.G.; Li, H.Q. Preliminary Research on the Rb-Sr Dating Mechanism of Sphalerites with Diluted Acid Leachating. Geol. Miner. Resour. South China 2017, 33, 344–353, (In Chinese with English Abstract). [Google Scholar]
- Kong, Z.G.; Wu, Y.; Zhang, F.; Zhang, C.Q.; Meng, X.Y. Sources of ore-forming material of typical Pb-Zn deposits in the Sichuan-Yunnan-Guizhou metallogenic province: Constraints from the S-Pb isotopic compositions. Earth Sci. Front. 2018, 25, 125–137, (In Chinese with English Abstract). [Google Scholar]
- Han, R.S.; Liu, C.Q.; Huang, Z.L.; Chen, J.; Ma, D.Y.; Lei, L.; Ma, G.S. Geological features and origin of the Huize carbonate-hosted Zn-Pb-(Ag) District, Yunnan, South China. Ore Geol. Rev. 2007, 31, 360–383. [Google Scholar] [CrossRef]
- Wang, C.W.; Li, Y.; Luo, H.Y.; Liu, X.L. Genesis of Maoping Pb-Zn deposit in Yunnan Province. J. Kunming Univ. Sci. Technol. (Sci. Technol.) 2009, 34, 7–11, (In Chinese with English Abstract). [Google Scholar]
- Zhou, J.X.; Huang, Z.L.; Yan, Z.F. The origin of the Maozu carbonate-hosted Pb-Zn deposit, southwest China: Constrained by C-O-S-Pb isotopic compositions and Sm-Nd isotopic age. J. Asian Earth Sci. 2013, 73, 39–47. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Wu, Y.; Tian, G.; Shen, L.; Zhou, Y.M.; Dong, W.W.; Zeng, R.; Yang, X.C.; Zhang, C.Q. Mineralisation age and the source of ore-forming material at Lehong Pb-Zn deposit, Yunnan Province: Constraints from Rb-Sr and S isotopes system. Acta Mineral. Sin. 2014, 34, 305–311, (In Chinese with English Abstract). [Google Scholar]
- Wu, Y. The Age and Ore-Forming Process of MVT Deposits in the Boundary Area of Sichuan-Yunnan-Guizhou Provinces, Southwest China; China University of Geosciences: Beijing, China, 2013; pp. 1–167, (In Chinese with English Abstract). [Google Scholar]
- Yuan, B.; Mao, J.W.; Yan, X.H.; Wu, Y.; Zhang, F.; Zhao, L.L. Sources of metallogenic materials and metallogenic mechanism of Daliangzi ore field in Sichuan Province: Constraints from geochemistry of S, C, H, O, Sr isotope and trace element in sphalerite. Acta Petrol. Sin. 2014, 30, 209–220, (In Chinese with English Abstract). [Google Scholar]
- Zhou, J.X.; Gao, J.G.; Chen, D.; Liu, X.K. Ore genesis of the Tianbaoshan carbonate-hosted Pb-Zn deposit, Southwest China: Geologic and isotopic (C-H-O-S-Pb) evidence. Int. Geol. Rev. 2013, 55, 1300–1310. [Google Scholar] [CrossRef]
- Zhu, C.W.; Wen, H.J.; Zhang, Y.X.; Fan, H.F. Cadmium and sulfurisotopic compositions of the Tianbaoshan Zn-Pb-Cd deposit, Sichuan Province, China. Ore Geol. Rev. 2016, 76, 152–162. [Google Scholar] [CrossRef]
- He, C.Z.; Xiao, C.Y.; Wen, H.J.; Zhou, T.; Zhu, C.W. Zn-S isotopic compositions of the Tianbaoshan carbonate-hosted Pb-Zn deposit in Sichuan, China: Implications for the source of ore components. Acta Petrol. Sin. 2016, 32, 3394–3406, (In Chinese with English Abstract). [Google Scholar]
- Zhou, J.X.; Huang, Z.L.; Lv, Z.C.; Zhu, X.K.; Gao, J.G.; Mirnejad, H. Geology, isotope geochemistry and ore genesis of the Shanshulin carbonate-hosted Pb-Zn deposit, southwest China. Ore Geol. Rev. 2014, 63, 209–225. [Google Scholar] [CrossRef]
- Zhou, J.X.; Huang, Z.L.; Bao, G.P. Geological and sulfur-lead-strontium isotopic studies of the Shaojiwan Pb-Zn deposit, southwest China: Implications for the origin of hydrothermal fluids. J. Geochem. Explor. 2013, 128, 51–61. [Google Scholar] [CrossRef]
- Sangster, D.F. Mississippi Valley-type and SEDEX lead-zinc deposits: A comparative examination. Inst. Min. Metall. Trans. 1990, 99, B21–B42. [Google Scholar]
- Zheng, M.H.; Wang, X.C. Genesis of the Daliangzi Pb-Zn deposit in Sichuan, China. Econ. Geol. Bull. Soc. Econ. Geol. 1991, 86, 831–846. [Google Scholar] [CrossRef]
- Yan, Z.F.; Huang, Z.L.; Xu, C.; Chen, M.; Zhang, Z.L. Signatures of the source for the Emeishan flood basalts in the Ertan area: Pb isotope evidence. Chin. J. Geochem. 2007, 26, 207–213. [Google Scholar] [CrossRef]
- Wang, X.C.; Zheng, Z.R.; Zheng, M.H.; Xu, X.H. Metallogenic mechanism of the Tianbaoshan Pb-Zn deposit, Sichuan. Chin. J. Geochem. 2000, 19, 121–133. [Google Scholar] [CrossRef]
- Wang, J.Z.; Li, Z.Q.; Ni, S.J. Origin of ore-forming fluids of Mississippi Valley type (MVT) Pb-Zn deposits in Kangdian area, China. Chin. J. Geochem. 2003, 22, 369–376. [Google Scholar]
- Wang, C.M.; Deng, J.; Zhang, S.T.; Xue, C.J.; Yang, L.Q.; Wang, Q.F.; Sun, X. Sediment-hosted Pb-Zn deposits in southwest Sanjiang Tethys and Kangdian area on the western margin of Yangtze Craton. Acta Geol. Sin. (Engl. Ed.) 2010, 84, 1428–1438. [Google Scholar]
- Zartman, R.E.; Doe, B.R. Plumbotyectonics-the mode. Tectonophysics 1981, 75, 135–162. [Google Scholar] [CrossRef]
- Zhou, C.X. The source of mineralizing metals, geochemical characterization of ore-forming solution, and metallogenetic mechanism of Qilinchang Zn-Pb deposit, Northeastern Yunnan Province, China. Bull. Mineral. Petrol. Geochem. 1998, 17, 36–38, (In Chinese with English Abstract). [Google Scholar]
- Han, R.S.; Chen, J.; Huang, Z.L.; Ma, D.Y.; Xue, C.D.; Li, Y.; Zou, H.J.; Li, B.; Hu, Y.Z.; Ma, G.S.; et al. Dynamics of Tectonic Ore-Forming Processes and Localization-Prognosis of Concealed Orebodies—As Exemplified by the Huize Super-Large Zn-Pb-(Ag-Ge) District, Yunnan; Science Press: Beijing, China, 2006; pp. 1–200. [Google Scholar]
- Li, B. The Study of Fluid Inclusions Geochemistry and Tectonic Geochemistry of Lead-Zinc Deposits: Taking Huize and Songliang Lead-Zinc Deposits for Examples, in the Northeast of Yunnan Province, China; Kunming University of Science and Technology: Kunming, China, 2010; pp. 1–194, (In Chinese with English Abstract). [Google Scholar]
- Zhu, L.M.; Yuan, H.H.; Luan, S.W. A study of isotopic geochemical features and minerogenetic material source of the disu and Daliangzi Pb-Zn deposits, Sichuan. J. Mineral. Petrol. 1995, 15, 72–79, (In Chinese with English Abstract). [Google Scholar]
- Ohmoto, H.; Rye, R.O. Isotopes of Sulfur and Carbon, 2nd ed.; Geochemistry of Hydrothermal Ore Deposits; Barnes, H.L., Ed.; Wiley and Sons, Inc.: New York, NY, USA, 1979; 798p. [Google Scholar]
- Ohmoto, H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ. Geol. 1972, 67, 551–579. [Google Scholar] [CrossRef]
- Zhou, M.F.; Malpas, J.; Song, X.Y.; Robinson, P.T.; Sun, M.; Kennedy, A.K.; Lesher, C.M.; Keays, R.R. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction. Earth Planet. Sci. Lett. 2002, 196, 113–122. [Google Scholar] [CrossRef]
- Shellnutt, J.G.; Denyszyn, S.W.; Mundil, R. Precise age determination of mafic and felsic intrusive rocks from the Permian Emeishan large igneous province (SW China). Gondwana Res. 2012, 22, 118–126. [Google Scholar] [CrossRef]
- Shellnutt, J.G. The Emeishan large igneous province: A synthesis. Geosci. Front 2014, 5, 369–394. [Google Scholar] [CrossRef]
- Ali, J.R.; Thompson, G.M.; Zhou, M.F.; Song, X.Y. Emeishan large igneous province, SW China. Lithos 2005, 79, 475–489. [Google Scholar] [CrossRef]
- Saunders, A.D.; Jones, S.M.; Morgan, L.A.; Pierce, K.L.; Widdowson, M.; Xu, Y.G. Regional uplift associated with continental large igneous provinces: The roles of mantle plumes and the lithosphere. Chem. Geol. 2007, 241, 282–318. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, C.Q.; Wu, Y.; Wei, C. Formation age of the diabase dike in the Tianbaoshan Pb-Zn deposit, Sichuan and its relationships with the Pb-Zn mineralisation. Miner. Depos. 2012, 31, 449–450, (In Chinese with English Abstract). [Google Scholar]
- Tang, Y.Y.; Bi, X.W.; Zhou, J.X.; Liang, F.; Qi, Y.Q.; Leng, C.B.; Zhang, X.C.; Zhang, H. Rb-Sr isotopic age, S-Pb-Sr isotopic compositions and genesis of the ca. 200 Ma Yunluheba Pb-Zn deposit in NW Guizhou Province, SW China. J. Asian Earth Sci. 2019, 185, 104054. [Google Scholar] [CrossRef]
- Wang, X.C. Discussion on the ore forming physicochemical conditions of Tianbaoshan lead-zinc deposit in Sichuan. Acta Geol. Sichuan 1990, 10, 34–42, (In Chinese with English Abstract). [Google Scholar]
- Zhang, T.G.; Chu, X.L.; Zhang, Q.R.; Feng, L.J.; Huo, W.G. The sulfur and carbon isotopic records in carbonates of the Dengying Formation in the Yangtze platform, China. Acta Petrol. Sin. 2004, 20, 717–724, (In Chinese with English Abstract). [Google Scholar]
- Shields, G.A.; Strauss, H.; Howe, S.S. Sulphur isotope compositions of sedimentary phosphorites from the basal Cambrian of China:implications for Neoproterozoic–Cambrian biogeochemical cycling. J. Geol. Soc. 1999, 156, 943–955. [Google Scholar] [CrossRef]
- Ohmoto, H. Stable isotope geochemistry of ore deposits. Rev. Mineral. 1986, 16, 491–560. [Google Scholar]
- Machel, H.G.; Krouse, H.R.; Sassen, R. Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Appl. Geochem. 1995, 10, 373–389. [Google Scholar] [CrossRef]
- Chen, X.; Xue, C.J. Origin of H2S in Uragen large-scale Zn-Pb mineralisation, western Tian Shan: Bacteriogenic structure and S-isotopic constraints. Acta Petrol. Sin. 2016, 32, 1301–1314, (In Chinese with English Abstract). [Google Scholar]
- Machel, H.G. Bacterial and thermochemical sulfate reduction in diagenetic settings-old and new insights. Sediment. Geol. 2001, 140, 143–175. [Google Scholar] [CrossRef]
- Yuan, S.D.; Chou, I.M.; Burruss, R.C. Disproportionation and thermochemica1 sulfate reduction reactions in S-H2O-CH4 and S-D2O-CH4 systems from 200 to 340 °C at elevated pressures. Geochim. Et Cosmochim. Acta 2013, 118, 263–275. [Google Scholar] [CrossRef]
- Hu, R.Z.; Fu, S.; Huang, Y.; Zhou, M.F.; Fu, S.; Zhao, C.; Wang, Y.; Bi, X.; Xiao, J. The giant South China Mesozoic low-temperature metallogenic domain: Reviews and a new geodynamic model. J. Asian Earth Sci. 2017, 137, 9–34. [Google Scholar] [CrossRef]
- Zhou, J.X.; Xiang, Z.Z.; Zhou, M.F.; Feng, Y.X.; Luo, K.; Huang, Z.L.; Wu, T. The giant Upper Yangtze Pb-Zn province in SW China: Reviews, new advances and a new genetic model. J. Asian Earth Sci. 2018, 154, 280–315. [Google Scholar] [CrossRef]
- Liu, W.H.; Zhang, J.; Wang, J. Sulfur isotope analysis of carbonate-hosted Zn-Pb deposits in northwestern Guizhou Province, Southwest China: Implications for the source of reduced sulfur. J. Geochem. Explor. 2017, 181, 31–44. [Google Scholar] [CrossRef]
- Zhou, J.X.; Luo, K.; Wang, X.C.; Wilde, S.A.; Wu, T.; Huang, Z.L.; Cui, Y.L.; Zhao, J.X. Ore genesis of the Fule Pb-Zn deposit and its relationship with the Emeishan Large Igneous Province: Evidence from mineralogy, bulk COS and in situ S, Pb isotopes. Gondwana Res. 2018, 54, 161–179. [Google Scholar] [CrossRef]
- Kesler, S.E.; Vennemann, T.W.; Fredeickson, C. Hydrogen and oxygen isotope evidence for origin of MVT-forming brines, southern Appalachians. Geochim. Et Cosmochim. Acta 1997, 61, 1513–1523. [Google Scholar] [CrossRef]
- Sverjensky, D.A.; Rye, D.M. The lead and sulfide isotopic compositions of galena from a Mississippi valley-type deposit in the New lead beIt, Southeast Missouri. Econ. Geol. 1979, 74, 1491–1543. [Google Scholar] [CrossRef]
- Gong, H.S. Structural Ore-Controlling Characteristics and Metallogenic Mechanism of Lead-Zinc Deposits Clastic Rocks-Hosted in the Dahai Mining Area, Northeast Yunnan; Kunming University of Science and Technology: Kunming, China, 2022; pp. 1–164, (In Chinese with English Abstract). [Google Scholar]
- Guo, X. Mineralization and Metallogenic Pattern of Lead-Zinc Deposits in Northeast Yunnan; China University of Geosciences: Beijing, China, 2011; pp. 1–167, (In Chinese with English Abstract). [Google Scholar]
- Han, R.S.; Zou, H.J.; Hu, B.; Hu, Y.Z.; Xue, C.D. Features of fluid inclusions and sources of ore-forming fluid in the Maoping carbonate-hosted Zn-Pb-(Ag-Ge) deposit, Yunnan, China. Acta Petrol. Sin. 2007, 23, 2109–2118. [Google Scholar]
- Que, M.Y.; Luo, A.P.; Zhang, L.S. Upper Sinian and Lower Cambrian Stratified Lead-Zinc Deposits in Northeastern Yunnan; Chengdu University of science and Technology Press: Chengdu, China, 1993; pp. 1–169. (In Chinese) [Google Scholar]
- Yang, Y.X.; Ke, C.X.; Lin, F.C. Metallogeny of Lead-Zinc Deposit the Eastern Margin of Kangdian Axis; Sichuan Science and Technology Publishing House: Chengdu, China, 1994; pp. 1–175. (In Chinese) [Google Scholar]
- Wang, X.C. Genesis analysis of the Tianbaoshan. J. Chengdu Coll. Technol. 1992, 19, 10–20, (In Chiese with English Abstract). [Google Scholar]
- Canals, A.; Cardellach, E. Ore lead and sulfur isotope pattern form the low-temperature veins of the Catalonian Coastal Ranges (NE Spain). Miner. Depos. 1997, 32, 243–249. [Google Scholar] [CrossRef]
- Kamona, F.A.; Lévêque, J.; Friedrich, G.; Haack, U. Lead isotopes of the carbonate-hosted Kabwe, Tsumeb, and Kipushi Pb-Zn-Cu sulphide deposits in relation to Pan African orogenesis in the Damaran-Lufilian Fold Belt of Central Africa. Miner. Depos. 1999, 34, 273–283. [Google Scholar] [CrossRef]
- Zhou, J.X.; Huang, Z.L.; Zhou, G.F.; Li, X.B.; Ding, W.; Bao, G.P. Trace elements and rare earth elements of sulfide minerals in the tianqiao Pb-Zn ore deposit, Guizhou Province, China. Acta Geol. Sin.-Engl. Ed. 2011, 85, 189–199. [Google Scholar]
- Faure, G. Principles of Isotope Geology; John Wiley & Sons: New York, NY, USA, 1986; pp. 183–199. [Google Scholar]
- Cheng, P.L.; Xiong, W.; Zhou, G.; He, Z.W. A preliminary study on the origins of ore-forming fluids and their migration directions for Pb-Zn deposits in NW Guizhou Province, China. Acta Mineral. Sin. 2015, 35, 509–514, (In Chinese with English Abstract). [Google Scholar]
- Li, W.B.; Huang, Z.L.; Yin, M. Dating of the giant Huize Zn-Pb ore field of Yunnan Province, Southwest China: Constraints from the Sm-Nd system in hydrothermal calcite. Resour. Geol. 2007, 57, 90–97. [Google Scholar] [CrossRef]
- Mao, J.W.; Zhou, Z.H.; Feng, C.Y.; Wang, Y.T.; Zhang, C.Q. A preliminary study of the Triassic large-scale mineralisation in China and its geodynamic setting. Geology 2012, 39, 1437–1471, (In Chinese with English Abstract). [Google Scholar]
- Yin, M.D.; Li, W.B.; Sun, X.W. Rb-Sr isotopic dating of sphalerite from the giant Huize Zn-Pb ore field, Yunnan Province, Southwestern China. Chin. J. Geochem. 2009, 28, 70–75. [Google Scholar] [CrossRef]
- Zheng, R.H.; Gao, J.G.; Nian, H.L.; Jia, F.J. Rb-Sr isotopic compositions of sphalerite and its geological implications for Maozu Pb-Zn deposit, Northeast Yunnan Province, China. Acta Mineral. Sin. 2015, 35, 435–438, (In Chinese with English Abstract). [Google Scholar]
- Shen, Z.W.; Jin, C.H.; Dai, Y.P.; Zhang, Y.; Zhang, H. Mineralisation age of the Maoping Pb-Zn deposit in the Northeastern Yunnan Province: Evidence from Rb-Sr isotopic dating of sphalerites. Geol. J. China Univ. 2016, 22, 213–218, (In Chinese with English Abstract). [Google Scholar]
- Zhang, C.Q.; Li, X.H.; Yu, J.J.; Mao, J.W.; Chen, F.K.; Li, H.M. Rb-Sr dating of single sphalerites from the Daliangzi Pb-Zn deposit, Sichuan, and its geological significances. Geol. Rev. 2008, 54, 532–538, (In Chinese with English Abstract). [Google Scholar]
- Li, F.H.; Qin, J.M.; Shen, Y.L.; Yu, F.X.; Zhou, G.F.; Pan, X.N.; Li, X.Z. Presinian System in Kangdian Area; Chongqing Press: Chongqing, China, 1988. [Google Scholar]
- Chen, H.S.; Ran, C.Y. Geochemistry of Copper Deposit in Kangdian Area; Geological Publishing House: Beijing, China, 1992. [Google Scholar]
- Sun, J.C.; Han, R.S. Theory and Method of Ore Field Geomechanics; Science Press: Beijing, China, 2016. (In Chinese) [Google Scholar]
- Han, R.S.; Wu, P.; Zhang, Y.; Huang, Z.L.; Wang, F.; Jin, Z.G.; Zhou, G.M.; Shi, Z.L.; Zhang, C.Q. New progresses of metallogenic theory for rich Zn-Pb-(Ag-Ge) deposits in the Sichuan-Yunnan-Guizhou Triangle (SYGT) area, Southwestern Tethys. Acta Geol. Sin. 2022, 96, 554–573, (In Chinese with English Abstract). [Google Scholar]
- Wu, Y.; Zhang, C.Q.; Mao, J.W.; Zhang, W.S.; Wei, C. The relationship between oil-gas organic matter and MVT mineralization: A case study of the chipu lead-zinc deposit, Sichuan. Acta Geosci. Sin. 2013, 34, 425–436, (In Chinese with English Abstract). [Google Scholar]
- Han, R.S.; Wang, M.Z.; Jin, Z.G.; Li, B.; Wang, Z.Y. Ore-controlling mechanism of NE-trending ore-forming structural system at Zn-Pb polymetallic ore concentration area in northwestern Guizhou. Acta Geol. Sin. 2020, 94, 850–868, (In Chinese with English Abstract). [Google Scholar]
Deposit | Sample No./Quantity | Mineral | δ34S‰ | Source |
---|---|---|---|---|
Maliping | MLP-1 | Sphalerite | 11.06 | This paper |
MLP-2 | Sphalerite | 8.25 | ||
MLP-3 | Sphalerite | 8.98 | ||
MLP-5 | Sphalerite | 8.73 | ||
MLP-6 | Sphalerite | 10.03 | ||
MLP-7 | Sphalerite | 13.20 | ||
MLP-2-1 | Galena | 20.21 | ||
MLP-6-1 | Galena | 14.96 | ||
MLP-8-1 | Galena | 15.22 | ||
MLP-2-2 | Pyrite | 21.48 | ||
MLP-3-2 | Pyrite | 24.57 | ||
MLP-8-2 | Pyrite | 30.30 | ||
Laoyingqing | 7 | Sphalerite | −2.62~1.42 | [17] |
1 | Pyrite | 11.93 | ||
Jinniuchang | 7 | Galena | 9.34~20.70 | [18] |
4 | Pyrite | 20.70~25.66 | ||
1 | Sphalerite | 21.49 |
Deposit | Sample No./Quantity | Mineral | 206Pb/204Pb | 2σ | 207Pb/204Pb | 2σ | 208Pb/204Pb | 2σ | Source |
---|---|---|---|---|---|---|---|---|---|
Maliping | MLP-1 | Sphalerite | 17.9612 | 0.0003 | 15.6480 | 0.0003 | 38.0070 | 0.0007 | This paper |
MLP-2 | Sphalerite | 17.9927 | 0.0004 | 15.6557 | 0.0003 | 38.0572 | 0.0008 | ||
MLP-3 | Sphalerite | 17.9140 | 0.0004 | 15.6479 | 0.0003 | 37.9658 | 0.0008 | ||
MLP-5 | Sphalerite | 17.9497 | 0.0004 | 15.6539 | 0.0003 | 38.0128 | 0.0009 | ||
MLP-6 | Sphalerite | 17.9836 | 0.0005 | 15.6579 | 0.0004 | 38.0521 | 0.0010 | ||
MLP-7 | Sphalerite | 17.9897 | 0.0003 | 15.6567 | 0.0003 | 38.0528 | 0.0007 | ||
MLP-2-1 | Galena | 17.9849 | 0.0004 | 15.6554 | 0.0003 | 38.0329 | 0.0008 | ||
MLP-6-1 | Galena | 17.9834 | 0.0003 | 15.6574 | 0.0003 | 38.0504 | 0.0008 | ||
MLP-8-1 | Galena | 17.9549 | 0.0003 | 15.6616 | 0.0003 | 37.9931 | 0.0007 | ||
MLP-2-2 | Pyrite | 17.9222 | 0.0003 | 15.6480 | 0.0003 | 37.9682 | 0.0006 | ||
MLP-3-2 | Pyrite | 17.8924 | 0.0003 | 15.6422 | 0.0003 | 37.9219 | 0.0006 | ||
Laoyingqing | 7 | Sphalerite | 17.9537~18.2907 | 15.6504~15.6755 | 37.9921~38.4494 | [17] | |||
1 | Pyrite | 18.0048 | 15.6562 | 38.0799 | |||||
Jinniuchang | 7 | Galena | 17.9513~17.9996 | 15.6499~15.6547 | 37.9893~38.0687 | [18] | |||
4 | Pyrite | 17.9883~18.0081 | 15.6540~15.6571 | 38.0587~38.0918 | |||||
1 | Sphalerite | 17.9996 | 15.6554 | 38.0741 |
Deposit | Sample No./Quantity | Mineral | Rb/ppm | Sr/ppm | 87Rb/86Sr | 87Sr/86Sr | (87Sr/86Sr)200Ma | Source |
---|---|---|---|---|---|---|---|---|
Maliping | MLP-5 | Sphalerite | 0.02822 | 0.2124 | 0.3832 | 0.71175 ± 0.00003 | 0.710677 | This paper |
MLP-6 | 0.01294 | 0.1407 | 0.2652 | 0.71112 ± 0.00004 | 0.710377 | |||
MLP-7 | 0.02362 | 0.1816 | 0.3754 | 0.71414 ± 0.00004 | 0.713089 | |||
MLP-10 | 0.0405 | 0.1797 | 0.6504 | 0.71597 ± 0.00003 | 0.714149 | |||
Laoyingqing | 4 | Sphalerite | 0.01197~0.1335 | 0.09629~0.2523 | 0.3589~3.336 | 0.71950~0.72829 | 0.7184~0.7194 | [17] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, H.; Han, R.; Wu, P.; Chen, G.; Ma, L. Metallogenic Model for Pb-Zn Deposits in Clastic Rocks of the Dahai Mining Area, Northeast Yunnan: Evidence from H-O-S-Sr-Pb Isotopes. Minerals 2023, 13, 1343. https://doi.org/10.3390/min13101343
Gong H, Han R, Wu P, Chen G, Ma L. Metallogenic Model for Pb-Zn Deposits in Clastic Rocks of the Dahai Mining Area, Northeast Yunnan: Evidence from H-O-S-Sr-Pb Isotopes. Minerals. 2023; 13(10):1343. https://doi.org/10.3390/min13101343
Chicago/Turabian StyleGong, Hongsheng, Runsheng Han, Peng Wu, Gang Chen, and Ling Ma. 2023. "Metallogenic Model for Pb-Zn Deposits in Clastic Rocks of the Dahai Mining Area, Northeast Yunnan: Evidence from H-O-S-Sr-Pb Isotopes" Minerals 13, no. 10: 1343. https://doi.org/10.3390/min13101343
APA StyleGong, H., Han, R., Wu, P., Chen, G., & Ma, L. (2023). Metallogenic Model for Pb-Zn Deposits in Clastic Rocks of the Dahai Mining Area, Northeast Yunnan: Evidence from H-O-S-Sr-Pb Isotopes. Minerals, 13(10), 1343. https://doi.org/10.3390/min13101343