Saturation Influence on Reduction of Compressive Strength for Carbonate Dimension Stone in Croatia
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Analyzed Material
2.2. Methodology of the Dimension Stone Test
2.3. Modelling Methodology
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Location | UCSdry | UCSsat | Ab | ρr | p | Wet/Dry Ratio |
---|---|---|---|---|---|---|
Grožnjan 1 | 115.2 | 98.2 | 0.583 | 2.713 | 5.5 | 0.852 |
Grožnjan 2 | 39.5 | 32.4 | 1.44 | 2.727 | 17.9 | 0.82 |
Lucija | 127.6 | 116.1 | 0.534 | 2.689 | 2.4 | 0.91 |
Vinkuran 1 | 42.5 | 40.5 | 0.606 | 2.66 | 1.6 | 0.953 |
Vinkuran 2 | 39.5 | 34.5 | 0.517 | 2.668 | 1.5 | 0.873 |
Kirmenjak | 163.3 | 148 | 0.215 | 2.72 | 1.4 | 0.906 |
Selina | 162 | 147 | 0.366 | 2.718 | 1.6 | 0.907 |
Kanfanar | 165 | 134.2 | 0.532 | 2.698 | 1.4 | 0.813 |
Valtura 1 | 101 | 66.5 | 0.578 | 2.712 | 1.6 | 0.658 |
Valtura 2 | 45 | 38 | 0.338 | 2.386 | 1.2 | 0.844 |
Marići | 124.5 | 92 | 0.28 | 2.733 | 3 | 0.739 |
Sv. Ante Pridraga | 144 | 121.3 | 0.62 | 2.69 | 2.42 | 0.842 |
Uskok | 122.5 | 98.3 | 0.459 | 2.727 | 2.97 | 0.802 |
Matan | 92 | 75.9 | 1.24 | 2.68 | 5.78 | 0.825 |
“Torine—Viktor” | 127.5 | 120.1 | 0.8 | 2.69 | 2.6 | 0.942 |
Lisičić | 140.7 | 120.5 | 0.78 | 2.725 | 2.75 | 0.856 |
Vrsine | 110.5 | 108.5 | 0.678 | 2.701 | 3.4 | 0.982 |
Plano | 101.5 | 94.5 | 1.234 | 2.702 | 6.5 | 0.931 |
Seget | 132 | 128 | 1.42 | 2.708 | 5.7 | 0.97 |
Punta—Barbakan 1 | 106.4 | 90.4 | 2.02 | 2.703 | 7.7 | 0.85 |
Punta—Barbakan 2 | 100 | 83.2 | 2.06 | 2.705 | 3.91 | 0.832 |
Kupinovo istok 1 | 124.6 | 114.4 | 1.7 | 2.699 | 5.7 | 0.918 |
Kupinovo istok 2 | 104.7 | 100.4 | 2.4 | 2.712 | 9 | 0.959 |
Lozna 1 | 80.8 | 61.7 | 2.312 | 2.719 | 8.05 | 0.764 |
Lozna 2 | 78.7 | 63.8 | 2.288 | 2.714 | 7.96 | 0.811 |
Glave istok | 104 | 100 | 2.44 | 2.773 | 7.753 | 0.962 |
Zečevo | 169 | 158.8 | 2.2 | 2.751 | 7.9 | 0.94 |
Žaganj Dolac | 183.9 | 177.5 | 0.2 | 2.698 | 2.1 | 0.965 |
Lithothamnium limestone | 29.199 | 18.307 | 4.29 | 2.465 | 16.59 | 0.627 |
Calcareous sandstone | 15.409 | 8.606 | 9.97 | 2.457 | 20.73 | 0.559 |
Min value | 15.409 | 8.606 | 0.2 | 2.386 | 1.2 | 0.559 |
Max value | 183.9 | 177.5 | 9.97 | 2.773 | 20.73 | 0.982 |
Average value | 106.417 | 93.054 | 1.503 | 2.681 | 5.62 | 0.854 |
Standard deviation | 44.573 | 42.559 | 1.858 | 0.087 | 5.017 | 0.104 |
Location | b* | b | c* | a* | EUCSsat | De−d |
---|---|---|---|---|---|---|
Grožnjan 1 | 5.308 | 1.93 | 20.301 | 120.399 | 98.955 | 0.755 |
Grožnjan 2 | 5.081 | 0.879 | 16.201 | 75.799 | 32.315 | −0.085 |
Lucija | 5.489 | 1.848 | 24.3 | 98.2 | 116.92 | 0.82 |
Vinkuran 1 | 4.304 | 1.655 | 7.501 | 119.999 | 40.738 | 0.238 |
Vinkuran 2 | 5.425 | 2.242 | 22.8 | 121.2 | 35.073 | 0.573 |
Kirmenjak | 5.075 | 0.659 | 16.101 | 90.299 | 153.122 | 5.122 |
Selina | 5.124 | 1.31 | 16.901 | 83.099 | 149.312 | 2.312 |
Kanfanar | 4.625 | 0.811 | 10.301 | 114.299 | 135.566 | 1.366 |
Valtura 1 | 3.761 | 0.418 | 4.402 | 100.298 | 67.581 | 1.081 |
Valtura 2 | 5.252 | 0.652 | 19.201 | 61.599 | 39.588 | 1.588 |
Marići | 5.004 | 0.629 | 15.001 | 63.699 | 98.355 | 6.355 |
Sv. Ante Pridraga | 4.625 | 0.585 | 10.301 | 158.699 | 121.989 | 0.689 |
Uskok | 3.689 | 0.476 | 4.103 | 99.897 | 100.156 | 1.856 |
Matan | 4.159 | 1.98 | 6.502 | 177.398 | 75.829 | −0.071 |
“Torine—Viktor” | 5.03 | 3.593 | 15.401 | 147.899 | 120.239 | 0.139 |
Lisičić | 5.136 | 0.934 | 17.101 | 98.099 | 120.722 | 0.222 |
Vrsine | 4.263 | 0.238 | 7.201 | 32.299 | 108.671 | 0.171 |
Plano | 4.745 | 1.977 | 11.601 | 115.999 | 94.436 | −0.064 |
Seget | 5.011 | 3.132 | 15.101 | 146.899 | 127.919 | −0.081 |
Punta—Barbakan 1 | 5.73 | 4.093 | 30.9 | 134.1 | 90.3 | −0.1 |
Punta—Barbakan 2 | 5.844 | 3.653 | 34.6 | 66.4 | 83.099 | −0.101 |
Kupinovo istok 1 | 4.248 | 3.54 | 7.102 | 37.898 | 114.303 | −0.097 |
Kupinovo istok 2 | 2.996 | 1.873 | 2.105 | 40.395 | 100.299 | −0.101 |
Lozna 1 | 3.912 | 2.608 | 5.102 | 34.398 | 61.599 | −0.101 |
Lozna 2 | 5.784 | 1.928 | 32.6 | 91.9 | 63.699 | −0.101 |
Glave istok | 2.996 | 0.881 | 2.105 | 108.395 | 99.898 | −0.102 |
Zečevo | 4.248 | 0.654 | 7.102 | 94.398 | 158.699 | −0.101 |
Žaganj Dolac | 3.689 | 0.647 | 4.103 | 127.897 | 180.228 | 2.728 |
Lithothamnium limestone | 4.691 | 0.283 | 10.993 | 18.206 | 18.206 | −0.101 |
Calcareous sandstone | 4.22 | 0.204 | 6.904 | 8.505 | 8.505 | −0.101 |
References
- Cai, X.; Zhou, Z.; Liu, K.; Du, X.; Zang, H. Water-Weakening Effects on the Mechanical Behavior of Different Rock Types: Phenomena and Mechanisms. Appl. Sci. 2019, 9, 4450. [Google Scholar] [CrossRef]
- Verstrynge, E.; Adriaens, R.; Elsen, J.; Van Balen, K. Multi-Scale Analysis on the Influence of Moisture on the Mechanical Behavior of Ferruginous Sandstone. Constr. Build. Mater. 2014, 54, 78–90. [Google Scholar] [CrossRef]
- Yilmaz, I. Influence of Water Content on the Strength and Deformability of Gypsum. Int. J. Rock. Mech. Min. Sci. 2010, 47, 342–347. [Google Scholar] [CrossRef]
- Briševac, Z.; Kujundžić, T.; Macenić, M. Estimation of Uniaxial Compressive and Tensile Strength of Rock Material from Gypsum Deposits in the Area of Knin. Teh. Vjesn.—Tech. Gaz. 2017, 24, 855–861. [Google Scholar] [CrossRef]
- Sadeghiamirshahidi, M.; Vitton, S.J. Analysis of Drying and Saturating Natural Gypsum Samples for Mechanical Testing. J. Rock Mech. Geotech. Eng. 2018, 11, 219–227. [Google Scholar] [CrossRef]
- Allison, P. Dimension Stone—A Rock Steady Market. Ind. Miner. 1984, 30, 19–27. [Google Scholar]
- Dunda, S.; Kujundžić, T. Digital Textbook: The Exploitation of Dimension Stone; Faculty of Mining, Geology and Petroleum Engineering: Zagreb, Croatia, 2003. [Google Scholar]
- Tomor, A.K.; Nichols, J.M.; Orbán, Z. Evaluation of the Loss of Uniaxial Compressive Strength of Sandstones Due to Moisture. Int. J. Archit. Herit. 2023, 1–17. [Google Scholar] [CrossRef]
- Burshtein, L.S. Effect of Moisture on the Strength and Deformability of Sandstone. Sov. Min. Sci. 1969, 5, 573–576. [Google Scholar] [CrossRef]
- Briševac, Z.; Kujundžić, T. Models to Estimate Brazilian Indirect Tensile Strength of Limestone in Saturated State. Rud.-Geološko-Naft. Zb. 2016, 31, 59–67. [Google Scholar] [CrossRef]
- Masoumi, H.; Horne, J.; Timms, W. Establishing Empirical Relationships for the Effects of Water Content on the Mechanical Behavior of Gosford Sandstone. Rock Mech. Rock Eng. 2017, 50, 2235–2242. [Google Scholar] [CrossRef]
- Karakul, H.; Ulusay, R. Empirical Correlations for Predicting Strength Properties of Rocks from P-Wave Velocity Under Different Degrees of Saturation. Rock. Mech. Rock. Eng. 2013, 46, 981–999. [Google Scholar] [CrossRef]
- Price, N.J. The Compressive Strength of Coal Measure Rocks. Colliery Eng. 1960, 37, 283–292. [Google Scholar]
- Colback, P.S.B.; Wiid, B.L. The Influence of Moisture Content on the Compressive Strength of Rocks. Geophysics 1965, 65–83. [Google Scholar]
- Van Eeckhout, E.M. The Mechanisms of Strength Reduction Due to Moisture in Coal Mine Shales. Int. J. Rock. Mech. Min. Sci. Geomech. Abstr. 1976, 13, 61–67. [Google Scholar] [CrossRef]
- Rabat; Tomás, R.; Cano, M. Advances in the Understanding of the Role of Degree of Saturation and Water Distribution in Mechanical Behaviour of Calcarenites Using Magnetic Resonance Imaging Technique. Constr. Build. Mater. 2021, 303, 124420. [Google Scholar] [CrossRef]
- Priest, S.D.; Selvakumar, S. The Failure Characteristics of Selected British Rocks, A Report to the Transport and Research Laboratory; Department of Environment and Transport, Imperial College: London, UK, 1982. [Google Scholar]
- Hawkins, A.B.; McConnell, B.J. Sensitivity of Sandstone Strength and Deformability to Changes in Moisture Content. Q. J. Eng. Geol. 1992, 25, 115–130. [Google Scholar] [CrossRef]
- Hawkins, A.B. Aspects of Rock Strength. Bull. Eng. Geol. Environ. 1998, 57, 17–30. [Google Scholar] [CrossRef]
- Winkler, E. Stone in Architecture: Properties, Durability; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1997; ISBN 3540576266. [Google Scholar]
- Vasarhelyi, B. Some Observations Regarding the Strength and Deformability of Sandstones in Dry and Saturated Conditions. Bull. Eng. Geol. Environ. 2003, 62, 245–249. [Google Scholar] [CrossRef]
- Vásárhelyi, B.; Ván, P. Influence of Water Content on the Strength of Rock. Eng. Geol. 2006, 84, 70–74. [Google Scholar] [CrossRef]
- Majeed, Y.; Abu Bakar, M.Z. Water Saturation Influences on Engineering Properties of Selected Sedimentary Rocks of Pakistan. J. Min. Sci. 2018, 54, 914–930. [Google Scholar] [CrossRef]
- Rabat; Cano, M.; Tomás, R. Effect of Water Saturation on Strength and Deformability of Building Calcarenite Stones: Correlations with Their Physical Properties. Constr. Build. Mater. 2020, 232, 117259. [Google Scholar] [CrossRef]
- Bell, F.G.; Culshaw, M.G. Petrographic and Engineering Properties of Sandstones from the Sneinton Formation, Nottinghamshire, England. Q. J. Eng. Geol. Hydrogeol. 1998, 31, 5–19. [Google Scholar] [CrossRef]
- Wong, L.N.Y.; Maruvanchery, V.; Liu, G. Water Effects on Rock Strength and Stiffness Degradation. Acta Geotech. 2016, 11, 713–737. [Google Scholar] [CrossRef]
- Lin, M.L.; Jeng, F.S.; Tsai, L.S.; Huang, T.H. Wetting Weakening of Tertiary Sandstones—Microscopic Mechanism. Environ. Geol. 2005, 48, 265–275. [Google Scholar] [CrossRef]
- Jeng, F.S.; Weng, M.C.; Lin, M.L.; Huang, T.H. Influence of Petrographic Parameters on Geotechnical Properties of Tertiary Sandstones from Taiwan. Eng. Geol. 2004, 73, 71–91. [Google Scholar] [CrossRef]
- Zhang, D.; Pathegama Gamage, R.; Perera, M.; Zhang, C.; Wanniarachchi, W. Influence of Water Saturation on the Mechanical Behaviour of Low-Permeability Reservoir Rocks. Energies 2017, 10, 236. [Google Scholar] [CrossRef]
- Tang, S. The Effects of Water on the Strength of Black Sandstone in a Brittle Regime. Eng. Geol. 2018, 239, 167–178. [Google Scholar] [CrossRef]
- Azimian, A. Application of Statistical Methods for Predicting Uniaxial Compressive Strength of Limestone Rocks Using Nondestructive Tests. Acta Geotech. 2017, 12, 321–333. [Google Scholar] [CrossRef]
- Amirkiyaei, V.; Ghasemi, E.; Faramarzi, L. Estimating Uniaxial Compressive Strength of Carbonate Building Stones Based on Some Intact Stone Properties after Deterioration by Freeze–Thaw. Env. Earth Sci. 2021, 80, 352. [Google Scholar] [CrossRef]
- Farhadian, A.; Ghasemi, E.; Hoseinie, S.H.; Bagherpour, R. Prediction of Rock Abrasivity Index (RAI) and Uniaxial Compressive Strength (UCS) of Granite Building Stones Using Nondestructive Tests. Geotech. Geol. Eng. 2022, 40, 3343–3356. [Google Scholar] [CrossRef]
- Karakul, H. Investigation of Saturation Effect on the Relationship between Compressive Strength and Schmidt Hammer Rebound. Bull. Eng. Geol. Environ. 2017, 76, 1143–1152. [Google Scholar] [CrossRef]
- Török, Á.; Ficsor, A.; Davarpanah, M.; Vásárhelyi, B. Comparison of Mechanical Properties of Dry, Saturated and Frozen Porous Rocks. In IAEG/AEG Annual Meeting Proceedings, San Francisco, California, 2018—Volume 6; Shakoor, A., Cato, K., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 113–118. [Google Scholar]
- Bieniawski, Z.T.; Bernede, M.J. Suggested Methods for Determining the Uniaxial Compressive Strength and Deformability of Rock Materials: Part 1. Suggested Method for Determining Deformability of Rock Materials in Uniaxial Compression. Int. J. Rock. Mech. Min. Sci. Geomech. Abstr. 1979, 16, 138–140. [Google Scholar] [CrossRef]
- Davarpanah, M.; Ahmadi, M.H.; Török, Á.; Vásárhelyi, B. Investigation of the Mechanical Properties of Dry, Saturated and Frozen Highly Porous Limestone. In Proceedings of the ISRM Congress, Foz do Iguaçu, Brazil, 13 September 2019; p. ISRM-14CONGRESS. [Google Scholar]
- EN 1926:2006; Natural Stone Test Methods—Determination of Uniaxial Compressive Strength. European Committee for Standardization: Brussels, Belgium, 2006; 18p.
- EN 12440:2019; Natural Stone—Denomination Criteria. European Committee for Standardization: Brussels, Belgium, 2019; 109p.
- Crnković, B.; Jovičić, D. Dimension Stone Deposits in Croatia. Rud.-Geološko-Naft. Zb. 1993, 5, 136–163. [Google Scholar]
- Crnković, B. Croatian Natural Stone on the Market and Its Evaluation within European Standards. Rud.-Sko-Geološko-Naft. Zb. 1999, 11, 61–72. [Google Scholar]
- Fio Firi, K.; Maričić, A. Usage of the Natural Stones in the City of Zagreb (Croatia) and Its Geotouristical Aspect. Geoheritage 2020, 12, 62. [Google Scholar] [CrossRef]
- Briševac, Z.; Maričić, A.; Brkić, V.; Bralić, V. An Overview and Future Prospects of Croatian Geotechnological Heritage. Rud. -Geološko-Naft. Zb. 2021, 36, 77–97. [Google Scholar] [CrossRef]
- Tomašić, I.; Lukić, D.; Peček, N.; Kršinić, A. Dynamics of Capillary Water Absorption in Natural Stone. Bull. Eng. Geol. Environ. 2011, 70, 673–680. [Google Scholar] [CrossRef]
- Kovačević Zelić, B.; Maričić, A.; Burečić Šafran, M.; Hrženjak, P. Kontinuitet Kamenarstva i Života s Kamenom u Hrvatskoj. Annu. Croat. Acad. Eng. 2019, 2019, 191–206. [Google Scholar]
- Crnkovic, B. The Origin of the Dimension Stone of the Arena in Pula. Rud.-Geol.-Naft. Zb. 1991, 3, 63. [Google Scholar]
- Buršić, M.Š.; Aljinović, D.; Cancelliere, S. Kirmenjak-Pietra d’Istria: A Preliminary Investigation of Its Use in Venetian Architectural Heritage. Geol. Soc. Lond. Spec. Publ. 2007, 271, 63–68. [Google Scholar] [CrossRef]
- Tišljar, J.; Vlahović, I.; Matičec, D.; Velić, I. Platformni Faciesi Od Gornjega Titona Do Gornjega Alba u Zapadnoj Istri i Prijelaz u Tempestite, Klinoformne i Rudistne Biolititne Faciese Donjega Cenomana u Južnoj Istri (Ekskurzija B); Vlahović, I., Velić, I., Eds.; Institute of Geology and Croatian Geological Society: Zagreb, Croatia, 1995; Volume 1, pp. 67–110. [Google Scholar]
- Maričić, A. The Impact of Benkovac Natural Stone Properties on Its Ageing. Doctoral Thesis, University of Zagreb, Zagreb, 2014. [Google Scholar]
- Crnković, B. Geological Settings as Base for Mining Development. Rud.-Geološko-Naft. Zb. 1996, 8, 5–9. [Google Scholar]
- Maričić, A.; Briševac, Z.; Hrženjak, P.; Jezidžić, H. Natural Building Stone in the Construction and Renovation of the Zagreb Cathedral. Rud.-Geološko-Naft. Zb. 2023, 38, 29–42. [Google Scholar] [CrossRef]
- EN 12407:2019; Natural Stone Test Methods—Petrographic Examination. European Committee for Standardization: Brussels, Belgium, 2019; 21p.
- EN 12670:2019; Natural Stone—Terminology. European Committee for Standardization: Brussels, Belgium, 2019; 113p.
- EN 1936:2006; Natural Stone Test Methods—Determination of Real Density and Apparent Density, and of Total and Open Porosity. European Committee for Standardization: Brussels, Belgium, 2006; 12p.
- EN 13755:2008; Natural Stone Test Methods—Determination of Water Absorption at Atmospheric Pressure. European Committee for Standardization: Brussels, Belgium, 2008; 9p.
- Briševac, Z.; Hrženjak, P.; Buljan, R. Models for Estimating Uniaxial Compressive Strength and Elastic Modulus. Građevinar 2016, 68, 19–28. [Google Scholar]
- Lakirouhani, A.; Asemi, F.; Zohdi, A.; Medzvieckas, J.; Kliukas, R. Physical Parameters, Tensile and Compressive Strength of Dolomite Rock Samples: Influence of Grain Size. J. Civ. Eng. Manag. 2020, 26, 789–799. [Google Scholar] [CrossRef]
- Liang, M.; Tonnizam Mohamad, E.; Shirani Faradonbeh, R.; Jahed Armaghani, D.; Ghoraba, S. Rock Strength Assessment Based on Regression Tree Technique. Eng. Comput. 2016, 32, 343–354. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: Berlin/Heidelberg, Germany, 2013; Volume 26. [Google Scholar]
- Briševac, Z.; Pollak, D.; Maričić, A.; Vlahek, A. Modulus of Elasticity for Grain-supported Carbonates— Determina-tion and Estimation for Preliminary Engineering Purposes. Appl. Sci. 2021, 11, 6148. [Google Scholar] [CrossRef]
- TIBICO Statistica 14. In: TIBCO Statistica. Available online: https://docs.tibco.com/products/tibco-statistica-14-0-1 (accessed on 6 September 2023).
- Crnković, B.; Šarić, L.J. Building with the Natural Stone; IGH: Zagreb, Croatia, 2003; ISBN 86-80891-11-8. [Google Scholar]
- Mogi, K. Experimental Rock Mechanics, 1st ed.; CRC Press: London, UK, 2007; ISBN 9780415394437. [Google Scholar]
- EN 1926:1999; Natural Stones Test Methods—Determination of Compressive Strength. European Committee for Standardization: Brussels, Belgium, 1999; 17p.
- Briševac, Z.; Kosović, K.; Navratil, D.; Korman, T. Adapted Schmidt Hardness Testing on Large Rock Sam-ples-Kanfanar-South Quarry Case Study. Sustainability 2023, 15, 2058. [Google Scholar] [CrossRef]
Wet/Dry Ratio | Durability |
---|---|
0.8–1.0 | Excellent |
0.7–0.8 | Good to excellent |
0.6–0.7 | Fair to poor |
0.5–0.6 | Poor |
<0.5 | Very bad durability |
Rock Type | Equations | Source |
---|---|---|
Porous Miocene | (R2 = 0.58) | [35] |
limestone | (R2 = 0.924) | |
(R2 = 0.603) | ||
(R2 = 0.905) | ||
Highly porous | [37] | |
limestone | (R2 = 0.01) |
Equation | R | R2 | Adjusted R2 | Std. Error |
---|---|---|---|---|
17 | 0.84832953 | 0.71966299 | 0.6873164 | 0.37865 |
18 | 0.99714102 | 0.99429022 | 0.98858043 | 1.3286 |
19 | 0.96818005 | 0.93737262 | 0.91649682 | 3.5927 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Briševac, Z.; Maričić, A.; Kujundžić, T.; Hrženjak, P. Saturation Influence on Reduction of Compressive Strength for Carbonate Dimension Stone in Croatia. Minerals 2023, 13, 1364. https://doi.org/10.3390/min13111364
Briševac Z, Maričić A, Kujundžić T, Hrženjak P. Saturation Influence on Reduction of Compressive Strength for Carbonate Dimension Stone in Croatia. Minerals. 2023; 13(11):1364. https://doi.org/10.3390/min13111364
Chicago/Turabian StyleBriševac, Zlatko, Ana Maričić, Trpimir Kujundžić, and Petar Hrženjak. 2023. "Saturation Influence on Reduction of Compressive Strength for Carbonate Dimension Stone in Croatia" Minerals 13, no. 11: 1364. https://doi.org/10.3390/min13111364
APA StyleBriševac, Z., Maričić, A., Kujundžić, T., & Hrženjak, P. (2023). Saturation Influence on Reduction of Compressive Strength for Carbonate Dimension Stone in Croatia. Minerals, 13(11), 1364. https://doi.org/10.3390/min13111364