The Stability of Dams with Different Stoping Elevations in the Tongling Valley-Type Tailings Impoundment: A Case Study in Yunnan China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Re-Mining Process of the Tailings Dam
2.3. Stability Analysis Model and Material Parameters
- (1)
- Analysis model
- (2)
- Calculation parameters
2.4. The Basic Principles of Seepage Calculation
2.4.1. Darcy’s Law
2.4.2. 3D Seepage Field and Stress Field Coupling Principle
2.5. Two-Dimensional Seepage Analysis of the Tailings Dam
2.5.1. Analysis of Dam Infiltration Lines at Different Elevations
2.5.2. Two-Dimensional Stability Analysis of Dams
2.6. 3D Stability Analysis of the Tailings Dam under Different Working Conditions
2.6.1. Three-Dimensional Static Analysis of the Tailings Impoundment
2.6.2. Three-Dimensional Stability Analysis of the Tailings Impoundment under Different Working Conditions
- (1)
- Establishment of the 3D model
- (2)
- The calculation conditions of the 3D model
3. Results
3.1. Variation of the Infiltration Line of the Tailings Dam
3.2. Two-Dimensional Stability
3.3. Three-Dimensional Stability
3.3.1. Statical Analysis Results
3.3.2. 3D stability Analysis Results under Diverse Analysis Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, L.; Deng, S.; Wang, F. Some developments and new insights for environmental sustainability and disaster control of tailings dam. J. Clean. Prod. 2020, 269, 122270. [Google Scholar] [CrossRef]
- Hatje, V.; Pedreira, R.M.; de Rezende, C.E.; Schettini, C.A.F.; de Souza, G.C.; Marin, D.C.; Hackspacher, P.C. The environmental impacts of one of the largest tailing dam failures worldwide. Sci. Rep. 2017, 7, 10706. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Chen, J.-h. Multi-hierarchical fuzzy judgment and nested dominance relation of rough set theory-based environmental risk evaluation for tailings reservoirs. J. Cent. S. Univ. 2015, 22, 4797–4806. [Google Scholar] [CrossRef]
- Yang, Y.; Wei, Z.; Cao, G.; Yang, Y.; Wang, H.; Zhuang, S.; Lu, T. A case study on utilizing geotextile tubes for tailings dams construction in China. Geotext. Geomembr. 2019, 47, 187–192. [Google Scholar] [CrossRef]
- Yin, G.; Li, G.; Wei, Z.; Wan, L.; Shui, G.; Jing, X. Stability analysis of a copper tailings dam via laboratory model tests: A Chinese case study. Miner. Eng. 2011, 24, 122–130. [Google Scholar] [CrossRef]
- Edraki, M.; Baumgartl, T.; Manlapig, E.; Bradshaw, D.; Franks, D.M.; Moran, C.J. Designing mine tailings for better environmental, social and economic outcomes: A review of alternative approaches. J. Clean. Prod. 2014, 84, 411–420. [Google Scholar] [CrossRef]
- He, Y.; Li, B.-b.; Zhang, K.-n.; Li, Z.; Chen, Y.-g.; Ye, W.-m. Experimental and numerical study on heavy metal contaminant migration and retention behavior of engineered barrier in tailings pond. Environ. Pollut. 2019, 252, 1010–1018. [Google Scholar] [CrossRef]
- He, Z.-b.; Liao, T.; Liu, Y.-g.; Xiao, Y.; Li, T.-t.; Wang, H. Influence of sulfur addition/solids content ratio on removal of heavy metals from mine tailings by bioleaching. J. Cent. S. Univ. 2012, 19, 3540–3545. [Google Scholar] [CrossRef]
- Salam, S.; Xiao, M.; Khosravifar, A.; Ziotopoulou, K. Seismic stability of coal tailings dams with spatially variable and liquefiable coal tailings using pore pressure plasticity models. Comput. Geotech. 2021, 132, 104017. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, S. A new method of coal fine particles humidification and agglomeration: Synergistic dust suppression with composition of soap solution. Process Saf. Environ. Prot. 2022, 159, 146–156. [Google Scholar] [CrossRef]
- Tian, S.; Dai, X.; Wang, G.; Lu, Y.; Chen, J. Formation and evolution characteristics of dam breach and tailings flow from dam failure: An experimental study. Nat. Hazards 2021, 107, 1621–1638. [Google Scholar] [CrossRef]
- Wu, T.; Qin, J. Experimental study of a tailings impoundment dam failure due to overtopping. Mine Water Environ. 2018, 37, 272–280. [Google Scholar] [CrossRef]
- Xu, W.-b.; Liu, B.; Wu, W.-l. Strength and deformation behaviors of cemented tailings backfill under triaxial compression. J. Cent. S. Univ. 2020, 27, 3531–3543. [Google Scholar] [CrossRef]
- Luino, F.; De Graff, J.V. The Stava mudflow of 19 July 1985 (Northern Italy): A disaster that effective regulation might have prevented. Nat. Hazards Earth Syst. Sci. 2012, 12, 1029–1044. [Google Scholar] [CrossRef]
- de Oliveira Gomes, L.E.; Correa, L.B.; Sá, F.; Neto, R.R.; Bernardino, A.F. The impacts of the Samarco mine tailing spill on the Rio Doce estuary, Eastern Brazil. Mar. Pollut. Bull. 2017, 120, 28–36. [Google Scholar] [CrossRef]
- Agurto-Detzel, H.; Bianchi, M.; Assumpção, M.; Schimmel, M.; Collaço, B.; Ciardelli, C.; Barbosa, J.R.; Calhau, J. The tailings dam failure of 5 November 2015 in SE Brazil and its preceding seismic sequence. Geophys. Res. Lett. 2016, 43, 4929–4936. [Google Scholar] [CrossRef]
- Rotta, L.H.S.; Alcântara, E.; Park, E.; Negri, R.G.; Lin, Y.N.; Bernardo, N.; Mendes, T.S.G.; Souza Filho, C.R. The 2019 Brumadinho tailings dam collapse: Possible cause and impacts of the worst human and environmental disaster in Brazil. Int. J. Appl. Earth Obs. Geoinf. 2020, 90, 102119. [Google Scholar]
- Beauchemin, S.; Langley, S.; MacKinnon, T. Geochemical properties of 40-year old forested pyrrhotite tailings and impact of organic acids on metal cycling. Appl. Geochem. 2019, 110, 104437. [Google Scholar] [CrossRef]
- Chen, T.; Lei, C.; Yan, B.; Li, L.-l.; Xu, D.-m.; Ying, G.-G. Spatial distribution and environmental implications of heavy metals in typical lead (Pb)-zinc (Zn) mine tailings impoundments in Guangdong Province, South China. Environ. Sci. Pollut. Res. 2018, 25, 36702–36711. [Google Scholar] [CrossRef]
- Ouyang, J.; Liu, Z.; Zhang, L.; Wang, Y.; Zhou, L. Analysis of influencing factors of heavy metals pollution in farmland-rice system around a uranium tailings dam. Process Saf. Environ. Prot. 2020, 139, 124–132. [Google Scholar] [CrossRef]
- Dinis, M.d.L.; Fiúza, A.; Futuro, A.; Leite, A.; Martins, D.; Figueiredo, J.; Góis, J.; Vila, M.C. Characterization of a mine legacy site: An approach for environmental management and metals recovery. Environ. Sci. Pollut. Res. 2020, 27, 10103–10114. [Google Scholar] [CrossRef]
- Hu, W.; Xin, C.; Li, Y.; Zheng, Y.; Van Asch, T.; McSaveney, M. Instrumented flume tests on the failure and fluidization of tailings dams induced by rainfall infiltration. Eng. Geol. 2021, 294, 106401. [Google Scholar] [CrossRef]
- Mohamed, M.H.; Wilson, L.D.; Headley, J.V.; Peru, K.M. Novel materials for environmental remediation of tailing pond waters containing naphthenic acids. Process Saf. Environ. Prot. 2008, 86, 237–243. [Google Scholar] [CrossRef]
- Vasile, A.; Milăşan, A.R.; Andrei, A.E.; Turcu, R.N.; Drăgoescu, M.F.; Axinte, S.; Mihaly, M. An integrated value chain to iron-containing mine tailings capitalization by a combined process of magnetic separation, microwave digestion and microemulsion–assisted extraction. Process Saf. Environ. Prot. 2021, 154, 118–130. [Google Scholar] [CrossRef]
- Wang, G.; Tian, S.; Hu, B.; Xu, Z.; Chen, J.; Kong, X. Evolution pattern of tailings flow from dam failure and the buffering effect of debris blocking dams. Water 2019, 11, 2388. [Google Scholar] [CrossRef]
- Wei, Z.-a.; Yang, Y.-h.; Zhao, H.-j.; Chen, Y.-l. Stability of tailings dam of Xiaodae tailings pond. J. Northeast. Univ. (Nat. Sci.) 2016, 37, 589. [Google Scholar]
- Yu, G.; Song, C.; Pan, Y.; Li, L.; Li, R.; Lu, S. Review of new progress in tailing dam safety in foreign research and current state with development trent in China. Chin. J. Rock Mech. Eng. 2014, 33, 3238–3248. [Google Scholar]
- Gao, H.-Y.; Xu, Z.-M.; Wang, K.; Ren, Z.; Yang, K.; Tang, Y.-J.; Tian, L.; Chen, J.-P. Evaluation of the impact of karst depression-type impoundments on the underlying karst water systems in the Gejiu mining district, southern Yunnan, China. Bull. Eng. Geol. Environ. 2019, 78, 4673–4688. [Google Scholar] [CrossRef]
- Mackay, I.; Videla, A.; Brito-Parada, P. The link between particle size and froth stability-Implications for reprocessing of flotation tailings. J. Clean. Prod. 2020, 242, 118436. [Google Scholar] [CrossRef]
- Martín-Moreno, C.; Martin Duque, J.F.; Nicolau Ibarra, J.M.; Muñoz-Martín, A.; Zapico, I. Waste dump erosional landform stability–a critical issue for mountain mining. Earth Surf. Process. Landf. 2018, 43, 1431–1450. [Google Scholar] [CrossRef]
- Chen, X.; Jing, X.; Chen, Y.; Pan, C.; Wang, W. Tailings dam break: The influence of slurry with different concentrations downstream. Front. Earth Sci. 2021, 9, 726336. [Google Scholar] [CrossRef]
- Hancock, G. A method for assessing the long-term integrity of tailings dams. Sci. Total Environ. 2021, 779, 146083. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Yin, G.; Li, G.; Wang, J.-G.; Wan, L.; Shen, L. Reinforced terraced fields method for fine tailings disposal. Miner. Eng. 2009, 22, 1053–1059. [Google Scholar] [CrossRef]
- Agapito, L.A.; Bareither, C.A. Application of a one-dimensional large-strain consolidation model to a full-scale tailings storage facility. Miner. Eng. 2018, 119, 38–48. [Google Scholar] [CrossRef]
- Li, S.; Liang, H.; Li, H.; Ma, J.; Li, B. Minimum Void Ratio Model Established from Tailings and Determination of Optimal Void Ratio. Geofluids 2021, 2021, 8619121. [Google Scholar] [CrossRef]
- Bi, Q.; Li, C.-h.; Chen, J.-x. Effect of fine particle content on mechanical properties of tailings under high confining pressure. Arab. J. Geosci. 2021, 14, 942. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, C.; Yang, C.; Ma, C.; Pan, Z. Effect of fine-grained dipping interlayers on mechanical behavior of tailings using discrete element method. Eng. Anal. Bound. Elem. 2019, 104, 288–299. [Google Scholar] [CrossRef]
- Li, W.; Coop, M. Mechanical behaviour of Panzhihua iron tailings. Can. Geotech. J. 2019, 56, 420–435. [Google Scholar] [CrossRef]
- Li, Q.-m.; Yuan, H.-n.; Zhong, M.-h. Safety assessment of waste rock dump built on existing tailings ponds. J. Cent. S. Univ. 2015, 22, 2707–2718. [Google Scholar] [CrossRef]
- Rico, M.; Benito, G.; Salgueiro, A.; Díez-Herrero, A.; Pereira, H. Reported tailings dam failures: A review of the European incidents in the worldwide context. J. Hazard. Mater. 2008, 152, 846–852. [Google Scholar] [CrossRef]
- Wang, S.; Mei, G.; Xie, X.; Cui, Y. Analysis on Influence of Tailing Pond Construction on Stability of Surrounding Loose Waste Dump. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Tianjin, China, 24–26 April 2020; p. 012104. [Google Scholar]
- Zhang, C.; Chen, Q.; Pan, Z.; Ma, C. Mechanical behavior and particle breakage of tailings under high confining pressure. Eng. Geol. 2020, 265, 105419. [Google Scholar] [CrossRef]
- Deng, Z.; Wu, S.; Fan, Z.; Yan, Z.; Wu, J. Research on the overtopping-induced breaching mechanism of tailings dam and its numerical simulation. Adv. Civ. Eng. 2019, 2019, 3264342. [Google Scholar] [CrossRef]
- Gui, R.; He, G. The Effects of Internal Erosion on the Physical and Mechanical Properties of Tailings under Heavy Rainfall Infiltration. Appl. Sci. 2021, 11, 9496. [Google Scholar] [CrossRef]
- Naeini, M.; Akhtarpour, A. Numerical analysis of seismic stability of a high centerline tailings dam. Soil Dyn. Earthq. Eng. 2018, 107, 179–194. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, X.; Wu, S. Analysis of Static Liquefaction and Numerical Simulation for tailings pond under high depositing rates. Chin. J. Rock Mech. Eng. 2014, 33, 1158–1168. [Google Scholar]
- Marsooli, R.; Wu, W. 3-D finite-volume model of dam-break flow over uneven beds based on VOF method. Adv. Water Resour. 2014, 70, 104–117. [Google Scholar] [CrossRef]
- Mao, C. Computational Analysis and Control of Seepage Flow; China Water Conservancy and Hydropower Publishing House: Beijing, China, 2002. [Google Scholar]
- Lu, R.-L.; Sun, D.-P.; Wei, W.; Zhou, J.-j. Numerical simulation of seepage field in the tailing dam with draining seepage system. In Proceedings of the 2013 Fourth International Conference on Digital Manufacturing & Automation, Shinan, China, 29–30 June 2013; pp. 858–861. [Google Scholar]
- Junrui, C.; Yanqing, W. Research on multiple-level fracture network model for coupled seepage and stress fields in rock mass. Chin. J. Rock Mech. Eng. 2000, 19, 712–717. [Google Scholar]
- Özer, A.T.; Bromwell, L.G. Stability assessment of an earth dam on silt/clay tailings foundation: A case study. Eng. Geol. 2012, 151, 89–99. [Google Scholar] [CrossRef]
- Tang, G.-p.; Zhao, L.-h.; Li, L.; Yang, F. Stability charts of slopes under typical conditions developed by upper bound limit analysis. Comput. Geotech. 2015, 65, 233–240. [Google Scholar] [CrossRef]
Materials | Wet Unit Weight γ (KN/m3) | Modulus of Compressibility | Saturated Unit Weight γ (KN/m3) | Internal Friction Angle (°) | Cohesive Forces C (KPa) | Osmotic Coefficient (cm/s) |
---|---|---|---|---|---|---|
silty sand tailing | 21.5 | 8.41 | 22.1 | 28.9 | 8.1 | 4.15 × 10−4 |
silty soil tailing | 18.8 | 4.04 | 18.4 | 18.5 | 10.0 | 4.1 × 10−5 |
tail silty clay | 18.7 | 3.76 | 19.0 | 13.5 | 12.6 | 4.5 × 10−5 |
initial dam | 23.0 | 3.73 | 23.0 | 32.0 | 120.0 | 1.0 × 10−6 |
filter dam | 20.5 | – | 21.0 | 30.0 | 10.0 | 1.0 × 10−3 |
dam foundation | 25.6 | – | 26.0 | 60.0 | 100.0 | 5.2 × 10−5 |
Working Condition | Calculated Safety Factor | Minimum Safety Coefficient Allowed by Code | Whether Safety Requirements Are Met |
---|---|---|---|
Normal | 1.4630 | 1.45 | Yes |
Flooding | 1.4375 | 1.1~1.2 | Yes |
Special I | 1.3625 | 1.05~1.10 | Yes |
Special II | 1.3373 | 1.05 | Yes |
Tailings Dam Elevation (m) | Working Conditions | Calculated Safety Factor | Circle Arc Sliding Radius (m) | Minimum Safety Factor Allowed by Code |
---|---|---|---|---|
1255 | Normal | 1.238 | 134.574 | 1.15 |
Flooding | 1.195 | 133.400 | 1.05 | |
Special | 1.174 | 132.651 | 1.00 | |
1238 | Normal | 1.670 | 140.594 | 1.15 |
Flooding | 1.621 | 140.594 | 1.05 | |
Special | 1.596 | 140.594 | 1.00 | |
1220 | Normal | 1.910 | 60.384 | 1.15 |
Flooding | 1.864 | 60.384 | 1.05 | |
Special | 1.835 | 30.491 | 1.00 | |
1210 | Normal | 3.202 | 28.258 | 1.15 |
Flooding | 3.131 | 28.258 | 1.05 | |
Special | 3.020 | 28.258 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Y.; Chen, J.; Zuo, X.; Zhang, C.; Wu, S. The Stability of Dams with Different Stoping Elevations in the Tongling Valley-Type Tailings Impoundment: A Case Study in Yunnan China. Minerals 2023, 13, 1365. https://doi.org/10.3390/min13111365
Pan Y, Chen J, Zuo X, Zhang C, Wu S. The Stability of Dams with Different Stoping Elevations in the Tongling Valley-Type Tailings Impoundment: A Case Study in Yunnan China. Minerals. 2023; 13(11):1365. https://doi.org/10.3390/min13111365
Chicago/Turabian StylePan, Yiwen, Jianping Chen, Xiaohuan Zuo, Cheng Zhang, and Shuangshuang Wu. 2023. "The Stability of Dams with Different Stoping Elevations in the Tongling Valley-Type Tailings Impoundment: A Case Study in Yunnan China" Minerals 13, no. 11: 1365. https://doi.org/10.3390/min13111365
APA StylePan, Y., Chen, J., Zuo, X., Zhang, C., & Wu, S. (2023). The Stability of Dams with Different Stoping Elevations in the Tongling Valley-Type Tailings Impoundment: A Case Study in Yunnan China. Minerals, 13(11), 1365. https://doi.org/10.3390/min13111365