Insight into Crystalline Structure and Physicochemical Properties of Quartz-Carbon Ore
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of QZC-A and QZC-N
2.3. Characterization
3. Results and Discussion
3.1. Structural Characterization of Silicon and Carbon in QZC
3.2. Micromorphological Analysis
3.3. Physico-Chemical Properties of Quartz-Carbon Ore
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Phuekphong, A.F.; Imwiset, K.J.; Ogawa, M. Designing Nanoarchitecture for Environmental Remediation Based on the Clay Minerals as Building Block. J. Hazard. Mater. 2020, 399, 122888. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; LaChance, A.M.; Smith, A.T.; Cheng, H.; Liu, Q.; Sun, L. Strategic Design of Clay-Based Multifunctional Materials: From Natural Minerals to Nanostructured Membranes. Adv. Funct. Mater. 2019, 29, 1807611. [Google Scholar] [CrossRef]
- Li, Y.; Dong, S.; Qiao, J.; Liang, S.; Wu, X.; Wang, M.; Zhao, H.; Liu, W. Impact of Nanominerals on the Migration and Distribution of Cadmium on Soil Aggregates. J. Clean. Prod. 2020, 262, 121355. [Google Scholar] [CrossRef]
- Gao, D.C.; Sun, Y.; Fong, A.M.; Gu, X. Mineral-Based Form-Stable Phase Change Materials for Thermal Energy Storage: A State-of-the Art Review. Energy Storage Mater. 2022, 46, 100–128. [Google Scholar] [CrossRef]
- Zhao, X.; Tang, Y.; Xie, W.; Li, D.; Zuo, X.; Yang, H. 3D Hierarchical Porous Expanded Perlite-Based Composite Phase-Change Material with Superior Latent Heat Storage Capability for Thermal Management. Constr. Build. Mater. 2023, 362, 129768. [Google Scholar] [CrossRef]
- Liao, J.; Qian, Y.; Sun, Z.; Wang, J.; Zhang, Q.; Zheng, Q.; Wei, S.; Liu, N.; Yang, H. In Vitro Binding and Release Mechanisms of Doxorubicin from Nanoclays. J. Phys. Chem. Lett. 2022, 13, 8429–8435. [Google Scholar] [CrossRef]
- Yu, M.; Hua, Y.; Sarwar, M.T.; Yang, H. Nanoscale Interactions of Humic Acid and Minerals Reveal Mechanisms of Carbon Protection in Soil. Environ. Sci. Technol. 2023, 57, 286–296. [Google Scholar] [CrossRef]
- Egbedina, A.O.; Bolade, O.P.; Ewuzie, U.; Lima, E.C. Emerging Trends in the Application of Carbon-Based Materials: A Review. J. Environ. Chem. Eng. 2022, 10, 107260. [Google Scholar] [CrossRef]
- Huang, H.; Huang, D.; Chen, S.; Wang, G.; Chen, Y.; Tao, J.; Chen, H.; Gao, L. Removing Antibiotic Resistance Genes under Heavy Metal Stress with Carbon-Based Materials and Clay Minerals: By Sorption Alone? Chem. Eng. J. 2022, 446, 137121. [Google Scholar] [CrossRef]
- Zhao, X.; Tang, Y.; Zhang, X.; Zuo, X.; Yang, H. Development of Carbon-Coated Aluminosilicate Nanolayers Composite Shape-Stabilized Phase Change Materials with Enhanced Photo-Thermal Conversion and Thermal Storage. Appl. Clay Sci. 2022, 229, 106678. [Google Scholar] [CrossRef]
- Hao, X.; Yang, S.; Tao, E.; Li, Y. High Efficiency and Selective Removal of Cu(Ⅱ) via Regulating the Pore Size of Graphene Oxide/Montmorillonite Composite Aerogel. J. Hazard. Mater. 2022, 424, 127680. [Google Scholar] [CrossRef] [PubMed]
- Leyva-García, S.; Lozano-Castelló, D.; Morallón, E.; Cazorla-Amorós, D. Silica-Templated Ordered Mesoporous Carbon Thin Films as Electrodes for Micro-Capacitors. J. Mater. Chem. A 2016, 4, 4570–4579. [Google Scholar] [CrossRef]
- Tang, Y.; Zhao, X.; Li, D.; Zuo, X.; Tang, A.; Yang, H. Nano-Porous Carbon-Enabled Composite Phase Change Materials with High Photo-Thermal Conversion Performance for Multi-Function Coating. Sol. Energy Mater. Sol. Cells 2022, 248, 112025. [Google Scholar] [CrossRef]
- Wei, J.; Tu, C.; Yuan, G.; Bi, D.; Xiao, L.; Theng, B.K.G.; Wang, H.; Ok, Y.S. Carbon-Coated Montmorillonite Nanocomposite for the Removal of Chromium(VI) from Aqueous Solutions. J. Hazard. Mater. 2019, 368, 541–549. [Google Scholar] [CrossRef]
- Tao, Y.; Dai, Y.; Zhang, Z.; Geng, M.; Liu, F.; Na, H.; Zhu, J. Formation of Hydroxyl-Rich Carbon Layer Coated Silica Microspheres and Its Application to Enhance Hydrolysis of Cellulose to Sugar. Carbon 2023, 202, 276–285. [Google Scholar] [CrossRef]
- Wang, X.; Hu, Z.; Xiao, Y.; Du, G.; Wang, P. Discovery of a natural micro nano silicon carbon deposit deposited by planting silica. Geol. Rev. 2021, 67, 1829–1837. [Google Scholar] [CrossRef]
- Tang, S.; Shuai, H.; Zhao, R.; Du, G.; Wang, X.; Wang, J. Process Mineralogy of Micro/Nano Silicon-Carbon Ore Obtained from Jiangxi, China. Minerals 2022, 12, 700. [Google Scholar] [CrossRef]
- Venetos, M.C.; Dwaraknath, S.; Persson, K.A. Effective Local Geometry Descriptor For 29Si NMR Q4 Anisotropy. J. Phys. Chem. C 2021, 125, 19481–19488. [Google Scholar] [CrossRef]
- Bradford, H.; Ryder, A.; Henderson, J.; Titman, J.J. Structure of Ancient Glass by 29Si Magic Angle Spinning NMR Spectroscopy. Chem.—Eur. J. 2018, 24, 7474–7479. [Google Scholar] [CrossRef] [PubMed]
- Dorn, R.W.; Marro, E.A.; Hanrahan, M.P.; Klausen, R.S.; Rossini, A.J. Investigating the Microstructure of Poly (Cyclosilane) by 29Si Solid-State NMR Spectroscopy and DFT Calculations. Chem. Mater. 2019, 31, 9168–9178. [Google Scholar] [CrossRef]
- Cui, J.; Cheng, F.; Lin, J.; Yang, J.; Jiang, K.; Wen, Z.; Sun, J. High Surface Area C/SiO2 Composites from Rice Husks as a High-Performance Anode for Lithium Ion Batteries. Powder Technol. 2017, 311, 1–8. [Google Scholar] [CrossRef]
- Huang, H.; Liu, J.; Liu, H.; Evrendilek, F.; Buyukada, M. Pyrolysis of Water Hyacinth Biomass Parts: Bioenergy, Gas Emissions, and by-Products Using TG-FTIR and Py-GC/MS Analyses. Energy Convers. Manag. 2020, 207, 112552. [Google Scholar] [CrossRef]
- Fernandez, R.; Martirena, F.; Scrivener, K.L. The Origin of the Pozzolanic Activity of Calcined Clay Minerals: A Comparison between Kaolinite, Illite and Montmorillonite. Cem. Concr. Res. 2011, 41, 113–122. [Google Scholar] [CrossRef]
- Mermoux, M.; Rousseau, A. FTIR and 13C NMR study of graphite oxide. Carbon 1991, 29, 469–474. [Google Scholar] [CrossRef]
- Farias, T.M.B.; Gennari, R.F.; Chubaci, J.F.D.; Watanabe, S. FTIR Spectra and TL Properties of Quartz Annealed at High Temperatures. Phys. Procedia 2009, 2, 493–496. [Google Scholar] [CrossRef]
- Ellerbrock, R.; Stein, M.; Schaller, J. Comparing Amorphous Silica, Short-Range-Ordered Silicates and Silicic Acid Species by FTIR. Sci. Rep. 2022, 12, 11708. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Li, D.; Luo, C.; Fu, Q.; Pan, C. Highly Porous Graphitic Biomass Carbon as Advanced Electrode Materials for Supercapacitors. Green Chem. 2017, 19, 4132–4140. [Google Scholar] [CrossRef]
- Lin, Q.; Zhang, J.; Kong, D.; Cao, T.; Zhang, S.W.; Chen, X.; Tao, Y.; Lv, W.; Kang, F.; Yang, Q.H. Deactivating Defects in Graphenes with Al2O3 Nanoclusters to Produce Long-Life and High-Rate Sodium-Ion Batteries. Adv. Energy Mater. 2019, 9, 1803078. [Google Scholar] [CrossRef]
- Tang, C.; Zhang, Q. Nanocarbon for Oxygen Reduction Electrocatalysis: Dopants, Edges, and Defects. Adv. Mater. 2017, 29, 1604103. [Google Scholar] [CrossRef]
- Yang, Y.; Tian, C.; Wang, J.; Sun, L.; Shi, K.; Zhou, W.; Fu, H. Facile Synthesis of Novel 3D Nanoflower-like CuxO/Multilayer Graphene Composites for Room Temperature NOx Gas Sensor Application. Nanoscale 2014, 6, 7369–7378. [Google Scholar] [CrossRef]
- Atinafu, D.G.; Dong, W.; Wang, C.; Wang, G. Synthesis of Porous Carbon from Cotton Using an Mg(OH)2 Template for Form-Stabilized Phase Change Materials with High Encapsulation Capacity, Transition Enthalpy and Reliability. J. Mater. Chem. A 2018, 6, 8969–8977. [Google Scholar] [CrossRef]
- Campos-Roldán, C.A.; Ramos-Sánchez, G.; Gonzalez-Huerta, R.G.; Vargas García, J.R.; Balbuena, P.B.; Alonso-Vante, N. Influence of Sp3-Sp2 Carbon Nanodomains on Metal/Support Interaction, Catalyst Durability, and Catalytic Activity for the Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 2016, 8, 23260–23269. [Google Scholar] [CrossRef] [PubMed]
- De vos Burchart, E.; van Bekkum, H.; van de Graaf, B. Molecular Mechanics Study on the α-Quartz/β-Quartz Transition. J. Chem. Soc. Faraday Trans. 1992, 88, 1161–1164. [Google Scholar] [CrossRef]
- de Mendonça, F.G.; da Cunha, I.T.; Soares, R.R.; Tristão, J.C.; Lago, R.M. Tuning the Surface Properties of Biochar by Thermal Treatment. Bioresour. Technol. 2017, 246, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Bedane, A.H.; Zhao, J.X.; Mann, M.D.; Pignatello, J.J. Thermal Air Oxidation Changes Surface and Adsorptive Properties of Black Carbon (Char/Biochar). Sci. Total Environ. 2018, 618, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Guo, Y.; Khvesyuk, V.I.; Barinov, A.A.; Wang, M. Heat Conduction of Multilayer Nanostructures with Consideration of Coherent and Incoherent Phonon Transport. Nano Res. 2022, 15, 9492–9497. [Google Scholar] [CrossRef]
- Luckyanova, M.N.; Mendoza, J.; Lu, H.; Song, B.; Huang, S.; Zhou, J.; Li, M.; Dong, Y.; Zhou, H.; Garlow, J.; et al. Phonon Lo-calization in Heat Conduction. Sci. Adv. 2018, 4, 9460. [Google Scholar] [CrossRef]
- Ohlberge, S.M.; Strickler, D.W. Determination of Percent Crystallinity of Partly Devitrified Glass by X-ray Diffraction. J. Am. Ceram. Soc. 1962, 45, 170–171. [Google Scholar] [CrossRef]
- Radwan, O.A.; Humphrey, J.D.; Al-Ramadan, K.A. Quartz Crystallinity Index of Arabian Sands and Sandstones. Earth Sp. Sci. 2021, 8, e2020EA001582. [Google Scholar] [CrossRef]
- Marinoni, N.; Broekmans, M.A.T.M. Microstructure of Selected Aggregate Quartz by XRD, and a Critical Review of the Crystallinity Index. Cem. Concr. Res. 2013, 54, 215–225. [Google Scholar] [CrossRef]
- Aly, K.A.; Khalil, N.M.; Algamal, Y.; Saleem, Q.M.A. Lattice Strain Estimation for CoAl2O4 Nano Particles Using Williamson-Hall Analysis. J. Alloys Compd. 2016, 676, 606–612. [Google Scholar] [CrossRef]
- Vargas-Becerril, N.; Reyes-Gasga, J.; García-García, R. Evaluation of Crystalline Indexes Obtained through Infrared Spectroscopy and X-ray Diffraction in Thermally Treated Human Tooth Samples. Mater. Sci. Eng. C 2019, 97, 644–649. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Zhao, X.; Wang, X.; Tang, Y.; Liao, J.; Wu, Q.; Wang, J.; Zhang, J.; Yang, H. Insight into Crystalline Structure and Physicochemical Properties of Quartz-Carbon Ore. Minerals 2023, 13, 1488. https://doi.org/10.3390/min13121488
Liu X, Zhao X, Wang X, Tang Y, Liao J, Wu Q, Wang J, Zhang J, Yang H. Insight into Crystalline Structure and Physicochemical Properties of Quartz-Carbon Ore. Minerals. 2023; 13(12):1488. https://doi.org/10.3390/min13121488
Chicago/Turabian StyleLiu, Xi, Xiaoguang Zhao, Xianguang Wang, Yili Tang, Juan Liao, Qianwen Wu, Jie Wang, Jun Zhang, and Huaming Yang. 2023. "Insight into Crystalline Structure and Physicochemical Properties of Quartz-Carbon Ore" Minerals 13, no. 12: 1488. https://doi.org/10.3390/min13121488
APA StyleLiu, X., Zhao, X., Wang, X., Tang, Y., Liao, J., Wu, Q., Wang, J., Zhang, J., & Yang, H. (2023). Insight into Crystalline Structure and Physicochemical Properties of Quartz-Carbon Ore. Minerals, 13(12), 1488. https://doi.org/10.3390/min13121488