Assessing the Baseline Uranium in Groundwater around a Proposed Uraninite Mine and Identification of a Nearby New Reserve
Abstract
:1. Introduction
2. Study Area
3. Geology and Geomorphology
4. Hydrogeology
5. Sampling and Analysis
6. Results and Discussions
6.1. Variation in Uranium Concentration
6.2. Relation among pH, EC, ORP, and Uranium
6.3. Uranium in Groundwater of Different Rock Formations
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Nuclear Performance Report 2018. Available online: https://world-nuclear.org/getmedia/b392d1cd-f7d2-4d54-9355-9a65f71a3419/performance-report.pdf.aspx (accessed on 8 July 2022).
- Chen, B.; Roos, P.; Borggaard, O.K.; Zhu, Y.G.; Jakobsen, I. Myorrhiza and root hairs in barley enhance acquisition of phosphorus and uranium from phosphate rock but mycorrhiza decreases root to shoot uranium transfer. New Phytol. 2005, 165, 591–598. [Google Scholar] [CrossRef]
- James, L.J.; Sinha, A.K. Geochemical coupling of uranium and phosphorous in soils overlying an unmined uranium deposit: Coles Hill, Virginia. J. Geochem. Explor. 2006, 91, 56–70. [Google Scholar]
- Bhattacharya, P.; Chatterjee, D.; Jacks, G. Occurrence of arsenic contaminated groundwater in alluvial aquifers from the delta plains, eastern India: Options for safe drinking water supply. Water Resour. Dev. 1997, 13, 79–92. [Google Scholar] [CrossRef]
- Gunduz, O.; Simsek, C.; Hasozbek, A. Arsenic pollution in the groundwater of Simav Plain, Turkey: Its impact on water quality and human health. Water Air Soil Pollut. 2009, 205, 43–62. [Google Scholar] [CrossRef]
- Brindha, K.; Rajesh, R.; Murugan, R.; Elango, L. Fluoride contamination in groundwater in parts of Nalgonda district, Andhra Pradesh, India. Environ. Monit. Assess. 2011, 172, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.S.; Cheng, T. Uranium release from sediment to groundwater: Influence of water chemistry and insights into release mechanisms. J. Contam. Hydrol. 2014, 164, 72–87. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Shi, Z.; Zachara, J.M. Kinetics of uranium (VI) desorption from contaminated sediments: Effect of geochemical conditions and model evaluation. Environ. Sci. Technol. 2009, 43, 6560–6566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qafoku, N.P.; Zachara, J.M.; Liu, C.; Gassman, P.L.; Qafoku, O.S.; Smith, S.C. Kinetic desorption and sorption of U (VI) during reactive transport in a contaminated Hanford sediment. Environ. Sci. Technol. 2005, 39, 3157–3165. [Google Scholar] [CrossRef] [Green Version]
- Abdurabu, W.A.; Saleh, M.A.; Ramli, A.T.; Heryansyah, A. Occurrence of natural radioactivity and corresponding health risk in groundwater with an elevated radiation background in Juban District, Yemen. Environ. Earth Sci. 2016, 75, 1360. [Google Scholar] [CrossRef]
- 2016 NEA Annual Report—Nuclear Energy Agency. Available online: https://www.oecd-nea.org/jcms/pl_15044/2016-nea-annual-report?details=true (accessed on 4 January 2022).
- Banerjee, D.C. Uranium Exploration in the Proterozoic Basins in India—Present Status and Future Strategy India; International Atomic Energy Agency (IAEA): Vienna, Austria, 20 August 1999. [Google Scholar]
- Chaki, A.; Purohit, R.K.; Mamallan, R. Low grade uranium deposits of India-a bane or boon. Energy Procedia 2011, 7, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Kale, V.S.; Phansalkar, V.G. Purana basins of peninsular India: A review. Basin Res. 1991, 3, 1–36. [Google Scholar] [CrossRef]
- Kale, V.V.; Peshwa, V.V. Bhima Basin Field Guide; Geological Society of India: Bangalore, India, 1995. [Google Scholar]
- Achar, K.K.; Pandit, S.A.; Natarajan, V.; Kumar, M.K.; Dwivedy, K.K. Bhima Basin, Karnataka, India, Uranium Mineralisation in the Neoproterozoic. Assessment of Uranium Deposit Types and Resources—A Worldwide Perspective; International Atomic Energy Agency (IAEA): Vienna, Austria, 2001; pp. 129–140. [Google Scholar]
- Raju, R.D.; Kumar, M.K.; Babu, E.V.S.S.K.; Pandit, S.A. Uranium Mineralisation in the Neoproterozoic Bhima Basin at Gogi and near Ukinal: An Ore Petrological Study. Geol. Soc. India 2002, 59, 299–321. [Google Scholar]
- Chaki, A.; Pannerselvam, A.; Chavan, S.J. Uranium Exploration in the Upper Proterozoic Bhima Basin, Karnataka, India—A New Target Area. In Proceedings of the International Symposium on Uranium Raw Material for the Nuclear Fuel Cycle: Supply and Demand, Economics, the Environment and Energy Security; International Atomic Energy Agency: Vienna, Austria, 2005; pp. 183–194. [Google Scholar]
- Kerur, B.R.; Rajeshwari, T.; Nagabhushna, N.M.; Kumar, A.; Narayani, S.; Rekha, A.K. Radioactivity measurement in the granites of North Karnataka, India and its radiological implications. Indian J. Phys. 2010, 84, 1467–1480. [Google Scholar] [CrossRef]
- Yashodhara, I.; Karunakara, N.; Kumar, K.S.; Murthy, R.; Tripathi, R.M. Radiation levels and radionuclide distributions in soils of the gogi region, a proposed uranium mining region in north Karnataka. Radiat. Prot. Environ. 2011, 34, 267–269. [Google Scholar]
- Nagarajan, R.; Madhavaraju, J.; Nagendra, R.; Altrin, J.S.A.; Moutte, J. Geochemistry of Neoproterozoic shales of the Rabanpalli Formation, Bhima Basin, Northern Karnataka, southern India: Implications for provenance and paleoredox conditions. Rev. Mex. Cienc. Geológicas 2007, 24, 150–160. [Google Scholar]
- Latha, A.; Fahmi, A.K.S.S.; Kumar, K.S. Mineralogical, characterization of mine sample of uranium deposit Karnataka India. J. Appl. Geochem. 2012, 14, 316–323. [Google Scholar]
- Patnaik, S.; Hegde, G.N.; Panneerselvam, A.; Verma, M.B.; Mohanty, R.; Rai, A.K. Geochemical behaviour of LREE, Y and Zr in uranium mineralized and non-mineralized granite from Darshanapur area in the Gogi-Kurlagere fault zone, Bhima basin, Yadgiri district, Karnataka. J. Geol. Soc. India 2016, 88, 151–158. [Google Scholar] [CrossRef]
- Manoj, S.; Parimalarenganayaki, S.; Elango, L. Estimation of distribution coefficient of uranium in soil by batch tests. Mater. Sci. Eng. 2017, 263, 032016. [Google Scholar] [CrossRef]
- Manoj, S.; Thirumurugan, M.; Elango, L. An integrated approach for assessment of groundwater quality in and around uranium mineralized zone, Gogi region, Karnataka, India. Arab. J. Geosci. 2017, 10, 557. [Google Scholar] [CrossRef]
- Ramesh, R.; Subramanian, M.; Lakshmanan, E.; Subramaniyan, A.; Ganesan, G. Human health risk assessment using Monte Carlo simulations for groundwater with uranium in southern India. Ecotoxicol. Environ. Saf. 2021, 226, 112781. [Google Scholar] [CrossRef]
- Mishra, R.N.; Jayaprakash, A.V.; Hans, S.K.; Sundaram, V. Bhima Group of Upper Proterozoic-A stratigraphic puzzle. Mem. Geol. Soc. India 1987, 6, 227–237. [Google Scholar]
- CGWB 2020 Report, Uranium Occurrence in Shallow Aquifers in India. Available online: http://cgwb.gov.in/WQ/URANIUM_REPORT_2020.pdf (accessed on 9 February 2022).
- His, C.-K.D.; Langmuir, D. Adsorption of uranyl onto ferric oxyhydroxides: Application of the surface complexation site-binding model. Geochim. Cosmochim. Acta 1985, 49, 1931–1941. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Virk, H.S.; Powell, M.A.; Kumar, R.; Pattanaik, J.K.; Salomão, G.N.; Mittal, S.; Chouhan, L.; Nandabalan, Y.K.; Tiwari, R.P. Meta-analysis of uranium contamination in groundwater of the alluvial plains of Punjab, northwest India: Status, health risk, and hydrogeochemical processes. Sci. Total Environ. 2022, 807, 151753. [Google Scholar] [CrossRef] [PubMed]
- Bernhard, G.; Geipel, G.; Brendler, V.; Nitsche, H. Speciation of uranium in seepage waters of a mine tailing pile studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Radiochim. Acta 1996, 74, 87–92. [Google Scholar] [CrossRef]
- Kalmykov, S.N.; Choppin, G.R. Mixed Ca2+/UO22+/CO32- complex formation at different ionic strengths. Radiochim. Acta 2000, 88, 603–608. [Google Scholar] [CrossRef]
- Finch, R.; Murakami, T. Systematics and paragenesis of Uranium minerals. In Uranium: Mineralogy, Geochemistry and the Environment Reviews in Mineralogy; Burns, P.C., Finch, R.J., Eds.; De Gruyter: Berlin, Germany; Boston, MA, USA,, 1999; Volume 38, pp. 91–180. [Google Scholar] [CrossRef]
- Langmuir, D. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochem. Cosmochim. Acta 1978, 42, 547–569. [Google Scholar] [CrossRef]
- Porcelli, D.; Swarzenski, P.W. The behavior of U- and Th-series nuclides in groundwater. Rev. Miner. Geochem. 2003, 52, 317–361. [Google Scholar] [CrossRef]
- Kumar, A.; Tripathi, R.M.; Rout, S.; Mishra, M.K.; Ravi, P.M.; Ghosh, A.K. Characterization of groundwater composition in Punjab state with special emphasis on uranium content, speciation and mobility. Radiochim. Acta 2014, 102, 239–254. [Google Scholar] [CrossRef]
- Krupa, S.L.; Belanger, T.V.; Heck, H.H.; Brock, J.T.; Jones, B.J. Krupaseep—The next generation seepage meter. J. Coast Res. 1998, 26, 210–213. [Google Scholar]
- Rojas, J.L. Introduction to in Situ Leaching of Uranium: Tehcnical, Environemntal and Economic Aspects; IAEA Technical Document No.492; International Atomic Energy Agency: Vienna, Austria, 1989. [Google Scholar]
- Klepper, M.R.; Wyant, D.G. Notes on the Geology of Uranium; USGS numbered series 1046, index ID b1046F; U.S. Government Publishing Office: Washington, DC, USA, 1957; pp. 87–148. [CrossRef]
- Kim, Y.S.; Kim, H.S.; Park, J.Y.; Kim, S.K.; Park, B.W.; Cho, I.H.; Sung, D.C. Shin Health risk assessment for uranium in Korean groundwater. J. Environ. Radioact. 2004, 77, 77–85. [Google Scholar] [CrossRef] [PubMed]
Group | Subgroup | Formation | Member |
---|---|---|---|
Bhima Group | Andola Subgroup | Harwal-Gogi formation | |
Katamdevarhalli formation | |||
Halkal formation | Fissile shale Orthoquartzite Chert pebble conglomerate | ||
~~~~~~~~~~~~gradational and transitional contact~~~~~~~~~~~~~~~~~~ | |||
Sedam subgroup | Shahabad formation | Flaggy, dark grey, and argillaceous micritic limestone | |
Massive dark grey and bluish grey limestone | |||
Variegated and siliceous/cherty limestone | |||
Blocky, light grey to bluish grey limestone | |||
Slabby and cherty limestone | |||
Rabanapalli formation | Purple shale | ||
Green/Yellow shale | |||
Siltstone | |||
Quarzitic sandstone | |||
Conglomerate/Grit | |||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |||
Basement crystalline | Younger granites, Peninsular gneisses |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhavya, R.; Sivaraj, K.; Elango, L. Assessing the Baseline Uranium in Groundwater around a Proposed Uraninite Mine and Identification of a Nearby New Reserve. Minerals 2023, 13, 157. https://doi.org/10.3390/min13020157
Bhavya R, Sivaraj K, Elango L. Assessing the Baseline Uranium in Groundwater around a Proposed Uraninite Mine and Identification of a Nearby New Reserve. Minerals. 2023; 13(2):157. https://doi.org/10.3390/min13020157
Chicago/Turabian StyleBhavya, Ravinder, Kaveri Sivaraj, and Lakshmanan Elango. 2023. "Assessing the Baseline Uranium in Groundwater around a Proposed Uraninite Mine and Identification of a Nearby New Reserve" Minerals 13, no. 2: 157. https://doi.org/10.3390/min13020157
APA StyleBhavya, R., Sivaraj, K., & Elango, L. (2023). Assessing the Baseline Uranium in Groundwater around a Proposed Uraninite Mine and Identification of a Nearby New Reserve. Minerals, 13(2), 157. https://doi.org/10.3390/min13020157