Comparison of Different Radiological Risk Assessment Scenarios at a Coal Ash and Slag Disposal Site
Abstract
:1. Introduction
2. Materials and Methods
2.1. Assessment Site
2.2. ERICA Assessment Tool
2.3. Assessment Input Data
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vandenhove, H.; Olyslaegers, G.; Sanzharova, N.; Shubina, O.; Reed, E.; Shang, Z.; Velasco, H. Proposal for new best estimates of the soil-to-plant transfer factor of U, Th, Ra, Pb and Po. J. Environ. Radioact. 2009, 100, 721–732. [Google Scholar] [CrossRef] [PubMed]
- International Atomic Energy Agency (IAEA). Extent of Environmental Contamination by Naturally Occurring Radioactive Material (NORM) and Technological Options for Remediation; Technical Report Series 419; International Atomic Energy Agency (IAEA): Vienna, Austria, 2003. [Google Scholar]
- Osborne, D.; Jahandari, S.; Tao, Z.; Chen, Z.; Khazaie, A.; Rahme, M. Creating Additional Revenue Streams Prior to the Disposal of Tailings. Int. J. Energy Clean Environ. 2023, 24, 1–14. [Google Scholar] [CrossRef]
- Tayebi-Khorami, M.; Edraki, M.; Corder, G.; Golev, A. Re-thinking mining waste through an integrative approach led by circular economy aspirations. Minerals 2019, 9, 286. [Google Scholar] [CrossRef] [Green Version]
- Corder, G.D. Insights from case studies into sustainable design approaches in the minerals industry. Miner. Eng. 2015, 76, 47–57. [Google Scholar] [CrossRef]
- Asokan, P.; Saxena, M.; Asolekar, S.R. Coal combustion residues—Environmental implications and recycling potentials. Resour. Conserv. Recycl. 2005, 43, 239–262. [Google Scholar] [CrossRef]
- Popov, O.; Iatsyshyn, A.; Kovach, V.; Artemchuk, V.; Kameneva, I.; Radchenko, O.; Nikolaiev, K.; Stanytsina, V.; Iatsyshyn, A.; Romanenko, Y. Effect of Power Plant Ash and Slag Disposal on the Environment and Population Health in Ukraine. J. Health Pollut. 2021, 11, 210910. [Google Scholar] [CrossRef]
- Haynes, R.J. Reclamation and revegetation of fly ash disposal sites—Challenges and research needs. J. Environ. Manag. 2009, 90, 43–53. [Google Scholar] [CrossRef]
- International Commission on Radiological Protection (ICRP). ICRP Publication 103: The 2007 Recommendations of the International Commission on Radiological Protection; Annals of the ICRP; Elsevier: Oxford, UK, 2007; Volume 37. [Google Scholar]
- United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Effects of ionizing radiation on non-human biota. In Sources and Effects of Ionizing Radiation; UNSCEAR 2008 Report to the General Assembly with Scientific Annexes; United Nations: New York, NY, USA, 2011; Volume II. [Google Scholar]
- Copplestone, D.; Howard, B.J.; Bréchignac, F. The ecological relevance of current approaches for environmental protection from exposure to ionising radiation. J. Environ. Radioact. 2004, 74, 31–41. [Google Scholar] [CrossRef]
- Higley, K.A.; Bytwerk, D.P. Generic approaches to transfer. J. Environ. Radioact. 2007, 98, 4–23. [Google Scholar] [CrossRef]
- Beresford, N.A.; Barnett, C.L.; Brown, J.E.; Cheng, J.J.; Copplestone, D.; Gaschak, S.; Hosseini, A.; Howard, B.J.; Kamboj, S.; Nedveckaite, T.; et al. Predicting the radiation exposure of terrestrial wildlife in the Chernobyl exclusion zone: An international comparison of approaches. J. Radiol. Prot. 2010, 30, 341–373. [Google Scholar] [CrossRef]
- Beresford, N.A.; Barnett, C.L.; Beaugelin-Seiller, K.; Brown, J.E.; Cheng, J.-J.; Copplestone, D.; Gaschak, S.; Hingston, J.L.; Horyna, J.; Hosseini, A.; et al. Findings and recommendations from an international comparison of models and approaches for the estimation of radiological exposure to non-human biota. Radioprotection 2009, 44, 565–570. [Google Scholar]
- Pentreath, R.J.; Woodhead, D.S. A system for protecting the environment from ionising radiation: Selecting reference fauna and flora, and the possible dose models and environmental geometries that could be applied to them. Sci. Total Environ. 2001, 277, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Beresford, E.N.; Brown, J.; Copplestone, D.; Garnier-Laplace, J.; Howard, B.; Larsson, C.; Oughton, D.; Pröhl, G.; Zinger, I. D-ERICA: An Integrated Approach to the Assessment and Management of Environmental Risks from Ionising Radiation, 2007; Deliverable of the ERICA Project (FI6R-CT-2004-508847); Swedish Radiation Protection Authority: Stockholm, Sweden, 2007; Available online: https://wiki.ceh.ac.uk/download/attachments/115017395/D-Erica.pdf (accessed on 1 March 2023).
- Brown, J.E.; Alfonso, B.; Avila, R.; Beresford, N.A.; Copplestone, D.; Pröhl, G.; Ulanovsky, A. The ERICA Tool. J. Environ. Radioact. 2008, 99, 1371–1383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsson, C.M. An overview of the ERICA Integrated Approach to the assessment and management of environmental risks from ionising contaminants. J. Environ. Radioact. 2008, 99, 1364–1370. [Google Scholar] [CrossRef]
- Howard, B.J.; Larsson, C.-M. The ERICA Integrated Approach and its contribution to protection of the environment from ionising radiation. J. Environ. Radioact. 2008, 99, 1361–1363. [Google Scholar] [CrossRef]
- International Atomic Energy Agency (IAEA). Generic Models for Use in Assessing the Impact of Discharges of Radioactive Substances to the Environment; Safety Reports Series No. 19; International Atomic Energy Agency (IAEA): Vienna, Austria, 2001. [Google Scholar]
- Beresford, N.A.; Barnett, C.L.; Howard, B.J.; Scott, W.A.; Brown, J.E.; Copplestone, D. Derivation of transfer parameters for use within the ERICA Tool and the default concentration ratios for terrestrial biota. J. Environ. Radioact. 2008, 99, 1393–1407. [Google Scholar] [CrossRef] [Green Version]
- Beresford, N.A.; Balonov, M.; Beaugelin-Seiller, K.; Brown, J.; Copplestone, D.; Hingston, J.L.; Horyna, J.; Hosseini, A.; Howard, B.J.; Kamboj, S.; et al. An international comparison of models and approaches for the estimation of the radiological exposure of non-human biota. Appl. Radiat. Isot. 2008, 66, 1745–1749. [Google Scholar] [CrossRef]
- Sotiropoulou, M.; Mavrokefalou, G.; Florou, H.; Kritidis, P. Determination and mapping of the spatial distribution of cesium-137 in the terrestrial environment of Greece, over a period of 28 years (1998 to 2015). Environ. Monit. Assess. 2021, 193, 591. [Google Scholar] [CrossRef]
- Babić, D.; Skoko, B.; Franić, Z.; Senčar, J.; Šoštarić, M.; Petroci, L.; Avdić, M.; Kovačić, M.; Branica, G.; Petrinec, B.; et al. Baseline radioecological data for the soil and selected bioindicator organisms in the temperate forest of Plitvice Lakes National Park, Croatia. Environ. Sci. Pollut. Res. 2020, 27, 21040–21056. [Google Scholar] [CrossRef]
- Vetikko, V.; Saxén, R. Application of the ERICA Assessment Tool to freshwater biota in Finland. J. Environ. Radioact. 2010, 101, 82–87. [Google Scholar] [CrossRef]
- Aryanti, C.A.; Suseno, H.; Muslim, M.; Prihatiningsih, W.R.; Aini, S.N. Potential Radiological Dose of 210Po to Several Marine Organisms in Coastal Area of Coal-Fired Power Plant Tanjung Awar—Awar, Tuban. Ilmu Kelaut. 2022, 27, 73–87. [Google Scholar] [CrossRef]
- Ćujić, M.; Dragović, S. Assessment of dose rate to terrestrial biota in the area around coal fired power plant applying ERICA tool and RESRAD BIOTA code. J. Environ. Radioact. 2018, 188, 108–114. [Google Scholar] [CrossRef]
- Mrdakovic Popic, J.; Oughton, D.H.; Salbu, B.; Skipperud, L. Transfer of naturally occurring radionuclides from soil to wild forest flora in an area with enhanced legacy and natural radioactivity in Norway. Environ. Sci. 2020, 22, 350–363. [Google Scholar] [CrossRef]
- Oughton, D.H.; Strømman, G.; Salbu, B. Ecological risk assessment of Central Asian mining sites: Application of the ERICA assessment tool. J. Environ. Radioact. 2013, 123, 90–98. [Google Scholar] [CrossRef]
- Vandenhove, H.; Vives i Batlle, J.; Sweeck, L. Potential radiological impact of the phosphate industry on wildlife. J. Environ. Radioact. 2015, 141, 14–23. [Google Scholar] [CrossRef]
- Oreščanin, V.; Barišić, D.; Mikelić, L.; Lovrenčić, I.; Rožmarić-Mačefat, M.; Pavlović, G.; Lulić, S. Chemical and radiological profile of the coal ash landfill in Kaštel Gomilica. Arh. Hig. Rada Toksikol. 2006, 57, 9–16. [Google Scholar]
- Skoko, B.; Marović, G.; Babić, D.; Šoštarić, M.; Jukić, M. Plant uptake of 238U, 235U, 232Th, 226Ra, 210Pb and 40K from a coal ash and slag disposal site and control soil under field conditions: A preliminary study. J. Environ. Radioact. 2017, 172, 113–121. [Google Scholar] [CrossRef]
- Skoko, B.; Marović, G.; Babić, D. Radioactivity in the Mediterranean flora of the Kaštela bay, Croatia. J. Environ. Radioact. 2014, 135, 36–43. [Google Scholar] [CrossRef]
- Skoko, B.; Babić, D.; Marović, G.; Papić, S. Environmental radiological risk assessment of a coal ash and slag disposal site with the use of the ERICA Tool. J. Environ. Radioact. 2019, 208–209, 106018. [Google Scholar] [CrossRef]
- Lovrenčić Mikelić, I.; Barišić, D. Radiological risks from 40K, 226Ra and 232Th in urbanised and industrialised karstic coastal area (Kaštela Bay, Croatia). Environ. Sci. Pollut. Res. 2022, 29, 54632–54640. [Google Scholar] [CrossRef]
- Lovrenčić Mikelić, I.; Barišić, D. Natural and anthropogenic radionuclides in karstic coastal area (Kaštela Bay, Adriatic Sea, Croatia) exposed to anthropogenic activities: Distribution, sources, and influencing factors. Radiochim. Acta 2023, 111, 147–157. [Google Scholar] [CrossRef]
- Mandić, J.; Veža, J.; Kušpilić, G. Assessment of environmental risk related to the polycyclic aromatic hydrocarbons (PAH) in the sediments along the eastern Adriatic coast [Određivanje toksičnosti sedimenta povezane s policikličkim aromatskim ugljikovodicima—PAH duž istočne obale Jadranskog mora]. Acta Adriat. 2022, 63, 135–150. [Google Scholar]
- Brown, J.E.; Beresford, N.A.; Hosseini, A. Approaches to providing missing transfer parameter values in the ERICA Tool—How well do they work? J. Environ. Radioact. 2013, 126, 399–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, J.E.; Alfonso, B.; Avila, R.; Beresford, N.A.; Copplestone, D.; Hosseini, A. A new version of the ERICA tool to facilitate impact assessments of radioactivity on wild plants and animals. J. Environ. Radioact. 2016, 153, 141–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Commission on Radiological Protection (ICRP). ICRP Publication 108: Environmental Protection—The Concept and Use of Reference Animals and Plants; Annals of the ICRP; Elsevier: Oxford, UK, 2008; Volume 38. [Google Scholar]
- Petrinec, B.; Franić, Z.; Bituh, T.; Babić, D. Quality Assurance in Gamma-Ray Spectrometry of Seabed Sediments. Arh. Hig. Rada Toksikol. 2011, 62, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.S.; Rego, F.C. Root distribution of a Mediterranean shrubland in Portugal. Plant Soil 2003, 255, 529–540. [Google Scholar] [CrossRef]
- Canadell, J.; Jackson, R.B.; Ehleringer, J.B.; Mooney, H.A.; Sala, O.E.; Schulze, E.D. Maximum rooting depth of vegetation types at the global scale. Oecologia 1996, 108, 583–595. [Google Scholar] [CrossRef]
- Černe, M.; Smodiš, B.; Štrok, M.; Jećimović, R. Plant Accumulation of Natural Radionuclides as Affected by Substrate Contaminated with Uranium-Mill Tailings. Water Air Soil Pollut. 2018, 229, 371. [Google Scholar] [CrossRef]
- Madruga, M.J.; Brogueira, A.; Alberto, G.; Cardoso, F. 226Ra bioavailability to plants at the Uregiriça uranium mill tailings site. J. Environ. Radioact. 2001, 54, 175–188. [Google Scholar] [CrossRef]
- Vandenhove, H.; Van Hees, M. Predicting radium availability and uptake from soil properties. Chemosphere 2007, 69, 664–674. [Google Scholar] [CrossRef]
- Pietrzak-Flis, Z.; Skowrohska-Smolak, M. Transfer of 210Pb and 210Po to plants via root system and above-ground interception. Science 1995, 162, 139–147. [Google Scholar]
Ecosystem Type | Radionuclides | Reference Organism |
---|---|---|
Terrestrial | 238U | Tree |
232Th | ||
235U | ||
226Ra | ||
210Pb |
B2 | Activity Concentration (Bqkg−1) | ||||
---|---|---|---|---|---|
238U | 232Th | 235U * | 226Ra | 210Pb | |
0–2 m | 1307 ± 203 ** | 36 ± 6 ** | 60 | 1065 ± 14 ** | 641 ± 13 ** |
2–4 m | 1128 | 32 | 51 | 947 | 622 |
4–6 m | 1265 | 47 | 58 | 1106 | 1951 |
B3 | Activity concentration (Bqkg−1) | ||||
238U | 232Th | 235U * | 226Ra | 210Pb | |
0–2 m | 1134 ± 28 ** | 67 ± 6 ** | 52 | 790 ± 38 ** | |
2–4 m | 1175 | 54 | 54 | 845 | |
4–6 m | 1224 | 61 | 56 | 1121 | 909 |
B4 | Activity concentration (Bqkg−1) | ||||
238U | 232Th | 235U * | 226Ra | 210Pb | |
2–4 m | 1290 | 62 | 59 | 932 | |
4–6 m | 1374 | 71 | 63 | 1257 | 1136 |
Isotope | ERICA Tool Default CR Value | Site-Specific CR (From [32,34]) |
---|---|---|
U | 0.006473 ± 014064 | 0.001 ± 0.0002 |
Th | 0.001151 ± 0.001489 | 0.007 ± 0.005 |
Ra | 0.01653 ± 0.02893 | 0.002 ± 0.001 |
Pb | 0.0495 ± 0.1397 | 0.013 ± 0.003 |
Isotope | Total Dose Rate per Radionuclide [µGy h−1] for Reference Tree in Assessments using Tool’s Default CR Values | Total Dose Rate per Radionuclide [µGy h−1] for Reference Tree in Assessments using Site-Specific CR Values (Adopted from [34]) | |||||
---|---|---|---|---|---|---|---|
B2 | B3 | B4 | B2 | B3 | B4 | ||
238U | 0.574 | 0.585 | 0.594 | 0.099 | 0.101 | 0.076 | |
232Th | 0.004 | 0.008 | 0.014 | 0.020 | 0.037 | 0.024 | |
235U | 0.037 | 0.034 | 1.619 | 0.010 | 0.009 | 0.006 | |
226Ra | 7.497 | 7.117 | 11.700 | 1.581 | 1.501 | 1.193 | |
210Pb | 0.514 | 0.750 | 0.514 | 4.204 | 6.138 | 7.672 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Getaldić, A.; Surić Mihić, M.; Veinović, Ž.; Skoko, B.; Petrinec, B.; Prlić, I. Comparison of Different Radiological Risk Assessment Scenarios at a Coal Ash and Slag Disposal Site. Minerals 2023, 13, 832. https://doi.org/10.3390/min13060832
Getaldić A, Surić Mihić M, Veinović Ž, Skoko B, Petrinec B, Prlić I. Comparison of Different Radiological Risk Assessment Scenarios at a Coal Ash and Slag Disposal Site. Minerals. 2023; 13(6):832. https://doi.org/10.3390/min13060832
Chicago/Turabian StyleGetaldić, Ana, Marija Surić Mihić, Želimir Veinović, Božena Skoko, Branko Petrinec, and Ivica Prlić. 2023. "Comparison of Different Radiological Risk Assessment Scenarios at a Coal Ash and Slag Disposal Site" Minerals 13, no. 6: 832. https://doi.org/10.3390/min13060832
APA StyleGetaldić, A., Surić Mihić, M., Veinović, Ž., Skoko, B., Petrinec, B., & Prlić, I. (2023). Comparison of Different Radiological Risk Assessment Scenarios at a Coal Ash and Slag Disposal Site. Minerals, 13(6), 832. https://doi.org/10.3390/min13060832