Application of Maleic Acid–Acrylic Acid Copolymer as an Eco-Friendly Depressant for Effective Flotation Separation of Chalcopyrite and Galena
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Reagents
2.2. Micro-Flotation Tests
2.3. Contact Angle Measurements
2.4. Zeta Potential Measurements
2.5. XPS Measurements
3. Results and Discussion
3.1. Micro-Flotation Results
3.2. Zeta Potential Measurement
3.3. Contact Angle Measurement
3.4. XPS Analysis Results
3.5. Depression Mechanism of MA/AA
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Z.; Wang, Y.; Liu, G.; Liu, S.; Liu, J.; Yang, X. Separation of chalcopyrite from galena with 3-amyl-4-amino-1,2,4-triazole-5-thione collector: Flotation behavior and mechanism. J. Ind. Eng. Chem. 2020, 92, 210–217. [Google Scholar] [CrossRef]
- Yang, B.; Zeng, M.; Zhu, H.; Huang, P.; Li, Z.; Song, S. Selective depression of molybdenite using a novel eco-friendly depressant in Cu-Mo sulfides flotation system. Colloids Surf. A Physicochem. Eng. Asp. 2021, 622, 126683. [Google Scholar] [CrossRef]
- Yang, Z.; Geng, L.; Zhou, H.; Liu, Z.; Xie, F.; Yang, S.; Luo, X. Improving the flotation separation of chalcopyrite from galena through high-temperature air oxidation pretreatment. Miner. Eng. 2022, 176, 107350. [Google Scholar] [CrossRef]
- Luo, X.; Yang, S.; He, K.; Zhang, Y.; Zhou, H. Progress in beneficiation technology of lead-zinc sulfide ore in China during the 13th Five-Year Plan period. Nonferrous Met. Sci. Eng. 2022, 13, 117–129. (In Chinese) [Google Scholar]
- Miao, Y.; Wen, S.; Shen, Z.; Feng, Q.; Zhang, Q. Flotation separation of chalcopyrite from galena using locust bean gum as a selective and eco-friendly depressant. Sep. Purif. Technol. 2022, 283, 120173. [Google Scholar] [CrossRef]
- Sun, W.; Dai, S.; Zhang, H.; Chen, Y.; Yu, X.; Li, P.; Liu, W. Selective flotation of chalcopyrite from galena using a novel collector benzoic diethylcarbamothioic thioanhydride: An experimental and theoretical investigation. J. Mol. Liq. 2022, 365, 120027. [Google Scholar] [CrossRef]
- Zhu, H.; Yang, B.; Martin, R.; Zhang, H.; He, D.; Luo, H. Flotation separation of galena from sphalerite using hyaluronic acid (HA) as an environmental-friendly sphalerite depressant. Miner. Eng. 2022, 187, 107771. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, F.; Sun, W.; Chen, D.; Chen, J.; Wang, R.; Han, M.; Zhang, C. The effects of hydroxyl on selective separation of chalcopyrite from pyrite: A mechanism study. Appl. Surf. Sci. 2023, 608, 154963. [Google Scholar] [CrossRef]
- Zhang, X.R.; Zhu, Y.G.; Zheng, G.B.; Han, L.; McFadzean, B.; Qian, Z.B.; Piao, Y.C.; O’Connor, C. An investigation into the selective separation and adsorption mechanism of a macromolecular depressant in the galena-chalcopyrite system. Miner. Eng. 2019, 134, 291–299. [Google Scholar] [CrossRef]
- Su, C.; Cai, J.; Yu, X.; Peng, R.; Zheng, Q.; Ma, Y.; Liu, R.; Shen, P.; Liu, D. Effect of pre-oxidation on galena in the flotation separation of chalcopyrite from galena with calcium lignosulfonate as depressant. Miner. Eng. 2022, 182, 107520. [Google Scholar] [CrossRef]
- Tang, X.; Chen, Y.; Liu, K.; Zeng, G.; Peng, Q.; Li, Z. Selective flotation separation of molybdenite and chalcopyrite by thermal pretreatment under air atmosphere. Colloids Surf. A Physicochem. Eng. Asp. 2019, 583, 123958. [Google Scholar] [CrossRef]
- Chen, Y.; Feng, B.; Guo, Y.; Wang, T.; Zhang, L.; Zhong, C.; Wang, H. The role of oxidizer in the flotation separation of chalcopyrite and galena using sodium lignosulfonate as a depressant. Miner. Eng. 2021, 172, 107160. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Wei, X.; Cheng, S.; Hu, X.; Luo, Y.; Xu, P. Selective depression of galena by sodium polyaspartate in chalcopyrite flotation. Miner. Eng. 2022, 180, 107464. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Liu, X.; Chang, T.; Ning, S.; Shen, P.; Liu, R.; Lai, H.; Liu, D.; Yang, X. Carrageenan xanthate as an environmental-friendly depressant in the flotation of Pb–Zn sulfide and its underlying mechanism. Colloids Surf. A Physicochem. Eng. Asp. 2022, 653, 129926. [Google Scholar] [CrossRef]
- Huang, P.; Wang, L.; Liu, Q. Depressant function of high molecular weight polyacrylamide in the xanthate flotation of chalcopyrite and galena. Int. J. Miner. Process. 2014, 128, 6–15. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, X.; Tian, Q.; Li, D.; Zhong, S.; Qin, H. Improved thiourea leaching of gold with additives from calcine by mechanical activation and its mechanism. Miner. Eng. 2022, 178, 107403. [Google Scholar] [CrossRef]
- Huang, W.; Liu, R.; Jiang, F.; Tang, H.; Wang, L.; Sun, W. Adsorption mechanism of 3-mercaptopropionic acid as a chalcopyrite depressant in chalcopyrite and galena separation flotation. Colloids Surf. A Physicochem. Eng. Asp. 2022, 641, 128063. [Google Scholar] [CrossRef]
- Piao, Z.; Wei, D.; Liu, Z. Influence of sodium 2,3-dihydroxypropyl dithiocarbonate on floatability of chalcopyrite and galena. Trans. Nonferrous Met. Soc. China 2014, 24, 3343–3347. [Google Scholar] [CrossRef]
- Valdivieso, A.L.; Sánchez López, A.A.; Song, S.; García Martínez, H.A.; Licón Almada, S. Dextrin as a Regulator for the Selective Flotation of Chalcopyrite, Galena and Pyrite. Can. Metall. Q. 2007, 46, 301–309. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, G.; Chen, Y. Investigations on the selective depression of fenugreek gum towards galena and its role in chalcopyrite-galena flotation separation. Miner. Eng. 2021, 166, 106886. [Google Scholar] [CrossRef]
- Qiu, Y.; Mao, L.; Wang, W. Removal of manganese from waste water by complexation–ultrafiltration using copolymer of maleic acid and acrylic acid. Trans. Nonferrous Met. Soc. China 2014, 24, 1196–1201. [Google Scholar] [CrossRef]
- Qiu, Y.; Mao, L. Removal of heavy metal ions from aqueous solution by ultrafiltration assisted with copolymer of maleic acid and acrylic acid. Desalination 2013, 329, 78–85. [Google Scholar] [CrossRef]
- Yang, B.; Zhu, Z.; Sun, H.; Yin, W.; Hong, J.; Cao, S.; Tang, Y.; Zhao, C.; Yao, J. Improving flotation separation of apatite from dolomite using PAMS as a novel eco-friendly depressant. Miner. Eng. 2020, 156, 106492. [Google Scholar] [CrossRef]
- Wang, Y.; Xiong, W.; Zhang, X.; Lu, L.; Zhu, Y. A new synthetic polymer depressant PADEMA for Cu-Pb separation and its interfacial adsorption mechanism on galena surface. Appl. Surf. Sci. 2021, 569, 151062. [Google Scholar] [CrossRef]
- Zhao, K.; Ma, C.; Gu, G.H.; Gao, Z.Y. Selective Separation of Chalcopyrite from Galena Using a Green Reagent Scheme. Minerals 2021, 11, 796. [Google Scholar] [CrossRef]
- Khoso, S.A.; Gao, Z.; Meng, X.; Hu, Y.; Sun, W. The Depression and Adsorption Mechanism of Polyglutamic Acid on Chalcopyrite and Pyrrhotite Flotation Systems. Minerals 2019, 9, 510. [Google Scholar] [CrossRef] [Green Version]
- Velásquez, P.; Gómez, H.; Ramos-Barrado, J.R.; Leinen, D. Voltammetry and XPS analysis of a chalcopyrite CuFeS2 electrode. Colloids Surf. A Physicochem. Eng. Asp. 1998, 140, 369–375. [Google Scholar] [CrossRef]
- Heyes, G.W.; Trahar, W.J. The natural flotability of chalcopyrite. Int. J. Miner. Process. 1977, 4, 317–344. [Google Scholar] [CrossRef]
- Chen, W.; Chen, F.; Zhang, Z.; Tian, X.; Bu, X.; Feng, Q. Investigations on the depressant effect of sodium alginate on galena flotation in different sulfide ore collector systems. Miner. Eng. 2021, 160, 106705. [Google Scholar] [CrossRef]
- October, L.; Corin, K.; Manono, M.; Schreithofer, N.; Wiese, J. A fundamental study considering specific ion effects on the attachment of sulfide minerals to air bubbles. Miner. Eng. 2020, 151, 106313. [Google Scholar] [CrossRef]
- Wang, C.; Liu, R.; Sun, W.; Jing, N.; Xie, F.; Zhai, Q.; He, D. Selective depressive effect of pectin on sphalerite flotation and its mechanisms of adsorption onto galena and sphalerite surfaces. Miner. Eng. 2021, 170, 106989. [Google Scholar] [CrossRef]
- Xie, H.; Liu, Y.; Rao, B.; Wu, J.; Gao, L.; Chen, L.; Tian, X. Selective passivation behavior of galena surface by sulfuric acid and a novel flotation separation method for copper-lead sulfide ore without collector and inhibitor. Sep. Purif. Technol. 2021, 267, 118621. [Google Scholar] [CrossRef]
- Huang, X.; Jia, Y.; Cao, Z.; Wang, S.; Ma, X.; Zhong, H. Investigation of the interfacial adsorption mechanisms of 2-hydroxyethyl dibutyldithiocarbamate surfactant on galena and sphalerite. Colloids Surf. A Physicochem. Eng. Asp. 2019, 583, 123908. [Google Scholar] [CrossRef]
- Hirajima, T.; Miki, H.; Suyantara, G.P.W.; Matsuoka, H.; Elmahdy, A.M.; Sasaki, K.; Imaizumi, Y.; Kuroiwa, S. Selective flotation of chalcopyrite and molybdenite with H2O2 oxidation. Miner. Eng. 2017, 100, 83–92. [Google Scholar] [CrossRef]
- Chen, W.; Chen, T.; Bu, X.; Chen, F.; Ding, Y.; Zhang, C.; Deng, S.; Song, Y. The selective flotation of chalcopyrite against galena using alginate as a depressant. Miner. Eng. 2019, 141, 05848. [Google Scholar] [CrossRef]
Flotation Method | Depressant (Dosage) | Product | Yield (%) | Cu Grade (%) | Cu Recovery (%) | Price (RMB/ton) |
---|---|---|---|---|---|---|
Positive flotation | Maleic acid–acrylic acid copolymer (30 mg/L) | Concentrates | 50.56 | 29.89 | 91.53 | 7500.00 |
Tailings | 49.44 | 2.83 | 8.47 | |||
Feed | 100 | 16.51 | 100.00 | |||
Dextrin (2500 g/t) [19] | Concentrates | 13.00 | 12.20 | 84.80 | 28,000.00 | |
Tailings | 87.00 | 0.34 | 15.20 | |||
Feed | 100.00 | 1.93 | 100.00 | |||
Fenugreek gum (4 mg/L) [20] | Concentrates | 53.89 | 29.95 | 96.32 | 55,000.00 | |
Tailings | 46.11 | 1.34 | 3.68 | |||
Feed | 100.00 | 16.76 | 100.00 | |||
Locust bean gum (5 mg/L) [5] | Concentrates | 45.37 | 29.68 | 85.12 | 80,000.00 | |
Tailings | 54.63 | 4.31 | 14.88 | |||
Feed | 100.00 | 15.82 | 100.00 | |||
Sodium 2,3-dihydroxypropyl dithiocarbonate (1.9g/L) [18] | Concentrates | - | 29.52 | 82.15 | - | |
Tailings | - | - | 17.85 | |||
Feed | - | - | 100.00 | |||
Reverse flotation | 3-mercaptopropionic acid (5E-4 mol/L) [17] | Concentrates | 56.07 | 6.22 | 22.42 | 62,500.00 |
Tailings | 43.93 | 27.47 | 77.58 | |||
Feed | 100.00 | 15.56 | 100.00 | |||
Thioglycolic acid (5E-4 mol/L) [17] | Concentrates | 68.43 | 12.12 | 53.37 | 30,000.00 | |
Tailings | 31.57 | 22.95 | 46.63 | |||
Feed | 100.00 | 15.54 | 100.00 |
Depressant | Product | Yield (%) | Pb Grade (%) | Cu Grade (%) | Pb Recovery (%) | Cu Recovery (%) |
---|---|---|---|---|---|---|
Without any depressant | Concentrates | 93.58 | 41.98 | 16.35 | 92.63 | 92.67 |
Tailings | 6.42 | 48.68 | 18.84 | 7.37 | 7.33 | |
Feed | 100.00 | 42.41 | 16.51 | 100.00 | 100.00 | |
MA/AA (30 mg/L) | Concentrates | 50.56 | 5.26 | 29.89 | 6.27 | 91.53 |
Tailings | 49.44 | 80.40 | 2.83 | 93.73 | 8.47 | |
Feed | 100.00 | 42.41 | 16.51 | 100.00 | 100.00 | |
K2Cr2O7 (40 mg/L) | Concentrates | 50.94 | 10.1 | 27.96 | 12.13 | 86.27 |
Tailings | 49.06 | 75.96 | 4.62 | 87.87 | 13.73 | |
Feed | 100.00 | 42.41 | 16.51 | 100.00 | 100.00 | |
Na2S (250 mg/L) | Concentrates | 46.35 | 11.7 | 20.16 | 12.79 | 56.60 |
Tailings | 53.65 | 68.94 | 13.36 | 87.21 | 43.40 | |
Feed | 100.00 | 42.41 | 16.51 | 100.00 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Tang, X.; Chen, R.; Fan, X.; Miao, J.; Luo, X. Application of Maleic Acid–Acrylic Acid Copolymer as an Eco-Friendly Depressant for Effective Flotation Separation of Chalcopyrite and Galena. Minerals 2023, 13, 191. https://doi.org/10.3390/min13020191
Yang S, Tang X, Chen R, Fan X, Miao J, Luo X. Application of Maleic Acid–Acrylic Acid Copolymer as an Eco-Friendly Depressant for Effective Flotation Separation of Chalcopyrite and Galena. Minerals. 2023; 13(2):191. https://doi.org/10.3390/min13020191
Chicago/Turabian StyleYang, Siqi, Xuekun Tang, Rufeng Chen, Xun Fan, Jiancheng Miao, and Xianping Luo. 2023. "Application of Maleic Acid–Acrylic Acid Copolymer as an Eco-Friendly Depressant for Effective Flotation Separation of Chalcopyrite and Galena" Minerals 13, no. 2: 191. https://doi.org/10.3390/min13020191
APA StyleYang, S., Tang, X., Chen, R., Fan, X., Miao, J., & Luo, X. (2023). Application of Maleic Acid–Acrylic Acid Copolymer as an Eco-Friendly Depressant for Effective Flotation Separation of Chalcopyrite and Galena. Minerals, 13(2), 191. https://doi.org/10.3390/min13020191