Differences in Pore Type and Pore Structure between Silurian Longmaxi Marine Shale and Jurassic Dongyuemiao Lacustrine Shale and Their Influence on Shale-Gas Enrichment
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Methods
3.1. Samples
3.2. Methods
4. Results
4.1. TOC and Mineral Components
4.2. Pore Types
4.3. Pore Sizes
4.4. Pore Shapes
5. Discussion
5.1. Effect of Pore Types on Shale-Gas Enrichment
5.2. Effect of Pore Sizes on Shale-Gas Enrichment
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, P.W.; Chen, Z.H.; Pang, X.Q. Revised models for determining TOC in shale play: Example from Devonian Duvernay Shale, Western Canada Sedimentary Basin. Mar. Pet. Geol. 2016, 70, 304–319. [Google Scholar] [CrossRef]
- Ma, Y.S.; Cai, X.Y.; Zhao, P. China’s shale gas exploration and development: Understanding and practice. Pet. Explor. Dev. 2018, 45, 589–603. [Google Scholar] [CrossRef]
- Nie, H.K.; He, Z.L.; Wang, R.Y. Temperature and origin of fluid inclusions in shale veins of Wufeng–Longmaxi Formations, Sichuan Basin, South China: Implications for shale gas preservation and enrichment. J. Pet. Sci. Eng. 2020, 193, 107329. [Google Scholar] [CrossRef]
- Nie, H.K.; Li, D.H.; Liu, G.X. An overview of the geology and production of the Fuling shale gas field, Sichuan Basin, China. Energy Geosci. 2020, 1, 147–164. [Google Scholar] [CrossRef]
- Sun, C.X.; Nie, H.K.; Dang, W. Shale gas exploration and development in China: Current status, geological challenges and future directions. Energy Fuels 2021, 35, 6359–6379. [Google Scholar] [CrossRef]
- Jiang, S.; Xu, Z.; Feng, Y. Geologic characteristics of hydrocarbon-bearing marine, transitional and lacustrine shales in China. J. Asian Earth Sci. 2016, 115, 404–418. [Google Scholar] [CrossRef]
- Wang, P.W.; Liu, Z.B.; Chen, X. Impact of coexisted clay mineral and organic matter on pore growth in Lower Jurassic Da'anzhai lacustrine shale reservoir in the Northeast Sichuan Basin, West China. Interpretation 2021, 9, 1–53. [Google Scholar] [CrossRef]
- Romero-Sarmiento, M.F.; Ducros, M.; Carpentier, B. Quantitative evaluation of TOC, organic porosity and gas retention distribution in a gas shale play using petroleum system modeling: Application to the Mississippian Barnett Shale. Mar. Pet. Geol. 2013, 45, 315–330. [Google Scholar] [CrossRef]
- Dai, J.C.; Zou, S.; Liao, D. Geochemistry of the extremely high thermal maturity Longmaxi shale gas, southern Sichuan Basin. Org. Geochem. 2014, 74, 3–12. [Google Scholar] [CrossRef]
- Shao, X.H.; Pang, X.Q.; Li, Q.W. Pore structure and fractal characteristics of organic-rich shales: A case study of the lower Silurian Longmaxi shales in the Sichuan Basin, SW China. Mar. Pet. Geol. 2017, 80, 192–202. [Google Scholar] [CrossRef]
- Wang, P.F.; Jiang, Z.X.; Ji, W.M. Heterogeneity of intergranular, intraparticle and organic pores in Longmaxi shale in Sichuan Basin, South China: Evidence from SEM digital images and fractal and multifractal geometries. Mar. Pet. Geol. 2016, 72, 122–138. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Haghshenas, B.; Ghanizadeh, A. Nanopores to Megafractures: Current Challenges and Methods for Shale Gas Reservoir and Hydraulic Fracture Characterization. J. Nat. Gas Sci. Eng. 2016, 31, 612–657. [Google Scholar] [CrossRef]
- Zhu, H.J.; Ju, Y.W.; Qi, Y. Impact of tectonism on pore type and pore structure evolution in organic-rich shale: Implications for gas storage and migration pathways in naturally deformed rocks. Fuel 2018, 228, 272–289. [Google Scholar] [CrossRef]
- Gao, Z.Y.; Hu, Q.H. Pore structure and spontaneous imbibition characteristics of marine and continental shales in China. AAPG Bull. 2018, 102, 1941–1961. [Google Scholar] [CrossRef]
- Wang, F.; Guo, S. Influential factors and model ofshale pore evolution: A case study of a continental shalefrom the Ordos Basin. Mar. Pet. Geol. 2019, 102, 271–282. [Google Scholar] [CrossRef]
- Dong, T.; Harris, N.B.; McMillan, J.M. A model for porosity evo-lution in shale reservoirs: An example from the UpperDevonian Duvernay Formation, Western Canada Sedi-mentary Basin. AAPG Bull. 2019, 103, 1017–1044. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.J.; Zhang, X.; Tang, J. Comparative studyon micro-pore structure of marine, terrestrial, and transi-tional shales in key areas, China. Int. J. Coal Geol. 2017, 171, 76–92. [Google Scholar] [CrossRef]
- Wu, S.; Yang, Z.; Zhai, X. An experimental study of organic matter, minerals andporosity evolution in shales within high-temperature and high-pressure constraints. Mar. Pet. Geol. 2019, 102, 377–390. [Google Scholar] [CrossRef]
- Fathy, D.; Wagreich, M.; Sami, M. Geochemical evidence for photic zone euxinia during greenhouse climate in the Tethys Sea, Egypt. In Advances in Geophysics, Tectonics and Petroleum Geosciences; Springer: Cham, Switzerland, 2022; pp. 373–374. [Google Scholar]
- Nie, H.K.; Jin, Z.J.; Sun, C.X. Organic matter types of the Wufeng and Longmaxi Formations in the Sichuan Basin, South China: Implications for the formation of organic matter pores. Energy Fuels 2019, 33, 8076–8100. [Google Scholar] [CrossRef]
- Gao, Z.Y.; Xuan, Q.X.; Hu, Q.H. Pore structure evolution characteristics of continental shale in China as indicated from thermal simulation experiments. AAPG Bull. 2021, 105, 2159–2180. [Google Scholar] [CrossRef]
- Liu, B.; Mastalerz, M.; Schieber, J. SEM petrography of dispersed organic matter in black shales: A review. Earth-Sci. Rev. 2022, 224, 103874. [Google Scholar] [CrossRef]
- Ji, L.M.; Qiu, J.L.; Xia, Y.Q. Micro-pore characteristics and methane adsorption properties of common clay minerals by electron microscope scanning. Acta Pet. Sin. 2012, 33, 249–256. [Google Scholar]
- Tang, X.; Zhang, J.C.; Jin, Z.J. Experimental investigation of thermal maturation on shale reservoir properties from hydrous pyrolysis of Chang 7 shale, Ordos Basin. Mar. Pet. Geol. 2015, 64, 165–172. [Google Scholar] [CrossRef]
- Wood, D.A. Establishing credible reaction-kinetics distri-butions to fit and explain multi-heating rate S2 pyrolysispeaks of kerogens and shales. Adv. Geo Energy Res. 2019, 3, 1–28. [Google Scholar] [CrossRef]
- Tian, H.; Pan, L.; Xiao, X.M. A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt, southwestern China using low pressure N2 adsorption and FE-SEM methods. Mar. Pet. Geol. 2013, 48, 8–19. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.H.; Wang, J.Q. Characterization of organic matter pores in typical marine and terrestrial shales, China. J. Nat. Gas Sci. Eng. 2017, 49, 56–65. [Google Scholar] [CrossRef]
- Behar, F.; Vandenbroucke, M. Chemical modelling of kerogens. Org. Geochem. 1987, 11, 15–24. [Google Scholar] [CrossRef]
- Li, P.; Hao, F.; Guo, X. Processes involved in the origin and accumulation of hydrocarbon gases in the Yuanba Gas Field, Sichuan Basin, Southwest China. Mar. Pet. Geol. 2015, 59, 150–165. [Google Scholar] [CrossRef]
- Yang, R.; He, S.; Yi, J.Z. Nano-scale pore structure and fractal dimension of organic-rich wufeng-longmaxi shale from Jiaoshiba area, Sichuan Basin: Investigations using FE-SEM, gas adsorption and helium pycnometry. Mar. Pet. Geol. 2016, 70, 27–45. [Google Scholar] [CrossRef]
- Nie, H.K.; Jin, Z.J.; Zhang, J.C. Characteristics of three organic matter pore types in the Wufeng-Longmaxi Shale of the Sichuan Basin, Southwest China. Sci. Rep. 2018, 8, 7014. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Lu, Y.; Jiang, S.; Li, J.; Guo, T.; Luo, C. Heterogeneity of the lower Silurian Longmaxi marine shale in the Southeast Sichuan Basin of China. Mar. Pet. Geol. 2015, 65, 232–246. [Google Scholar] [CrossRef]
- Li, Y.J.; Feng, Y.Y.; Liu, H. Geological characteristics and resource potential of lacustrine shale gas in the Sichuan Basin, SW China. Pet. Explor. Dev. 2013, 40, 454–460. [Google Scholar] [CrossRef]
- Gao, J.; Lin, L.B.; Ren, T.L. Controlling factors for shale gas enrichment of the Lower Jurassic Dongyuemiao member in the northern Sichuan Basin. Lithol. Reserv. 2016, 28, 67–75. [Google Scholar]
- Zou, C.; Dong, D.; Wang, S. Geological characteristics and resource potential of shale gas in China. Pet. Explor. Dev. 2010, 37, 641–653. [Google Scholar] [CrossRef]
- Ross, D.J.K.; Bustin, R.M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar. Pet. Geol. 2009, 26, 916–927. [Google Scholar] [CrossRef]
- Zhang, T.; Ellis, G.S.; Ruppel, S.C. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems. Org. Geochem. 2012, 47, 120–131. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E.J. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Mosher, K.; He, J.; Liu, Y. Molecular simulation of methane adsorption in micro-and mesoporous carbons with applications to coal and gas shale systems. Int. J. Coal Geol. 2013, 109, 36–44. [Google Scholar] [CrossRef]
- Cao, Z.; Jiang, H.; Zeng, J. Nanoscale liquid hydrocarbon adsorption on clay minerals: A molecular dynamics simulation of shale oils. Chem. Eng. J. 2020, 420, 127578. [Google Scholar] [CrossRef]
- Wang, P.W.; Jin, Z.J.; Liu, G.X. Pore pressure prediction method for marine organic-rich shale: A case study of Wufeng-Longmaxi Shale in the Fuling Shale Gas Field, Northeast Sichuan Basin. Oil. Gas Ind. 2022, 43, 467–476. [Google Scholar]
- Wang, P.W.; Chen, Z.H.; Hu, K.Z. The impact of organic pores on estimation ofoverpressure generated by gas generation in organic-rich shale: Example from Devonian Duvernay shale, Western Canada Sedimentary Basin. AAPG Bull. 2023; accepted. [Google Scholar]
- Ko, L.T.; Loucks, R.G.; Zhang, T. Pore and pore network evolution of upper cretaceous boquillas (Eagle ford-equivalent) mudrocks: Results from gold tube pyrolysis experiments. AAPG Bull. 2016, 100, 1693–1722. [Google Scholar] [CrossRef]
- Ko, L.T.; Ruppel, S.C.; Loucks, R.G. Pore-types and pore-network evolution in Upper Devonian-Lower Mississippian Woodford and Mississippian Barnett mudstones: Insights from laboratory thermal maturation and organic petrology. Int. J. Coal Geol. 2018, 190, 3–28. [Google Scholar] [CrossRef]
- Ardakani, O.H.; Sanei, H.; Ghanizadeh, A. Do all fractions of organic matter contribute equally in shale porosity? A case study from upper ordovician utica shale, southern quebec, canada. Mar. Pet. Geol. 2017, 92, 794–808. [Google Scholar] [CrossRef]
- Rouquerol, J.; Avnir, D.; Fairbridge, C. Recommendations for the characterization of porous solids (Technical Report). Pure Appl. Chem. 1994, 66, 1739–1758. [Google Scholar] [CrossRef]
- Liu, W.P.; Zhang, C.L.; Gao, G.D. Controlling factors and evolution laws of shale porosity in Longmaxi Formation, Sichuan Basin. Acta Pet. Sin. 2017, 38, 175–184. [Google Scholar]
- Gregg, S.; Sing, K. Adsorption, Surface Area and Porosity, 2nd ed.; Academic Press: London, UK, 1982. [Google Scholar]
- Sing, K.S. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Hickey, J.J.; Bo, H. Lithofacies summary of the Mississippian Barnett Shale, Mitchell 2 T.P. Sims well, Wise County, Texas. AAPG Bull. 2007, 91, 437–443. [Google Scholar] [CrossRef]
- Chalmers, G.R.L.; Bustin, R.M. The organic matter distribution and methane capacity of the lower cretaceous strata of northeastern British Columbia, Canada. Int. J. Coal Geol. 2007, 70, 223–239. [Google Scholar] [CrossRef]
- Li, J.; Li, X.F.; Wang, X.Z. Effect of water distribution on methane adsorption capacity of shale clay. Chin. J. Theor. Appl. Mech. 2016, 5, 1217–1228. [Google Scholar] [CrossRef]
- Ji, L.M.; Zhang, T.; Milliken, K. Experimental investigation of main controls to methane adsorption in clay-rich rocks. Appl. Geochem. 2012, 27, 2533–2545. [Google Scholar] [CrossRef]
- Lu, X.C.; Li, F.C.; Watson, A.T. Adsorption Measurements in Devonian Shales. Fuel 1995, 74, 599–603. [Google Scholar] [CrossRef]
Sample No. | Well | Lithology | Pore Volume (mL/g) | Specific Surface Area (m2/g) | VL (m3/t) |
---|---|---|---|---|---|
1 | JYA | Gray–black siliceous shale | 0.008 | 7.22 | 2.11 |
2 | JYA | Gray–black siliceous shale | 0.100 | 10.22 | / |
3 | JYA | Gray–black siliceous shale | 0.008 | 7.95 | 1.72 |
4 | JYA | Gray–black siliceous shale | 0.009 | 7.53 | 2.56 |
5 | JYB | Gray–black argillaceous shale | 0.012 | 11.82 | 2.34 |
6 | JYB | Gray–black siliceous shale | 0.012 | 10.34 | 2.22 |
7 | JYB | Gray–black argillaceous shale | 0.017 | 13.58 | 2.69 |
8 | JYB | Gray–black argillaceous shale | 0.008 | 7.53 | 3.52 |
9 | JYB | Gray–black argillaceous shale | 0.010 | 9.01 | / |
10 | JYB | Gray–black argillaceous shale | 0.013 | 12.97 | / |
11 | JYB | Gray–black siliceous shale | 0.014 | 12.80 | / |
12 | JYB | Gray–black argillaceous shale | 0.012 | 10.57 | 4.66 |
13 | JYB | Gray–black siliceous shale | 0.011 | 9.61 | 4.00 |
14 | JYB | Gray–black siliceous shale | 0.013 | 10.94 | / |
15 | JYB | Gray–black siliceous shale | 0.01 | 9.62 | / |
16 | JYB | Gray–black siliceous shale | 0.017 | 11.71 | 3.64 |
17 | JYB | Gray–black siliceous shale | 0.019 | 15.45 | 2.76 |
18 | JYB | Gray–black siliceous shale | 0.019 | 19.59 | 6.89 |
19 | JYB | Gray–black argillaceous shale | 0.024 | 20.38 | / |
20 | FYA | Gray argillaceous shale | 0.019 | 10.09 | 0.67 |
21 | FYA | Gray argillaceous shale | 0.021 | 11.00 | / |
22 | FYA | Gray argillaceous shale | 0.013 | 6.47 | / |
23 | FYA | Gray argillaceous shale | 0.016 | 7.59 | / |
24 | FYA | Gray argillaceous shale | 0.017 | 9.50 | / |
25 | FYA | Gray argillaceous shale | 0.021 | 12.14 | / |
26 | FYA | Gray argillaceous shale | 0.017 | 7.57 | / |
27 | FYA | Gray argillaceous shale | 0.019 | 7.46 | / |
28 | FYA | Gray argillaceous shale | 0.021 | 9.69 | / |
29 | FYA | Gray argillaceous shale | 0.017 | 5.52 | 0.86 |
30 | FYA | Gray argillaceous shale | 0.007 | 2.90 | / |
31 | FYA | Gray argillaceous shale | 0.010 | 2.929 | / |
32 | FYA | Gray argillaceous shale | 0.017 | 7.01 | 1.00 |
33 | FYA | Gray argillaceous shale | 0.027 | 9.64 | / |
34 | FYA | Gray argillaceous shale | 0.015 | 4.41 | 1.66 |
35 | FYA | Gray argillaceous shale | 0.022 | 8.01 | / |
36 | XLA | Gray argillaceous shale | 0.016 | 6.20 | 1.31 |
37 | XLA | Gray argillaceous shale | 0.015 | 9.66 | / |
38 | FYB | Gray siliceous shale | 0.018 | 3.60 | 0.99 |
39 | FYB | Gray siliceous shale | 0.0190 | 5.92 | 0.68 |
40 | FYB | Gray siliceous shale | 0.015 | 5.66 | / |
41 | FYB | Gray siliceous shale | 0.015 | 5.69 | 1.47 |
42 | XLA | Gray argillaceous shale | 0.013 | 4.92 | 2.15 |
43 | XLA | Gray argillaceous shale | 0.013 | 4.55 | 1.75 |
44 | XLA | Gray argillaceous shale | 0.013 | 5.03 | 0.68 |
45 | XLA | Gray argillaceous shale | 0.012 | 4.10 | 0.71 |
46 | XLA | Gray argillaceous shale | 0.012 | 5.82 | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Nie, H.; Liu, Z.; Sun, C.; Cao, Z.; Wang, R.; Li, P. Differences in Pore Type and Pore Structure between Silurian Longmaxi Marine Shale and Jurassic Dongyuemiao Lacustrine Shale and Their Influence on Shale-Gas Enrichment. Minerals 2023, 13, 190. https://doi.org/10.3390/min13020190
Wang P, Nie H, Liu Z, Sun C, Cao Z, Wang R, Li P. Differences in Pore Type and Pore Structure between Silurian Longmaxi Marine Shale and Jurassic Dongyuemiao Lacustrine Shale and Their Influence on Shale-Gas Enrichment. Minerals. 2023; 13(2):190. https://doi.org/10.3390/min13020190
Chicago/Turabian StyleWang, Pengwei, Haikuan Nie, Zhongbao Liu, Chuanxiang Sun, Zhe Cao, Ruyue Wang, and Pei Li. 2023. "Differences in Pore Type and Pore Structure between Silurian Longmaxi Marine Shale and Jurassic Dongyuemiao Lacustrine Shale and Their Influence on Shale-Gas Enrichment" Minerals 13, no. 2: 190. https://doi.org/10.3390/min13020190
APA StyleWang, P., Nie, H., Liu, Z., Sun, C., Cao, Z., Wang, R., & Li, P. (2023). Differences in Pore Type and Pore Structure between Silurian Longmaxi Marine Shale and Jurassic Dongyuemiao Lacustrine Shale and Their Influence on Shale-Gas Enrichment. Minerals, 13(2), 190. https://doi.org/10.3390/min13020190