Crustal Structures of the Qimantagh Metallogenic Belt in the Northern Tibetan Plateau from Magnetotelluric Data and Their Correlation to the Distribution of Mineral Deposits
Abstract
:1. Introduction
2. Geological Setting
3. Data and Methods
4. Results
4.1. Typical Curves
4.2. Two-Dimensional (2D) Conversion Results
5. Discussion
5.1. Crustal Structure of the QMB
5.2. Correlations between the Distribution of Mineral Deposits and the Crustal Electrical Structure
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Wannamaker, P.E.; Doerner, W.M. Crustal structure of the Ruby Mountains and southern Carlin Trend region, Nevada, from magnetotelluric data. Ore Geol. Rev. 2002, 21, 185–210. [Google Scholar] [CrossRef]
- Heinson, G.S.; Direen, N.G.; Gill, R.M. Magnetotelluric evidence for a deep-crustal mineralizing system beneath the Olympic Dam iron oxide copper-gold deposit, southern Australia. Geology 2006, 34, 573. [Google Scholar] [CrossRef]
- Heinson, G.; Didana, Y.; Soeffky, P.; Thiel, S.; Wise, T. The crustal geophysical signature of a world-class magmatic mineral system. Sci. Rep. 2018, 8, 10608. [Google Scholar] [CrossRef] [PubMed]
- Blewett, R.S.; Henson, P.A.; Roy, I.G.; Champion, D.C.; Cassidy, K.F. Scale-integrated architecture of a world-class gold mineral system: The Archaean eastern Yilgarn Craton, Western Australia. Precambrian Res. 2010, 183, 230–250. [Google Scholar] [CrossRef]
- Huston, D.L.; Mernagh, T.P.; Hagemann, S.G.; Doublier, M.P.; Fiorentini, M.; Champion, D.C.; Lynton Jaques, A.; Czarnota, K.; Cayley, R.; Skirrow, R.; et al. Tectono-metallogenic systems—The place of mineral systems within tectonic evolution, with an emphasis on Australian examples. Ore Geol. Rev. 2016, 76, 168–210. [Google Scholar] [CrossRef]
- Groves, D.I.; Santosh, M.; Zhang, L. A scale-integrated exploration model for orogenic gold deposits based on a mineral system approach. Geosci. Front. 2020, 11, 719–738. [Google Scholar] [CrossRef]
- Hou, Z.; Wang, T. Isotopic mapping and deep material probing (II): Imaging crustal architecture and its control on mineral systems. Earth Sci. Front. 2018, 25, 20–41. [Google Scholar]
- Motta, J.G.; Souza Filho, C.R.; Carranza, E.J.M.; Braitenberg, C. Archean crust and metallogenic zones in the Amazonian Craton sensed by satellite gravity data. Sci. Rep. 2019, 9, 2565. [Google Scholar] [CrossRef]
- Zhai, M.; Zhu, X.; Zhou, Y.; Zhao, L.; Zhou, L. Continental crustal evolution and synchronous metallogeny through time in the North China Craton. J. Asian Earth Sci. 2020, 194, 104169. [Google Scholar] [CrossRef]
- Dong, Y.; Sun, S.; Santosh, M.; Zhao, J.; Sun, J.; He, D.; Yang, L.; Shi, X.; Hui, B.; Zhang, G.; et al. Central China orogenic belt and amalgamation of East Asian continents. Gondwana Res. 2021, 100, 131–194. [Google Scholar] [CrossRef]
- Wang, P.; Zhao, G.; Liu, Q.; Yao, J.; Han, Y. Evolution of the Paleo-Tethys Ocean in Eastern Kunlun, North Tibetan Plateau: From continental rift-drift to final closure. Lithos 2022, 422–423, 106717. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, C.; Liu, Y.; Gong, H.; Awan, R.S.; Li, G.; Zang, Q. Geochemical characteristics and the organic matter enrichment of the Upper Ordovician Tanjianshan Group, Qaidam Basin, China. J. Pet. Sci. Eng. 2022, 208, 109383. [Google Scholar] [CrossRef]
- Pirajno, F.; Santosh, M. Rifting intraplate magmatism, mineral systems and mantle dynamics in central-east Eurasia: An overview. Ore Geol. Rev. 2014, 63, 265–295. [Google Scholar] [CrossRef]
- Snyder, D.B. Imaging Archaean-age whole mineral systems. Precambrian Res. 2013, 229, 125–132. [Google Scholar] [CrossRef]
- Zhang, K.; Lü, Q.; Lan, X.; Guo, D.; Wang, Q.; Yan, J.; Zhao, J. Magnetotelluric evidence for crustal decoupling: Insights into tectonic controls on the magmatic mineral system in the Nanling–Xuancheng area, SE China. Ore Geol. Rev. 2021, 131, 104045. [Google Scholar] [CrossRef]
- Comeau, M.J.; Becken, M.; Kuvshinov, A.V.; Demberel, S. Crustal architecture of a metallogenic belt and ophiolite belt: Implications for mineral genesis and emplacement from 3-D electrical resistivity models (Bayankhongor area, Mongolia). Earth Planets Space 2021, 73, 82. [Google Scholar] [CrossRef]
- Comeau, M.J.; Becken, M.; Kuvshinov, A.V. Imaging the Whole-Lithosphere Architecture of a Mineral System—Geophysical Signatures of the Sources and Pathways of Ore-Forming Fluids. Geochem. Geophys. Geosyst. 2022, 23, e2022GC010379. [Google Scholar] [CrossRef]
- Yu, M.; Feng, C.Y.; Santosh, M.; Mao, J.W.; Zhu, Y.F.; Zhao, Y.M.; Li, D.X.; Li, B. The Qiman Tagh Orogen as a window to the crustal evolution in northern Qinghai-Tibet Plateau. Earth Sci. Rev. 2017, 167, 103–123. [Google Scholar] [CrossRef]
- Li, W.; Neubauer, F.; Liu, Y.; Genser, J.; Ren, S.; Han, G.; Liang, C. Paleozoic evolution of the Qimantagh magmatic arcs, Eastern Kunlun Mountains: Constraints from zircon dating of granitoids and modern river sands. J. Asian Earth Sci. 2013, 77, 183–202. [Google Scholar] [CrossRef]
- Yao, L.; Lü, Z.; Zhao, C.; Pang, Z.; Yu, X.; Yang, T.; Li, Y.; Liu, P.; Zhang, P.; Zhang, M. Zircon U–Pb geochronological, trace element, and Hf isotopic constraints on the genesis of the Fe and Cu skarn deposits in the Qiman Tagh area, Qinghai Province, Eastern Kunlun Orogen, China. Ore Geol. Rev. 2017, 91, 387–403. [Google Scholar] [CrossRef]
- Zhong, S.; Feng, C.; Seltmann, R.; Dolgopolova, A.; Andersen, J.C.Ø.; Li, D.; Yu, M. Sources of fluids and metals and evolution models of skarn deposits in the Qimantagh metallogenic belt: A case study from the Weibao deposit, East Kunlun Mountains, northern Tibetan Plateau. Ore Geol. Rev. 2018, 93, 19–37. [Google Scholar] [CrossRef]
- Huang, K.; Wu, L.; Zhang, J.; Zhang, Y.; Xiao, A.; Lin, X.; Wang, L.; Chen, H. Structural coupling between the Qiman Tagh and the Qaidam Basin, northern Tibetan Plateau: A perspective from the Yingxiong Range by integrating field mapping, seismic imaging, and analogue modeling. Tectonics 2020, 39, e2020TC006287. [Google Scholar] [CrossRef]
- Dong, Y.; Sun, S.; Santosh, M.; Hui, B.; Sun, J.; Zhang, F.; Cheng, B.; Yang, Z.; Shi, X.; He, D.; et al. Cross Orogenic Belts in Central China: Implications for the tectonic and paleogeographic evolution of the East Asian continental collage. Gondwana Res. 2022, 109, 18–88. [Google Scholar] [CrossRef]
- Dong, Y.; He, D.; Sun, S.; Liu, X.; Zhou, X.; Zhang, F.; Yang, Z.; Cheng, B.; Zhao, G.; Li, J.; et al. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System. Earth Sci. Rev. 2018, 186, 231–261. [Google Scholar] [CrossRef]
- Liang, H.; Gao, R.; Xue, S. Lithospheric electrical structure and its implications for the evolution of the middle Qinling Orogenic Belt, Central China: Constraints from 3-D magnetotelluric imaging. Tectonophysics 2022, 832, 229359. [Google Scholar] [CrossRef]
- Wen, T.; Dong, J.; Wang, C.; Song, S. Two ophiolite belts in the East Kunlun Orogenic Belt record evolution from the Proto-Tethys to Paleo-Tethys Oceans. Int. Geol. Rev. 2022, 1–20. [Google Scholar] [CrossRef]
- Lai, J.Q.; Huang, M.; Wang, W.J.; Song, W.B.; Lei, Y.B.; Kong, D.B. Study of Mineralization of Typical Polymetallic Deposits of Qimantagh Metallogenic Belt in Qinghai Province; Press of Central South University: Changsha, China, 2015; pp. 1–30. [Google Scholar]
- Yi, L.W.; Gu, X.P.; Lu, A.H.; Liu, J.P.; Lei, H.; Wang, Z.L.; Cui, Y.; Shen, C. Major and trace elements of magnetite from the Qimantag metallogenic belt: Insights into evolution of ore–forming fluids. Acta Geol. Sin. Engl. Ed. 2015, 89, 1226–1243. [Google Scholar]
- Zheng, Z.; Chen, Y.J.; Deng, X.H.; Yue, S.W.; Chen, H.J.; Wang, Q.F. Fluid evolution of the Qiman Tagh W-Sn ore belt, East Kunlun Orogen, NW China. Ore Geol. Rev. 2018, 95, 280–291. [Google Scholar] [CrossRef]
- Deng, X.H.; Chen, Y.J.; Bagas, L.; Zhou, H.Y.; Zheng, Z.; Yue, S.W.; Chen, H.J.; Li, H.M.; Tu, J.R.; Cui, Y.R. Cassiterite U-Pb geochronology of the Kekekaerde W-Sn deposit in the Baiganhu ore field, East Kunlun Orogen, NW China: Timing and tectonic setting of mineralization. Ore Geol. Rev. 2018, 100, 534–544. [Google Scholar] [CrossRef]
- Li, M.; Fang, X.; Wang, J.; Song, Y.; Yang, Y.; Zhang, W.; Liu, X. Evaporite minerals of the lower 538.5 m sediments in a long core from the Western Qaidam Basin, Tibet. Quat. Int. 2013, 298, 123–133. [Google Scholar] [CrossRef]
- Cheng, F.; Jolivet, M.; Guo, Z.; Wang, L.; Zhang, C.; Li, X. Cenozoic evolution of the Qaidam basin and implications for the growth of the northern Tibetan plateau: A review. Earth Sci. Rev. 2021, 220, 103730. [Google Scholar] [CrossRef]
- Zhong, S.; Li, S.; Feng, C.; Liu, Y.; Santosh, M.; He, S.; Qu, H.; Liu, G.; Seltmann, R.; Lai, Z.; et al. Porphyry copper and skarn fertility of the northern Qinghai-Tibet Plateau collisional granitoids. Earth Sci. Rev. 2021, 214, 103524. [Google Scholar] [CrossRef]
- Wang, B.Z. The Study and Investigation on the Assembly and Coupling Petrotectonic Assemblage During Paleozoic-Mesozoic Period at Qimantage Geological Corridor Domain. Ph.D. Thesis, China University of Geology, Beijing, China, 2011. (In Chinese with English abstract). [Google Scholar]
- Xiao, Q.; Yu, G.; Shao, G.; Li, M.; Wang, J. Lateral rheology differences in the lithosphere and dynamics as revealed by magnetotelluric imaging at the Northern Tibetan Plateau. J. Geophys. Res. Solid Earth 2018, 123, 7266–7284. [Google Scholar] [CrossRef]
- Booker, J.R. The Magnetotelluric Phase Tensor: A Critical Review. Surv. Geophys. 2013, 35, 7–40. [Google Scholar] [CrossRef]
- Jóźwiak, W.; Nowożyński, K.; Mazur, S.; Jeż, M. Deep Electrical Resistivity Structure of the European Lithosphere in Poland Derived from 3-D Inversion of Magnetotelluric Data. Surv. Geophys. 2022, 43, 1563–1586. [Google Scholar] [CrossRef]
- He, L.; Chen, L.; Dorji; He, Z.; Wang, X.; Xiao, B.; Xu, L.; Zhao, X.; Xi, X.; Chen, R.; et al. Mapping chromite deposits with audio magnetotellurics in the Luobusa ophiolite of southern Tibet. Geophysics 2018, 83, B47–B57. [Google Scholar] [CrossRef]
- Garcia, X.; Julià, J.; Nemocón, A.M.; Neukirch, M. Lithospheric thinning under the Araripe Basin (NE Brazil) from a long-period magnetotelluric survey: Constraints for tectonic inversion. Gondwana Res. 2019, 68, 174–184. [Google Scholar] [CrossRef]
- Di, Q.; Fu, C.; An, Z.G.; Xu, C.; Wang, Y.; Wang, Z. Field testing of the surface electromagnetic prospecting system. Appl. Geophys. 2017, 14, 449–458. [Google Scholar] [CrossRef]
- Di, Q.; Xue, G.; Wang, Z.; He, L.; Pei, R.; Zhang, T.; Fang, G. Lithospheric structures across the Qiman Tagh and western Qaidam Basin revealed by magnetotelluric data collected using a self-developed SEP system. Sci. China Earth Sci. 2021, 64, 1813–1820. [Google Scholar] [CrossRef]
- Bostick, F.X. A simple almost exact method of MT analysis, Workshop on electrical methods in geothermal exploration. US Geol. Surv. 1977, 359, 174–183. [Google Scholar]
- Wang, X.; He, L.; Chen, L.; Xu, L.; Li, J.; Lei, X.; Wei, D. Mapping deeply buried karst cavities using controlled-source audio magnetotellurics: A case history of a tunnel investigation in southwest China. Geophysics 2017, 82, EN1–EN11. [Google Scholar] [CrossRef]
- Torres-Verdin, C.; Bostick, F.X. Principles of spatial surface electric field filtering in magnetotellurics: Electromagnetic array profiling (EMAP). Geophysics 1992, 57, 603–622. [Google Scholar] [CrossRef]
- Rodi, W.; Mackie, R.L. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics 2001, 66, 174–187. [Google Scholar] [CrossRef]
- Calderón-Moctezuma, A.; Gomez-Treviño, E.; Yutsis, V.; Guevara-Betancourt, R.; Gómez-Ávila, M. How close can we get to the classical magnetotelluric sounding? J. Appl. Geophys. 2022, 203, 104665. [Google Scholar] [CrossRef]
- Yu, M. Metallogenic Mechanism of the Galinge Polymetallic Iron Skarn Deposit, Qiman Tagh Mountains, Qinghai Province; Springer: Singapore, 2019; pp. 235–248. [Google Scholar]
- Liu, B.; Wang, W.; Yao, B.; Wang, Z.; Chen, H. Analysis and study of characteristics of 2d electrical structure in kumukuli basin in Xinjiang. Chin. J. Eng. Geophys. 2014, 11, 1–6, (In Chinese with English abstract). [Google Scholar]
- Hou, Z.; Wang, Q.; Zhang, H.; Yu, N.; Wang, R.; Groves, D.; Zheng, Y.; Han, S.; Gao, L.; Yang, L. Lithosphere architecture characterized by crust-mantle decoupling controls the formation of orogenic gold deposits. Natl. Sci. Rev. 2022, 2022, nwac257. [Google Scholar] [CrossRef]
- Yu, N.; Wang, E.; Wang, X.; Kong, W.; Li, D.; Li, R. The Influence of the Ailaoshan-Red River Shear Zone on the Mineralization of the Beiya Deposit on the Southeastern Margin of the Tibetan Plateau Revealed by a 3-D Magnetotelluric Survey. J. Geophys. Res. Solid Earth 2022, 127, e2021JB022923. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, L.; Di, Q.; Wang, Z.; Lai, J.; Xue, G.; Guo, W. Crustal Structures of the Qimantagh Metallogenic Belt in the Northern Tibetan Plateau from Magnetotelluric Data and Their Correlation to the Distribution of Mineral Deposits. Minerals 2023, 13, 225. https://doi.org/10.3390/min13020225
He L, Di Q, Wang Z, Lai J, Xue G, Guo W. Crustal Structures of the Qimantagh Metallogenic Belt in the Northern Tibetan Plateau from Magnetotelluric Data and Their Correlation to the Distribution of Mineral Deposits. Minerals. 2023; 13(2):225. https://doi.org/10.3390/min13020225
Chicago/Turabian StyleHe, Lanfang, Qinyun Di, Zhongxing Wang, Jianqing Lai, Guoqiang Xue, and Wenbo Guo. 2023. "Crustal Structures of the Qimantagh Metallogenic Belt in the Northern Tibetan Plateau from Magnetotelluric Data and Their Correlation to the Distribution of Mineral Deposits" Minerals 13, no. 2: 225. https://doi.org/10.3390/min13020225
APA StyleHe, L., Di, Q., Wang, Z., Lai, J., Xue, G., & Guo, W. (2023). Crustal Structures of the Qimantagh Metallogenic Belt in the Northern Tibetan Plateau from Magnetotelluric Data and Their Correlation to the Distribution of Mineral Deposits. Minerals, 13(2), 225. https://doi.org/10.3390/min13020225