Molecular Dynamics Simulation of Methane Adsorption and Diffusion: A Case Study of Low-Rank Coal in Fukang Area, Southern Junggar Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Molecular Structure Construction
2.1.1. Sample Collection and Preparation
2.1.2. Proximate Analysis and Ultimate Analysis
2.1.3. FTIR Spectroscopy
2.1.4. XPS Experiment
2.1.5. 13C NMR Measurement
2.1.6. Fukang Coal Molecular Structure Construction
2.2. Adsorption Simulation Method
2.3. Molecular Dynamics Simulation
3. Results and Discussion
3.1. Ultimate Analysis and Proximate Analysis Results
3.2. Molecular Structure Construction
3.2.1. 13C NMR Spectra Analysis
3.2.2. FTIR Spectra Analysis
3.2.3. XPS Spectra Analysis
3.2.4. Construction and Validation of 2D Coal Molecular Structure
3.2.5. Construction of 3D Coal Molecular Structure
3.3. Methane Adsorption Results
3.4. Methane Diffusion Results
3.4.1. Mean Square Displacement (MSD)
3.4.2. Diffusion Coefficient
3.4.3. Total Energy
3.4.4. Activation Energy
3.4.5. Radial Distribution Function
4. Conclusions
- (1)
- The molecular structure of Fukang coal was characterized by a series of experiments including elemental analysis, FTIR, XPS and 13CNMR. The molecular formula of the constructed 2D coal is C179H155NO44. The 3D coal macromolecule structure model consists of 14 coal molecules and its molecular weight is 42294 (C2506H2170N14O616).
- (2)
- The excess adsorption of methane shows an increase followed by a decrease with increasing pressure. However, the diffusion of methane shows two phases with increasing pressure: 0.5–5.0 MPa for a sharp decrease in the diffusion coefficient and 5.0–15.0 MPa for a slow decrease in the diffusion coefficient.
- (3)
- The total diffusion energy increases with increasing pressure; however, the total diffusion energy tends to decrease with increasing temperature and pore size. The diffusion activation energy decreases with decreasing pore size.
- (4)
- The radial distribution function has been used to study the radius of action of the methane and C atoms in the coal molecule. The lower the pressure, the larger the effective radius; the higher the temperature, the more significant the diffusion and the larger the effective radius.
- (5)
- As the depth of CBM mining increases, water, carbon dioxide and nitrogen displacement methane will be further studied by molecular simulation technology, and the yield of CBM will increase dramatically.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, H.J.; Tang, D.Z.; Xu, T.; Xu, H.; Tao, S.; Zhao, J.L.; Chen, B.L.; Yin, Z.Y. Preliminary research on CBM enrichment models of low-rank coal and its geological controls: A case study in the middle of the southern Junggar Basin, NW China. Mar. Petrol. Geol. 2017, 83, 97–110. [Google Scholar] [CrossRef]
- Hou, H.H.; Shao, L.Y.; Tang, Y.; Zhao, S.; Yuan, Y.; Li, Y.N.; Mu, G.Y.; Zhou, Y.; Liang, G.D.; Zhang, J.L. Quantitative characterization of low-rank coal reservoirs in the southern Junggar Basin, NW China: Implications for pore structure evolution around the first coalification jump. Mar. Petrol. Geol. 2020, 113, 104165. [Google Scholar] [CrossRef]
- Ge, X.; Liu, D.M.; Cai, Y.D.; Wang, Y.J. Gas Content Evaluation of Coalbed Methane Reservoir in the Fukang Area of Southern Junggar Basin, Northwest China by Multiple Geophysical Logging Methods. Energies 2018, 11, 1867. [Google Scholar] [CrossRef]
- Li, X.; Fu, X.H.; Yang, X.S.; Ge, Y.Y.; Quan, F.K. Coalbed methane accumulation and dissipation patterns: A Case study of the Junggar Basin, NW China. J. Asian Earth Sci. 2018, 160, 13–26. [Google Scholar] [CrossRef]
- Fu, H.J.; Tang, D.Z.; Xu, H.; Xu, T.; Chen, B.L.; Hu, P.; Yin, Z.Y.; Wu, P.; He, G.J. Geological characteristics and CBM exploration potential evaluation: A case study in the middle of the southern Junggar Basin, NW China. J. Nat. Gas Sci. Eng. 2016, 30, 557–570. [Google Scholar] [CrossRef]
- Kang, J.Q.; Fu, X.H.; Elsworth, D.; Liang, S. Vertical heterogeneity of permeability and gas content of ultra-high-thickness coalbed methane reservoirs in the southern margin of the Junggar Basin and its influence on gas production. J. Nat. Gas Sci. Eng. 2020, 81, 103455. [Google Scholar] [CrossRef]
- Kang, J.Q.; Fu, X.H.; Gao, L.; Liang, S. Production profile characteristics of large dip angle coal reservoir and its impact on coalbed methane production: A case study on the Fukang west block, southern Junggar Basin, China. J. Petrol. Sci. Eng. 2018, 171, 99–114. [Google Scholar] [CrossRef]
- Kang, J.Q.; Fu, X.H.; Shen, J.; Liang, S.; Chen, H.; Shang, F.H. Characterization of Coal Structure of High-Thickness Coal Reservoir Using Geophysical Logging: A Case Study in Southern Junggar Basin, Xinjiang, Northwest China. Nat. Resour. Res. 2022, 31, 929–951. [Google Scholar] [CrossRef]
- Fu, H.J.; Tang, D.Z.; Xu, T.; Xu, H.; Tao, S.; Yin, Z.Y.; Chen, B.L.; Zhang, C.; Wang, L.L. Characteristics of pore structure and fractal dimension of low-rank coal: A case study of Lower Jurassic Xishanyao coal in the southern Junggar Basin, NW China. Fuel 2017, 193, 254–264. [Google Scholar] [CrossRef]
- Fu, H.J.; Yan, D.T.; Yang, S.G.; Wang, X.M.; Zhang, Z.; Sun, M.D. Characteristics of in situ stress and its influence on coalbed methane development: A case study in the eastern part of the southern Junggar Basin, NW China. Energy Sci. Eng. 2019, 8, 515–529. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, C.; Tang, D.Z.; Gan, Q.; Niu, X.L.; Wang, K.; Shen, R.Y. Coal pore size distributions controlled by the coalification process: An experimental study of coals from the Junggar, Ordos and Qinshui basins in China. Fuel 2017, 206, 352–363. [Google Scholar] [CrossRef]
- Jia, T.F.; Zhang, S.H.; Tang, S.H.; Wang, M.; Xin, D.; Zhang, Q. Characteristics and Evolution of Low-Rank Coal Pore Structure Around the First Coalification Jump: Case Study in Southeastern Junggar Basin. Nat. Resour. Res. 2022, 31, 2769–2786. [Google Scholar] [CrossRef]
- Li, G.Q.; Yan, D.T.; Zhuang, X.G.; Zhang, Z.; Fu, H.J. Implications of the pore pressure and in situ stress for the coalbed methane exploration in the southern Junggar Basin, China. Eng. Geol. 2019, 262, 105305. [Google Scholar] [CrossRef]
- Hou, H.H.; Liang, G.D.; Shao, L.Y.; Tang, Y.; Mu, G.Y. Coalbed methane enrichment model of low-rank coals in multi-coals superimposed regions: A case study in the middle section of southern Junggar Basin. Front. Earth Sci.-Prc. 2021, 15, 256–271. [Google Scholar] [CrossRef]
- Liu, C.L.; Wang, X.H.; Liu, K.; Wang, J.; Guo, H.; Sun, Z.Q. Occurrence Features of Coalbed Methane in Inclined Coal Seam of Junggar Basin, Xinjiang. Adv. Mater. Res. 2013, 868, 696–699. [Google Scholar] [CrossRef]
- Tang, S.L.; Liu, S.M.; Tang, D.Z.; Tao, S.; Zhang, A.B.; Pu, Y.F.; Zhang, T.Y. Occurrence of fluids in high dip angled coal measures: Geological and geochemical assessments for southern Junggar Basin, China. J. Nat. Gas Sci. Eng. 2021, 88, 103827. [Google Scholar] [CrossRef]
- Song, Y.; Jiang, B.; Li, F.L. Molecular dynamic simulations of selective self-diffusion of CH4/CO2/H2O/N2 in coal. IOP Conf. Ser.: Mater. Sci. Eng. 2017, 213, 12014. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.M.; Zhang, R.; Zhang, Y. The molecular model of Marcellus shale kerogen: Experimental characterization and structure reconstruction. Int. J. Coal Geol. 2021, 246, 103833. [Google Scholar] [CrossRef]
- Xiang, J.H.; Zeng, F.G.; Li, B.; Zhang, L.; Li, M.F.; Liang, H.Z. Construction of macromolecular structural model of anthracite from Chengzhuang coal mine and its molecular simulation. J. Fuel Chem. Technol. 2013, 41, 391–400. [Google Scholar] [CrossRef]
- Anderson, C.J.; Tao, W.; Jiang, J.W.; Sandler, S.I.; Stevens, G.W.; Kentish, S.E. An experimental evaluation and molecular simulation of high temperature gas adsorption on nanoporous carbon. Carbon 2011, 49, 117–125. [Google Scholar] [CrossRef]
- Billemont, P.; Coasne, B.; De Weireld, G. An Experimental and Molecular Simulation Study of the Adsorption of Carbon Dioxide and Methane in Nanoporous Carbons in the Presence of Water. Langmuir 2011, 27, 1015–1024. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.S.; Shao, C.J.; Yang, Z.Q.; Zhou, J. Molecular Dynamics Investigation on the Adsorption of Coalbed Methane Utilizing Carbon Nanotubes under the Condition of Liquid Water. Adv. Mater. Res. 2012, 616, 877–880. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Do, D.D.; Nicholson, D. A new molecular model for water adsorption on graphitized carbon black. Carbon 2014, 66, 629–636. [Google Scholar] [CrossRef]
- Meng, J.Q.; Zhong, R.Q.; Li, S.C.; Yin, F.F.; Nie, B.S. Molecular Model Construction and Study of Gas Adsorption of Zhaozhuang Coal. Energ. Fuel 2018, 32, 9727–9737. [Google Scholar] [CrossRef]
- Song, Y.; Jiang, B.; Qu, M.J. Molecular Dynamic Simulation of Self- and Transport Diffusion for CO2/CH4/N2 in Low-Rank Coal Vitrinite. Energ. Fuel 2018, 32, 3085–3096. [Google Scholar] [CrossRef]
- Sander, R.; Connell, L.D.; Camilleri, M.; Pan, Z.J. CH4, CO2, N2 diffusion in Bowen Basin (Australia) coal: Relationship between sorption kinetics of coal core and crushed coal particles. J. Nat. Gas Sci. Eng. 2020, 81, 103468. [Google Scholar] [CrossRef]
- Cui, X.; Yan, H.; Zhao, P.T.; Yang, Y.X.; Xie, Y.T. Modeling of molecular and properties of anthracite base on structural accuracy identification methods. J. Mol. Struct. 2019, 1183, 313–323. [Google Scholar] [CrossRef]
- Zheng, L.W.; Dong, S.N.; Tang, S.L.; Ji, Y.D.; Luo, J.Z.; Li, H.H.; Li, X.L.; Liu, C.Y.; Zeng, M.L. Molecular structure characterization of coal under the water–rock interaction in acid mine drainage (AMD). J. Mol. Struct. 2022, 1251, 132043. [Google Scholar] [CrossRef]
- Ping, A.; Xia, W.C.; Peng, Y.L.; Xie, G.Y. Construction of bituminous coal vitrinite and inertinite molecular assisted by 13C NMR, FTIR and XPS. J. Mol. Struct. 2020, 1222, 128959. [Google Scholar] [CrossRef]
- Qian, L.; Tao, C.; Ma, C.; Xue, J.K.; Guo, F.Q.; Jia, X.P.; Yan, W.J. Construction of a Macromolecular Structure Model for Zhundong Subbituminous Coal. J. Mol. Struct. 2022, 1248, 131496. [Google Scholar] [CrossRef]
- Zha, W.; Lin, B.Q.; Liu, T. Construction of Pingdingshan coal molecular model based on FT-IR and 13C-NMR. J. Mol. Struct. 2022, 1262, 132992. [Google Scholar] [CrossRef]
- Yin, T.T.; Liu, D.M.; Cai, Y.D.; Liu, Z.H.; Gutierrez, M. A new constructed macromolecule-pore structure of anthracite and its related gas adsorption: A molecular simulation study. Int. J. Coal. Geol. 2020, 220, 103415. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Kang, Q.N.; Wei, S.; Yun, T.; Yan, G.C.; Yan, K.F. Large Scale Molecular Model Construction of Xishan Bituminous Coal. Energ. Fuel 2017, 31, 1310–1317. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, X.Q. Monte Carlo and molecular dynamics simulations of CH4 molecules adsorption behavior in bituminous coal. Int. J. Low-Carbon Tec. 2022, 17, 879–887. [Google Scholar] [CrossRef]
- Hu, H.X.; Li, X.C.; Fang, Z.M.; Wei, N.; Li, Q.S. Small-molecule gas sorption and diffusion in coal: Molecular simulation. Energy 2010, 35, 2939–2944. [Google Scholar] [CrossRef]
- Jian, X.; Guan, P.; Zhang, W. Carbon dioxide sorption and diffusion in coals: Experimental investigation and modeling. Sci. China Earth Sci. 2012, 55, 633–643. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.K.; Wang, Y. Molecular Dynamics Simulation of Diffusion Behavior of CH4, CO2, and N2 in Mid-Rank Coal Vitrinite. Energies 2019, 12, 3744. [Google Scholar] [CrossRef]
- Long, H.; Lin, H.F.; Yan, M.; Bai, Y.; Tong, X.; Kong, X.G.; Li, S.G. Adsorption and diffusion characteristics of CH4, CO2, and N2 in micropores and mesopores of bituminous coal: Molecular dynamics. Fuel 2021, 292, 120268. [Google Scholar] [CrossRef]
- Han, J.X.; Bogomolov, A.K.; Makarova, E.Y.; Yang, Z.Z.; Lu, Y.J.; Li, X.G. Molecular Simulations on Adsorption and Diffusion of CO2 and CH4 in Moisture Coals. Energ. Fuel 2017, 31, 13528–13535. [Google Scholar] [CrossRef]
- Song, G.H.; Lee, H.S.; Shin, H. Three-Dimensional Modelling of Desorbed Gas Volume and Comparison to Gas Production Rate in the Montney Plays, Western Canadian Sedimentary Basin. Geofluids 2021, 2021, 1–15. [Google Scholar] [CrossRef]
- Hao, M.; Wei, C.M.; Qiao, Z. Effect of internal moisture on CH4 adsorption and diffusion of coal: A molecular simulation study. Chem. Phys. Lett. 2021, 783, 139086. [Google Scholar] [CrossRef]
- Hao, M.; Wei, C.M.; Zhang, H. Adsorption and Diffusion of Methane in Coal Slit Pores: Insights into the Molecular Level. Energ. Fuel 2022, 36, 880–886. [Google Scholar] [CrossRef]
- Li, X.C.; Li, Z.B.; Ren, T.; Nie, B.S.; Xie, L.; Huang, T.; Bai, S.; Jiang, Y. Effects of particle size and adsorption pressure on methane gas desorption and diffusion in coal. Arab. J. Geosci. 2019, 12, 25634–25646. [Google Scholar] [CrossRef]
- Li, Z.T.; Liu, D.M.; Cai, Y.D.; Shi, Y.L. Investigation of methane diffusion in low-rank coals by a multiporous diffusion model. J. Nat. Gas Sci. Eng. 2016, 33, 97–107. [Google Scholar] [CrossRef]
- Liu, X.Q.; He, X.; Qiu, N.X.; Yang, X.; Tian, Z.Y.; Li, M.J.; Xue, Y. Molecular simulation of CH4, CO2, H2O and N2 molecules adsorption on heterogeneous surface models of coal. Appl. Surf. Sci. 2016, 389, 894–905. [Google Scholar] [CrossRef]
- Meng, J.Q.; Niu, J.X.; Meng, H.X.; Xia, J.K.; Zhong, R.Q. Insight on adsorption mechanism of coal molecules at different ranks. Fuel 2020, 267, 117234. [Google Scholar] [CrossRef]
- Ma, Q.X.; Nie, W.; Yang, S.B.; Xu, C.W.; Peng, H.T.; Liu, Z.Q.; Guo, C.; Cai, X.J. Effect of spraying on coal dust diffusion in a coal mine based on a numerical simulation. Environ. Pollut. 2020, 264, 114717. [Google Scholar] [CrossRef]
- Li, Y.X.; Hu, Z.M.; Duan, X.G.; Wang, X.Y.; Shi, J.L.; Zhan, H.M. The general form of transport diffusivity of shale gas in organic-rich nano-slits—A molecular simulation study using Darken approximation. Fuel 2019, 249, 457–471. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Feng, Y.L.; Zhang, X.X. Molecular simulation of CO2 /CH4 self- and transport diffusion coefficients in coal. Fuel 2016, 165, 19–27. [Google Scholar] [CrossRef]
- Wang, L.; Chen, X.J.; Song, Y.; Qi, L.L. Experimental Investigation on Diffusion Coefficients of CH4 in Coal under High-Temperature and -Pressure Conditions. ACS Omega 2020, 5, 25634–25646. [Google Scholar] [CrossRef]
- Li, G.; Meng, Z. A preliminary investigation of CH4 diffusion through gas shale in the Paleozoic Longmaxi Formation, Southern Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2016, 36, 1220–1227. [Google Scholar] [CrossRef]
- Zhang, J.F.; Clennell, M.B.; Dewhurst, D.N.; Liu, K.Y. Combined Monte Carlo and molecular dynamics simulation of methane adsorption on dry and moist coal. Fuel 2014, 122, 186–197. [Google Scholar] [CrossRef]
- Jing, D.J.; Meng, X.X.; Ge, S.C.; Zhang, T.; Ma, M.X.; Wang, G. Structural Model Construction and Optimal Characterization of High-Volatile Bituminous Coal Molecules. ACS Omega 2022, 7, 18350–18360. [Google Scholar] [CrossRef] [PubMed]
- Bian, J.J.; Li, X.; Zeng, F.G.; Wang, X.L. Construction and Evaluation of a Medium-Rank Coal Molecular Model Using a Hybrid Experimental–Simulation–Theoretical Method. Energ. Fuel. 2019, 33, 12905–12915. [Google Scholar] [CrossRef]
- Jing, Z.H.; Rodrigues, S.; Strounina, E.; Li, M.R.; Wood, B.; Underschultz, J.R.; Esterle, J.S.; Steel, K.M. Use of FTIR, XPS, NMR to characterize oxidative effects of NaClO on coal molecular structures. Int. J. Coal Geol. 2019, 201, 1–13. [Google Scholar] [CrossRef]
- Xia, W.; Zhang, W. Characterization of surface properties of Inner Mongolia coal using FTIR and XPS. Energy Sources Part A: Recovery Util. Environ. Eff. 2017, 39, 1190–1194. [Google Scholar] [CrossRef]
- Kawashima, H.; Takanohashi, T. Modification of Model Structures of Upper Freeport Coal Extracts Using 13C NMR Chemical Shift Calculations. Energ. Fuel 2001, 15, 591–598. [Google Scholar] [CrossRef]
- Okolo, G.N.; Neomagus, H.W.J.P.; Everson, R.C.; Roberts, M.; Bunt, J.R.; Sakurovs, R.; Mathews, J.P. Chemical–structural properties of South African bituminous coals: Insights from wide angle XRD–carbon fraction analysis, ATR–FTIR, solid state 13C NMR, and HRTEM techniques. Fuel 2015, 158, 779–792. [Google Scholar] [CrossRef]
- Sonibare, O.O.; Haeger, T.; Foley, S.F. Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy. Energy 2010, 35, 5347–5353. [Google Scholar] [CrossRef]
- Shen, Z.; Meng, Z.P. Enhancing the Efficiency of Coal Bed Methane Recovery by Injecting Carbon Dioxide Based on an Anthracite Coal Macromolecular Model and Simulation Methods. Energ. Fuel 2022, 36, 6329–6342. [Google Scholar] [CrossRef]
- Ju, Y.W.; Jiang, B.; Hou, Q.L.; Wang, G.L.; Ni, S.Q. 13C NMR spectra of tectonic coals and the effects of stress on structural components. Sci. China Ser. D Earth Sci. 2005, 48, 1418–1437. [Google Scholar] [CrossRef]
- Wei, Q.; Tang, Y.G. 13C-NMR Study on Structure Evolution Characteristics of High-Organic-Sulfur Coals from Typical Chinese Areas. Minerals 2018, 8, 49. [Google Scholar] [CrossRef]
- Yan, J.C.; Lei, Z.P.; Li, Z.K.; Wang, Z.C.; Ren, S.B.; Kang, S.G.; Wang, X.L.; Shui, H.F. Molecular structure characterization of low-medium rank coals via XRD, solid state 13C NMR and FTIR spectroscopy. Fuel 2020, 268, 117038. [Google Scholar] [CrossRef]
- Ding, D.S.; Liu, G.J.; Fu, B. Influence of carbon type on carbon isotopic composition of coal from the perspective of solid-state 13C NMR. Fuel 2019, 245, 174–180. [Google Scholar] [CrossRef]
- Li, S.K.; Zhu, Y.M.; Wang, Y.; Liu, J. The Chemical and Alignment Structural Properties of Coal: Insights from Raman, Solid-State (13)C NMR, XRD, and HRTEM Techniques. ACS Omega 2021, 6, 11266–11279. [Google Scholar] [CrossRef]
- Baysal, M.; Yürüm, A.; Yıldız, B.; Yürüm, Y. Structure of some western Anatolia coals investigated by FTIR, Raman, 13C solid state NMR spectroscopy and X-ray diffraction. Int. J. Coal Geol. 2016, 163, 166–176. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, H.; Hu, G.Q.; Zhang, W.Y. Fine Characterization of the Macromolecular Structure of Huainan Coal Using XRD, FTIR, 13C-CP/MAS NMR, SEM, and AFM Techniques. Molecules 2020, 25, 2661. [Google Scholar] [CrossRef]
Sample | Proximate Analysis (wt%) | Ultimate Analysis (daf, wt%) | Atomic Ratio | Ro (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mad | Aad | Vad | FCad | C | H | O | N | S | H/C | O/C | ||
FK–1 | 3.06 | 15.24 | 29.72 | 51.98 | 78.89 | 4.71 | 15.38 | 0.82 | 0.20 | 0.72 | 0.15 | 0.79 |
FK–2 | 1.12 | 15.25 | 34.15 | 49.48 | 83.72 | 5.32 | 8.83 | 1.86 | 0.27 | 0.76 | 0.08 | 0.83 |
FK–3 | 1.82 | 18.63 | 32.55 | 47.00 | 80.46 | 5.51 | 12.32 | 1.71 | 0 | 0.82 | 0.11 | 0.81 |
FK–4 | 1.15 | 10.11 | 35.64 | 53.10 | 76.14 | 4.59 | 17.95 | 1.32 | 0 | 0.72 | 0.18 | 0.76 |
FK–5 | 0.99 | 19.59 | 36.09 | 43.33 | 84.11 | 5.19 | 8.82 | 1.53 | 0.35 | 0.74 | 0.08 | 0.90 |
Average | 1.63 | 15.76 | 33.63 | 48.98 | 80.66 | 5.06 | 12.66 | 1.45 | 0.16 | 0.75 | 0.12 | 0.82 |
Name | Peak BE | FWHM eV | Area (P) CPS. eV | Atomic Fraction % |
---|---|---|---|---|
C 1s | 285.06 | 2.75 | 623,376.77 | 79.40 |
O 1s | 532.99 | 3.28 | 347,508.17 | 15.25 |
N 1s | 400.14 | 5.54 | 24,505.92 | 1.67 |
Zr 3d | 179.18 | 1.62 | 1213.02 | 0.01 |
Si 2p | 103.25 | 3.16 | 21,673.02 | 2.29 |
Al 2p | 75.28 | 3.11 | 8251.23 | 1.38 |
Position (eV) | Area | FWHM (eV) | Percentage | Assignment [18] |
---|---|---|---|---|
284.80 | 79,131.47 | 1.53 | 79.90% | C–C, C=C, C–H |
286.36 | 13,268.87 | 1.78 | 13.40% | C–O, C=O |
289.62 | 6633.19 | 3.50 | 6.70% | O=C–O |
Position (eV) | Area | FWHM (eV) | Percentage | Assignment [18] |
---|---|---|---|---|
532 | 17,927.60 | 1.87 | 32.97% | C=O |
533.03 | 24,232.86 | 1.84 | 44.57% | –OH |
534.08 | 12,212.12 | 1.74 | 22.46% | –O–C=O |
Position (eV) | Area | FWHM (eV) | Percentage | Assignment [18] |
---|---|---|---|---|
399.05 | 974.51 | 2.20 | 34.41% | pyridine nitrogen |
400.65 | 1018.45 | 1.46 | 35.96% | pyrrole nitrogen |
402.57 | 839.14 | 2.16 | 29.63% | quaternary nitrogen, nitrogen oxides |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, J.; Li, X.; Gao, W.; Liu, Y.; Li, J.; Yang, J.; Gong, Y. Molecular Dynamics Simulation of Methane Adsorption and Diffusion: A Case Study of Low-Rank Coal in Fukang Area, Southern Junggar Basin. Minerals 2023, 13, 229. https://doi.org/10.3390/min13020229
Xiang J, Li X, Gao W, Liu Y, Li J, Yang J, Gong Y. Molecular Dynamics Simulation of Methane Adsorption and Diffusion: A Case Study of Low-Rank Coal in Fukang Area, Southern Junggar Basin. Minerals. 2023; 13(2):229. https://doi.org/10.3390/min13020229
Chicago/Turabian StyleXiang, Jie, Xianqing Li, Weiyu Gao, Yu Liu, Jiandong Li, Jingwei Yang, and Yixiao Gong. 2023. "Molecular Dynamics Simulation of Methane Adsorption and Diffusion: A Case Study of Low-Rank Coal in Fukang Area, Southern Junggar Basin" Minerals 13, no. 2: 229. https://doi.org/10.3390/min13020229
APA StyleXiang, J., Li, X., Gao, W., Liu, Y., Li, J., Yang, J., & Gong, Y. (2023). Molecular Dynamics Simulation of Methane Adsorption and Diffusion: A Case Study of Low-Rank Coal in Fukang Area, Southern Junggar Basin. Minerals, 13(2), 229. https://doi.org/10.3390/min13020229