The Origin of the Caiyuanzi Pb–Zn Deposit in SE Yunnan Province, China: Constraints from In Situ S and Pb Isotopes
Abstract
:1. Introduction
2. Geological Setting
2.1. Regional Geology
2.2. Ore Deposit Geology
2.2.1. Strata
2.2.2. Tectonic
2.2.3. Ore Body
2.2.4. Texture and Structure
2.2.5. Altered Wall Rocks
3. Sampling and Analytical Methods
3.1. Samples
3.2. Analysis Methods
4. Results
4.1. In Situ S Isotopic Compositions
4.2. In Situ Pb Isotopic Ratios
5. Discussion
5.1. Source and Formation Mechanism of Reduced Sulfur
5.2. Source of Metals
5.3. Ore Genesis
6. Conclusions
- (1)
- The sulfur and lead of ore minerals come from the upper crust and mantle.
- (2)
- The Caiyuanzi Pb–Zn deposit is a hydrothermal deposit formed by the superimposed magma of sedimentary exhalative.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, Q.S. Geological characteristics and Ore-hunting Significance of the Hongshiyan Jets sedimentary Type lead-zinc-copper deposits in Xichou County, Yunnan Province. Fujian Geol. 2013, 32, 185–192. [Google Scholar]
- Li, Z.Q.; Huan, J.G.; Han, R.S.; Ren, T.; Wang, L.; Qiu, W.L. Geochemical Characteristics and Tectonic Setting of Epidote Rocks from in the Hongshiyan Pb-Zn-Cu Polymetallic Ore Deposit, Southeastern Yunnan Province. Geol. Explor. 2013, 49, 289–299. [Google Scholar]
- Yang, C.B.; Pu, C.; Shi, G.F.; Wang, Y.Z.; Yang, F.X.; Zheng, T.P.; Zhang, X.H. The feature and prospecting criteria of Gaji Pb-Zn Deposit in Xichou, Yunnan. Yunnan Geol. 2020, 39, 1–7. [Google Scholar]
- Yang, C.B.; Pu, C.; Wang, Y.Z.; Shi, G.F.; Yang, F.X.; Zheng, T.P.; Zhang, X.H. Mineralization characteristics of the Gaji Cu-Pb-Zn polymetallic deposit, Xichou County, Yunnan Province, China. Acta Mineral. Sin. 2020, 40, 255–266. [Google Scholar]
- Ma, Y.H.; Wang, J.S.; Yu, W.X.; Yang, C.B.; Zheng, X.J.; Han, H.H.; He, H. Zircon U-Pb geochronology and Hf isotopic characteristics of metamorphic rocks in the Gaji polymetallic metallogenic area in the southeastern Yunnan and their geological implications. Acta Mineral. Sin. 2021, 41, 129–140. [Google Scholar]
- Cai, J.J.; Wang, J.D.; Li, L.X.; Yang, Z. The feature and genesis of Caiyuanzi Pb-Zn-Cu Deposit in Xichou, Yunnan. Yunnan Geol. 2021, 40, 193–198. [Google Scholar]
- Roger, F.; Leloup, P.H.; Jolivet, M.; Lacassin, R.; Trinh, P.T.; Brunel, M.; Seward, D. Long and complex thermal history of the Song Chay metamorphic dome (Northern Vietnam) by multi-system geochronology. Tectonophysics 2000, 321, 449–466. [Google Scholar] [CrossRef]
- Maluskia, H.; Lepvrier, C.; Jolivet, L.; Carter, A.; Roques, D.; Beyssac, O.; Trong, T.T.; Duc, T.N.; Avigad, D. Ar-Ar and fission-track ages in the Song Chay Massif: Early Triassic and Cenozoic tectonics in northern Vietnam. J. Asian Earth Sci. 2001, 19, 233–248. [Google Scholar] [CrossRef]
- Yang, J.H.; Cawood, P.A.; Du, Y.S.; Huang, H.; Hu, L.S. Detrital record of Indosinian mountain building in SW China: Provenance of the Middle Triassic turbidites in the Youjiang Basin. Tectonophysics 2012, 574–575, 105–117. [Google Scholar] [CrossRef]
- Niu, H.B. The Ore-Forming Fluid and Metallogenesis of W-Sn Polymetallic Deposits in the Nanwenhe-Song Chay Dome Areas, Southestern Yunnan Province; Guangzhou Institute of Geochemistry, Chinese Academy of Sciences: Guangzhou, China, 2021. [Google Scholar]
- Mei, M.X.; Li, Z.Y. Sequence Stratigraphic Succession and Sedimentary Basin Evolution from Late Paleozoic to Triassic in Yunnan-Guizhou-Guangxi Region. Geoscience 2004, 18, 555–563. [Google Scholar]
- Zhang, S.T.; Feng, M.G.; Lv, W. Analysis of the Nanwenhe Metamorphic Core Complex in Southeast Yunnan. Reginoal Geol. China 1998, 17, 390–397. [Google Scholar]
- Liu, Y.P.; Li, Z.X.; Li, H.M.; Guo, L.G.; Xu, W.; Ye, L.; Li, C.Y.; Pi, D.H. U-Pb geochronology of cassiterite and zircon from the Dulong Sn-Zn deposit: Evidence for Cretaceous large-scale granitic magmatism and mineralization events in southeastern Yunnan province, China. Acta Petrol. Sin. 2007, 23, 967–976. [Google Scholar]
- Xu, B.; Jiang, S.Y.; Wang, R. Late Cretaceous granites from the giant Dulong Sn-polymetallic ore district in Yunnan Province, South China: Geochronology, geochemistry, mineral chemistry and Nd-Hf isotopic compositions. Lithos 2015, 218–219, 54–72. [Google Scholar] [CrossRef]
- Carter, A.; Roques, D.; Bristow, C.; Kinny, P. Understanding Mesozoic accretion in Southeast Asia: Significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam. Geology 2001, 29, 211–214. [Google Scholar] [CrossRef]
- Guo, L.G.; Liu, Y.P.; Li, C.Y.; Xu, W.; Ye, L. SHRIMPzircon U-Pb geochronology and lithogeochemistry of Caledonian Granites from the Laojunshanarea, south eastern Yunnan province, China: Implications for the collision between the Yangtze and Cathaysia blocks. Geochem. J. 2009, 43, 101–122. [Google Scholar] [CrossRef]
- Feng, J.R.; Mao, J.W.; Pei, R.F.; Zhou, Z.H.; Yang, Z.X. SHRMP zircon U-Pb dating and geochemical characteristics of Laojunshan granite intrusion from the Wazha tungsten deposit, Yunnan Province and their implications for petrogenesis. Acta Petrol. Sin. 2010, 26, 845–857. [Google Scholar]
- Zhang, B.H.; Ding, J.; Ren, G.M.; Zhang, L.K.; Shi, H.Z. Geochronology and Geochemical Characteristics of the Laojunshan Granites in Maguan County, Yunnan Province, and Its Geological Implications. Acta Geol. Sin. 2012, 86, 587–601. [Google Scholar]
- Feng, J.R.; Mao, J.W.; Pei, R.F. Ages and geochemistry of Laojunshan granites in southeastern Yunnan, China: Implications for W-Sn polymetallic ore deposits. Mineral. Petrol. 2013, 107, 573–589. [Google Scholar] [CrossRef]
- Liu, Y.B.; Mo, X.X.; Zhang, D.; Que, C.Y.; Di, Y.J.; Pu, X.M.; Cheng, G.S.; Ma, H.H. Petrogenesis of the Late Cretaceous granite discovered in the Laojunshan region, southeastern Yunnan Province. Acta Petrol. Sin. 2014, 30, 3271–3286. [Google Scholar]
- Lan, J.B.; Liu, Y.P.; Ye, L.; Zhang, Q.; Wang, D.P.; Su, H. Geochemistry and age spectrum of Late Yanshanian granites from Laojunshan Area, Southeastern Yunnan Province, China. Acta Mineral. Sin. 2016, 36, 477–491. [Google Scholar]
- The Second Geological Brigade of Yunnan Provincial Bureau of Geological and Mineral Exploration and Development. Regional Geological Survey Report of 1/50000 Xingjie Street; The Second Geological Brigade of Yunnan Provincial Bureau of Geological and Mineral Exploration and Development: Wenshan, China, 1995. [Google Scholar]
- Hunan Tiangong Mining Technology Co., Ltd. Detailed Geological Survey Report of Ganshapo Lead Zinc (Copper) Mine in Xichou County, Yunnan Province; Hunan Tiangong Mining Technology Co., Ltd.: Changsha, China, 2014. [Google Scholar]
- Cheng, Y.S.; Sun, W.M. Sulfur and lead isotope geochemistry of the Dulong Sn-Zn polymetallic ore deposit, Yunnan province, China. Nonferrous Met. 2019, 71, 32–36, 65. [Google Scholar]
- Guo, Y.W.; Zhang, Q.S.; Zhu, P.B.; Lu, D.; Wang, N.; Ai, J.B. Study on sulphur and lead isotope composition characteristics and ore material source of Wanlongshan Sn-Zn polymetallic ore deposit in Yunnan province. Contrib. Geol. Min. Res. 2018, 33, 564–572. [Google Scholar]
- He, F.; Zhang, Q.; Wang, D.P.; Liu, Y.P.; Ye, L.; Bao, T.; Wang, X.J.; Miao, Y.L.; Zhang, S.K.; Su, H.; et al. Ore-Forming Materials Sources of the Dulong Sn-Zn Polymetallic Deposit, Yunnan, Evidences from S-C-O Stable Isotopes. Bull. Min. Petrol. Geochem. 2014, 33, 900–907. [Google Scholar]
- Ohmoto, H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ. Geol. 1972, 67, 551–578. [Google Scholar] [CrossRef]
- Ohmoto, H. Stable isotope geochemistry of ore deposit. Rev. Mineral. 1986, 16, 491–559. [Google Scholar]
- Zhou, J.X.; Wang, X.C.; Wilds, S.A.; Luo, K.; Huang, Z.L.; Wu, T.; Jin, Z.G. New Insights into the Metallogeny of MVT Zn-Pb Deposits: A Case Study from the Nayongzhi in South China, Using Field Data, Fluid Compositions, and In-Situ S-Pb Isotopes. Am. Mineral. 2018, 103, 91–108. [Google Scholar] [CrossRef]
- Machel, H.G.; Krouse, H.R.; Sassen, R. Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Appl. Geochem. 1995, 10, 373–389. [Google Scholar] [CrossRef]
- Tan, S.C.; Zhou, J.X.; Zhou, M.F.; Ye, L. In-situ S and Pb isotope constraints in an evolving hydrothermal system, Tianbaoshan Pb-Zn-(Cu) deposit in South China. Ore Geol. Rev. 2019, 115, 103177. [Google Scholar] [CrossRef]
- Seal, R.R. Sulfur isotope geochemistry of sulfide minerals. Rev. Mineral. Geochem. 2006, 61, 633–677. [Google Scholar] [CrossRef]
- Tan, S.C.; Zhou, J.X.; Luo, K.; Xiang, Z.Z.; He, X.H.; Zhang, Y.H. The sources of ore-forming elements of the Maoping large-scale Pb-Zn deposit, Yunnan Province: Constrains from in-situ S and Pb isotopes. Acta Petrol. Sin. 2019, 35, 3461–3476. [Google Scholar]
- Basuki, N.; Taylor, B.E.; Spooner, E.T.C. Sulfur isotope evidence for thermochemical reduction of dissolved sulfate in Mississippi Valley-type zinc-lead mineralization, Bongara area, northern Peru. Econ. Geol. 2008, 103, 783–799. [Google Scholar] [CrossRef]
- Zhou, J.X.; Xiang, Z.Z.; Zhou, M.F.; Feng, Y.X.; Luo, K.; Huang, Z.L.; Wu, T. The giant upper Yangtze Pb-Zn province in SW China: Reviews, new advances and a new genetic model. J. Asian Earth Sci. 2018, 154, 280–315. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Chen, J.F. Stable Isotope Geochemistry; Science Press: Beijing, China, 2000. [Google Scholar]
- Shanks, W.C. Stable isotopes in seafloor hydrothermal systems: Vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes. Rev. Min. Geochem. 2001, 43, 469–525. [Google Scholar] [CrossRef]
- Doe, B.R.; Zartman, R.E. Geochemistry of Hydrothermal Ore Deposits; John Wiley & Sons: New York, NY, USA, 1979. [Google Scholar]
- Huang, Z.L.; Chen, J.; Han, R.S.; Li, W.B.; Liu, C.Q.; Zhang, Z.L.; Ma, D.Y.; Gao, D.R.; Yang, H.L. Geochemistry and Genesis of the Huize Super-Large Lead-Zinc Deposit in Yunnan Province—A Discussion on the Relationship between the Emeishan Basalt and Lead-Zinc Mineralization; Geological Publishing House: Beijing, China, 2004. [Google Scholar]
- Ren, S.L.; Li, Y.H.; Zeng, P.S.; Qiu, W.L.; Fan, C.F.; Hu, G.Y. Effect of Sulfate Evaporate Salt Layer in Mineralization of the Huize and Maoping Lead-Zinc Deposits in Yunnan: Evidence from Sulfur Isotope. Acta Geol. Sin. 2018, 92, 1041–1055. [Google Scholar]
- Zhou, J.X.; Huang, Z.L.; Zhou, M.F.; Zhu, X.K.; Muchez, P. Zinc, sulfur and lead isotopic variations in carbonate-hosted Pb-Zn sulfide deposits, Southwest China. Ore Geol. Rev. 2014, 58, 41–54. [Google Scholar] [CrossRef]
- Liu, Y.P.; Li, C.Y.; Gu, T.; Wang, J.L. Isotopic constraints on the source of ore-forming materials of Dulong Sn-Zn polymetallic deposit, Yunnan. Geol. Geochem. 2000, 28, 75–81. [Google Scholar]
- He, F.; Zhang, Q.; Liu, Y.P.; Ye, L.; Miao, Y.L.; Wang, D.P.; Su, H.; Bao, T.; Wang, X.J. Lead Isotope Compositions of Dulong Sn-Zn Polymetallic Deposit, Yunnan, China: Constraints on Ore-forming Metal Sources. Acta Mineral. Sin. 2015, 35, 309–317. [Google Scholar]
- Yang, Y.L.; Ye, L.; Cheng, Z.T.; Bao, T.; Gao, W. A tentative discussion on the genesis of skarn Pb-Zn deposits in the Baoshan-Zhenkang terrane. Acta Petrol. Mineral. 2012, 31, 554–564. [Google Scholar]
- Bergantz, G.W. Underplating and partial melting: Implications for melt generation and extraction. Science 1989, 245, 1093–1095. [Google Scholar] [CrossRef]
- Mao, J.W.; Wang, Y.T.; Li, H.M.; Piraino, F.; Zhang, C.Q.; Wang, R.T. The relationship of mantle-derived fluids to gold metallogenesis in the Jiaodong Peninsula: Evidence from D-O-C-S isotope systematics. Ore Geol. Rev. 2008, 33, 361–381. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Huang, J.N.; Lu, Y.X.; Xia, Q.L.; Sun, M.X.; Li, J.R. Geochemistry of Elements, Sulphur-Lead Isotopes and Fluid Inclusions from Jinla Pb-Zn-Ag Poly-Metallic Ore Field at the Joint Area across China and Myanmar Border. J. Earth Sci. 2009, 34, 585–594. [Google Scholar]
- Cheng, Y.B.; Mao, J.W.; Chen, X.L.; Li, W. LA-ICP-MS Zircon U-Pb Dating of the Bozhushan Granite in Southeastern Yunnan Province and Its Significance. J. Jilin Univ. 2010, 40, 869–878. [Google Scholar]
- Carr, G.R.; Dean, J.A.; Suppel, D.W.; Heithersay, P.S. Precise lead isotope fingerprinting of hydrothermal activity associated with Ordovician to Carboniferous metallogenic events in the Lachlan fold belt of New South Wales. Econ. Geol. 1995, 90, 1467–1505. [Google Scholar] [CrossRef]
- Zhou, J.X.; Yang, Z.M.; An, Y.L.; Luo, K.; Liu, C.; Ju, Y. An evolving MVT hydrothermal system: Insights from the Niujiaotang Cd-Zn ore field, SW China. J. Asian Earth Sci. 2022, 237, 105357. [Google Scholar] [CrossRef]
- Cheng, Y.B.; Mao, J.W. Study on Diagenesis and Mineralization in Gejiu Super Large Tin Polymetallic Ore Concentration Area, Yunnan; Geological Publishing House: Beijing, China, 2014. [Google Scholar]
- Chaussidon, M.; Albarède, F.; Sheppard, S.M.F. Sulphur isotope variations in the mantle from ion microprobe analyses of micro-sulphide inclusions. Earth Planet. Sci. Lett. 1989, 92, 144–156. [Google Scholar] [CrossRef]
- Ohmoto, H.; Goldhaber, M.B. Sulfur and Carbon Isotopes, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1997. [Google Scholar]
- Claypool, G.E.; Holser, W.T.; Kaplan, I.R.; Sakai, H.; Zak, I. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem. Geol. 1980, 28, 199–260. [Google Scholar] [CrossRef]
- Zhu, B.Q. Theories and Application of Isotopic System in Geoscience: Crustal and Mantle Evolution in China Continent; Science Press: Beijing, China, 1998; pp. 1–330, (In Chinese with English Abstract). [Google Scholar]
- Leach, D.L.; Sangster, D.F.; Kelley, K.D.; Large, R.R.; Garven, G.; Allen, C.R. Sediment-hosted Pb-Zn Deposits: A global perspective. Econ. Geol. 2005, 100, 561–608. [Google Scholar]
- Leach, D.L.; Bradley, D.C.; Huston, D.; Pisarevsky, S.A.; Taylor, R.D.; Gardoll, S.J. Sediment-hosted lead-zinc deposits in Earth history. Econ. Geol. 2010, 105, 593–625. [Google Scholar] [CrossRef]
- Luo, K.; Zhou, J.X.; Huang, Z.L.; Caulfield, J.; Zhao, J.X.; Feng, Y.X.; Ouyang, H. New insights into the evolution of Mississippi Valley-Type hydrothermal system: A case study of the Wusihe Pb-Zn deposit, South China, using quartz in-situ trace elements and sulfides in situ S-Pb isotopes. Am. Mineral. 2020, 105, 35–51. [Google Scholar] [CrossRef]
- Luo, K.; Zhou, J.X.; Huang, Z.L.; Wang, X.C.; Wilde, S.A.; Zhou, W.; Tian, L. New insights into the origin of early Cambrian carbonate-hosted Pb-Zn deposits in South China: A case study of the Maliping Pb-Zn deposit. Gondwana Res. 2019, 70, 88–103. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, D.; Wu, G.; Santosh, M.; Zhang, J.; Xu, Y.; Zhang, Y. Geological and isotopic evidence for magmatic-hydrothermal origin of the Ag-Pb-Zn deposits in the Lengshuikeng District, east-central China. Miner. Depos. 2014, 49, 733–749. [Google Scholar] [CrossRef]
- Zhou, Z.; Wen, H.; Qin, C.; Liu, L. Geochemical and isotopic evidence for a magmatic-hydrothermal origin of the polymetallic vein-type Zn-Pb deposits in the northwest margin of Jiangnan Orogen, South China. Ore Geol. Rev. 2017, 86, 673–691. [Google Scholar] [CrossRef]
- Zartman, R.E.; Doe, B.R. Plumbotectonics: The model. Tectonophysics 1981, 75, 135–162. [Google Scholar] [CrossRef]
- Ma, X.P.; Liao, W.H.; Wang, D.M. The Devonian System of China, with a Discussion on Sea-Level Change in South China; Geological Society of London Special Publication: London, UK, 2009; Volume 314, pp. 241–262. [Google Scholar]
- Qiu, W.J.; Zhou, M.F.; Li, X.; Williams-Jones, A.E.; Yuan, H. The genesis of the giant Dajiangping SEDEX-type pyrite deposit, South China. Econ. Geol. 2018, 113, 1419–1446. [Google Scholar] [CrossRef]
- Luo, K.; Zhou, J.X.; Sun, G.T.; Nguyen, A.; Qin, Z.X. The metallogeny of the Devonian sediment-hosted sulfide deposits, South China: A case study of the Huodehong deposit. Ore Geol. Rev. 2022, 143, 104747. [Google Scholar] [CrossRef]
No. | Locations | Features | Purposes |
---|---|---|---|
CYZ—1 | PD2 | Disseminated banded ores | Pb isotope analyses |
CYZ—1(1) | PD2 | Banded ores | Pb isotope analyses |
CYZ—2 | PD2 | Disseminated ores | S isotope analyses |
CYZ—3 | PD2 | Skarn ores | Pb isotope analyses |
CYZ—4 | PD2 | Sulfide-bearing limestone | |
CYZ—5 | PD2 | Sulfide-bearing calcium siliceous rocks | S and Pb isotope analyses |
CYZ—6 | PD2 | Skarn ores | |
CYZ—7 | PD2 | Sulfide-bearing schistose marble | S isotope analyses |
No. | Point No. | Mineral | δ34S (‰) |
---|---|---|---|
cyz-2 | cpy-sp-1 | Sphalerite | 4.70 |
cpy-sp-3 | Chalcopyrite | 4.50 | |
cpy-sp-4 | Chalcopyrite | 4.90 | |
cpy-sp-5 | Chalcopyrite | 4.90 | |
py-sp-1 | Pyrite | 0.10 | |
py-sp-2 | Pyrite | 5.00 | |
py-sp-3 | Sphalerite | 4.70 | |
py-sp-4 | Pyrite | 6.00 | |
cyz-5 | cpy-Gn-1 | Chalcopyrite | 4.70 |
cpy-Gn-2 | Chalcopyrite | 5.10 | |
pyd-pyx-sp-cpy-1 | Pyrite | 5.30 | |
pyd-pyx-sp-cpy-2 | Pyrite | 5.90 | |
pyd-pyx-sp-cpy-3 | Pyrite | 5.50 | |
pyd-pyx-sp-cpy-4 | Sphalerite | 4.90 | |
pyd-pyx-sp-cpy-5 | Sphalerite | 5.20 | |
sp-cpy-1 | Sphalerite | 5.30 | |
sp-cpy-2 | Chalcopyrite | 4.90 | |
cyz-7 | cpy-1 | Chalcopyrite | 4.40 |
cpy1-1 | Chalcopyrite | 4.80 | |
cpy-2 | Chalcopyrite | 4.30 | |
cpy-5 | Sphalerite | 4.30 |
No. | Deposits | Point Nos. | Mineral | 206Pb/204Pb | 1s | 207Pb/204Pb | 1s | 208Pb/204Pb | 1s |
---|---|---|---|---|---|---|---|---|---|
CYZ-1 | Caiyuanzi | GN-1 | Galena | 18.148 | 0.001 | 15.712 | 0.001 | 38.449 | 0.002 |
1-GN-2 | Galena | 18.146 | 0.001 | 15.711 | 0.001 | 38.447 | 0.002 | ||
1-GN-7 | Galena | 18.142 | 0.004 | 15.707 | 0.004 | 38.432 | 0.010 | ||
1-GN-8 | Galena | 18.134 | 0.001 | 15.698 | 0.001 | 38.410 | 0.003 | ||
CYZ-1 | GN-1 | Galena | 18.153 | 0.001 | 15.719 | 0.001 | 38.464 | 0.002 | |
GN-10 | Galena | 18.147 | 0.001 | 15.710 | 0.001 | 38.445 | 0.002 | ||
GN-11 | Galena | 18.148 | 0.001 | 15.711 | 0.001 | 38.444 | 0.002 | ||
GN-2 | Galena | 18.151 | 0.001 | 15.717 | 0.001 | 38.461 | 0.002 | ||
GN-3 | Galena | 18.153 | 0.001 | 15.718 | 0.001 | 38.463 | 0.002 | ||
GN-4 | Galena | 18.147 | 0.001 | 15.712 | 0.001 | 38.449 | 0.003 | ||
GN-5 | Galena | 18.146 | 0.001 | 15.711 | 0.001 | 38.446 | 0.002 | ||
GN-6 | Galena | 18.145 | 0.001 | 15.709 | 0.001 | 38.437 | 0.002 | ||
GN-7 | Galena | 18.143 | 0.001 | 15.707 | 0.001 | 38.435 | 0.002 | ||
GN-8 | Galena | 18.144 | 0.001 | 15.708 | 0.001 | 38.438 | 0.002 | ||
GN-9 | Galena | 18.142 | 0.001 | 15.707 | 0.001 | 38.434 | 0.002 | ||
SP-1 | Sphalerite | 18.162 | 0.022 | 15.720 | 0.020 | 38.473 | 0.052 | ||
CYZ-2 | Caiyuanzi | 01 | Pyrite | 18.170 | 0.003 | 15.728 | 0.003 | 38.510 | 0.006 |
04 | Pyrite | 18.167 | 0.002 | 15.721 | 0.002 | 38.492 | 0.006 | ||
CYZ-5 | Caiyuanzi | 02 | Pyrite | 18.147 | 0.006 | 15.720 | 0.004 | 38.467 | 0.011 |
CYZ-3 | Caiyuanzi | GN-1 | Galena | 18.147 | 0.001 | 15.703 | 0.001 | 38.430 | 0.003 |
GN-10 | Galena | 18.154 | 0.001 | 15.709 | 0.001 | 38.444 | 0.003 | ||
GN-11 | Galena | 18.151 | 0.001 | 15.706 | 0.001 | 38.438 | 0.002 | ||
GN-12 | Galena | 18.152 | 0.001 | 15.708 | 0.001 | 38.445 | 0.002 | ||
GN-2 | Galena | 18.149 | 0.001 | 15.705 | 0.001 | 38.436 | 0.003 | ||
GN-3 | Galena | 18.158 | 0.001 | 15.716 | 0.001 | 38.468 | 0.002 | ||
GN-4 | Galena | 18.158 | 0.001 | 15.717 | 0.001 | 38.470 | 0.002 | ||
GN-5 | Galena | 18.157 | 0.001 | 15.716 | 0.001 | 38.469 | 0.003 | ||
GN-6 | Galena | 18.153 | 0.001 | 15.711 | 0.001 | 38.455 | 0.003 | ||
GN-7 | Galena | 18.151 | 0.001 | 15.708 | 0.001 | 38.445 | 0.003 | ||
GN-8 | Galena | 18.149 | 0.001 | 15.706 | 0.001 | 38.443 | 0.002 | ||
GN-9 | Galena | 18.156 | 0.001 | 15.711 | 0.001 | 38.453 | 0.002 |
Features | Sedimentary Exhalative (SEDEX) | Mississippi Valley-Type (MVT) | Magmatic Hydrothermal Vein-Type | Caiyuanzi Deposit |
---|---|---|---|---|
Ore-forming age | Syngenetic—early diagenetic | Epigenetic | Epigenetic | Syngenetic, epigenetic |
Geological setting | Extensional first and second-order basins | Carbonate platform sequences and thrust belts, rare occurrences in extensional basins | Varied | Thrust belt |
Host rocks | Varied. Mainly sandstones, siltstones, limestones, dolomites, cherts, and turbidites | Limestones, dolostones, and rare micrites | Varied. Sandstone, siltstone, and carbonates | Siliceous dolomite, quartz schist |
Structural controls | Syn-sedimentary faults controlling sub-basins and associated fractures and breccias | Normal, trans-tensional, and wrench faults and associated fractures and breccias | Fault zone/strata | Lithologic interface |
Associated igneous activity | No direct association with igneous activity, but tuffs related to synchronous distal volcanism may be present | Not associated with igneous activity | Associated with igneous activity | Associated with igneous activity |
Ore-body morphology | Single or multiple wedge- or lens-shaped, or sheeted/stratiform morphology | Commonly discordant on a deposit scale but strata-bound on a regional scale | Veins, stratiform-like morphology | Stratiform-like morphology |
Mineralogy | Sp, Gn, and Py (±Pyr) and common Brt, Ap, and very rare Fl | Sp, Gn, Py, Mar, minor Dol, Cal, Fl (rare), Cpy, and Brt (minor to absent) | Sp, Gn, Py, Cpy, and minor Brt | Sp, Gn, Py, Ccp, minor Hem, Po, Mag, Grt, and Chl |
Host rock alteration | Silicification, chloritization, epidotization, albitization | Carbonatization, silicification | Silicification, pyritic and carbonate alteration | Silicification, skarnization |
References | [56] | [57,58,59] | [60,61] | This paper |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Cui, Y.; Nian, H.; Yang, C.; Zhang, Y.; Liu, M.; Xu, H.; Cai, J.; Liu, H. The Origin of the Caiyuanzi Pb–Zn Deposit in SE Yunnan Province, China: Constraints from In Situ S and Pb Isotopes. Minerals 2023, 13, 238. https://doi.org/10.3390/min13020238
Jiang Y, Cui Y, Nian H, Yang C, Zhang Y, Liu M, Xu H, Cai J, Liu H. The Origin of the Caiyuanzi Pb–Zn Deposit in SE Yunnan Province, China: Constraints from In Situ S and Pb Isotopes. Minerals. 2023; 13(2):238. https://doi.org/10.3390/min13020238
Chicago/Turabian StyleJiang, Yongguo, Yinliang Cui, Hongliang Nian, Changhua Yang, Yahui Zhang, Mingyong Liu, Heng Xu, Jinjun Cai, and Hesong Liu. 2023. "The Origin of the Caiyuanzi Pb–Zn Deposit in SE Yunnan Province, China: Constraints from In Situ S and Pb Isotopes" Minerals 13, no. 2: 238. https://doi.org/10.3390/min13020238
APA StyleJiang, Y., Cui, Y., Nian, H., Yang, C., Zhang, Y., Liu, M., Xu, H., Cai, J., & Liu, H. (2023). The Origin of the Caiyuanzi Pb–Zn Deposit in SE Yunnan Province, China: Constraints from In Situ S and Pb Isotopes. Minerals, 13(2), 238. https://doi.org/10.3390/min13020238