Application of Clay Materials for Sorption of Radionuclides from Waste Solutions
Abstract
:1. Introduction
2. Natural Clays (NCs) for Sorption of Radionuclides
3. Modified/Functionalized Clays (MCs) for Sorption of Radionuclides
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hosan, M.I. Radioactive waste classification, management and environment. Eng. Int. 2017, 5, 53–62. [Google Scholar] [CrossRef]
- Alexander, W.R.; Reijonen, H.M.; McKinley, I.G. Natural analogues: Studies of geological processes relevant to radioactive waste disposal in deep geological repositories. Swiss J. Geosci. 2015, 108, 75–100. [Google Scholar] [CrossRef]
- Fan, Q.; Li, P.; Pan, D. Radionuclides sorption on typical clay minerals: Modeling and spectroscopies. Interface Sci. Technol. 2019, 29, 1–38. [Google Scholar]
- Pearce, J.M. Limitations of nuclear power as a sustainable energy source. Sustainability 2012, 4, 1173–1187. [Google Scholar] [CrossRef]
- Petrescu, R.V.; Aversa, R.; Akash, B.; Berto, F.; Apicella, A.; Petrescu, F.I. Sustainable energy for aerospace vessels. J. Aircr. Spacecr. Technol. 2017, 1, 234–240. [Google Scholar] [CrossRef]
- Noyes, R. Nuclear Waste Cleanup Technologies and Opportunities; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Lee, W.E.; Ojovan, M.I. Fundamentals of radioactive waste (RAW): Science, sources, classification and management strategies. In Radioactive Waste Management and Contaminated Site Clean-Up; Woodhead Publishing: Cambridge, UK, 2013; pp. 3–49, 50e. [Google Scholar]
- Corkhill, C.; Hyatt, N. Nuclear Waste Management; IOP Publishing: Bristol, UK, 2018. [Google Scholar]
- Konoplev, A. Fukushima and Chernobyl: Similarities and Differences of Radiocesium Behavior in the Soil–Water Environment. Toxics 2022, 10, 578. [Google Scholar] [CrossRef]
- Hirose, K.; Povinec, P.P. Ten years of investigations of Fukushima radionuclides in the environment: A review on process studies in environmental compartments. J. Environ. Radioact. 2022, 251, 106929. [Google Scholar] [CrossRef]
- Tagami, K.; Hashimoto, S.; Kusakabe, M.; Onda, Y.; Howard, B.; Fesenko, S.; Pröhl, G.; Harbottle, A.R.; Ulanowski, A. Pre-and post-accident environmental transfer of radionuclides in Japan: Lessons learned in the IAEA MODARIA II programme. J. Radiol. Prot. 2022, 42, 020509. [Google Scholar] [CrossRef]
- Hashimoto, S.; Komatsu, M.; Miura, S. Radioactive Materials Released by the Fukushima Nuclear Accident. In Forest Radioecology in Fukushima; Springer: Singapore, 2022; pp. 1–10. [Google Scholar]
- Nanba, K. Behavior of Radionuclides in the Environment: Fukushima III; Springer Nature: London, UK, 2022. [Google Scholar]
- Onda, Y.; Taniguchi, K.; Yoshimura, K.; Kato, H.; Takahashi, J.; Wakiyama, Y.; Coppin, F.; Smith, H. Radionuclides from the Fukushima Daiichi nuclear power plant in terrestrial systems. Nat. Rev. Earth Environ. 2020, 1, 644–660. [Google Scholar] [CrossRef]
- Von Hippel, F.N. The radiological and psychological consequences of the Fukushima Daiichi accident. Bull. At. Sci. 2011, 67, 27–36. [Google Scholar] [CrossRef]
- Waddington, I.; Thomas, P.J.; Taylor, R.H.; Vaughan, G.J. J-value assessment of relocation measures following the nuclear power plant accidents at Chernobyl and Fukushima Daiichi. Process Saf. Environ. Prot. 2017, 112, 16–49. [Google Scholar] [CrossRef]
- Steinhauser, G.; Brandl, A.; Johnson, T.E. Comparison of the Chernobyl and Fukushima nuclear accidents: A review of the environmental impacts. Sci. Total Environ. 2014, 470, 800–817. [Google Scholar] [CrossRef]
- Povinec, P.P.; Gera, M.; Holý, K.; Hirose, K.; Lujaniené, G.; Nakano, M.; Plastino, W.; Sýkora, I.; Bartok, J.; Gažák, M. Dispersion of Fukushima radionuclides in the global atmosphere and the ocean. Appl. Radiat. Isot. 2013, 81, 383–392. [Google Scholar] [CrossRef]
- Beresford, N.A.; Copplestone, D. Effects of ionizing radiation on wildlife: What knowledge have we gained between the Chernobyl and Fukushima accidents. Integr. Environ. Assess. Manag. 2011, 7, 371–373. [Google Scholar] [CrossRef]
- Amano, H.; Akiyama, M.; Chunlei, B.; Kawamura, T.; Kishimoto, T.; Kuroda, T.; Muroi, T.; Odaira, T.; Ohta, Y.; Takeda, K.; et al. Radiation measurements in the Chiba Metropolitan Area and radiological aspects of fallout from the Fukushima Dai-ichi Nuclear Power Plants accident. J. Environ. Radioact. 2012, 111, 42–52. [Google Scholar] [CrossRef]
- Achim, P.; Monfort, M.; Le Petit, G.; Gross, P.; Douysset, G.; Taffary, T.; Blanchard, X.; Moulin, C. Analysis of radionuclide releases from the Fukushima Daiichi nuclear power plant accident part II. Pure Appl. Geophys. 2014, 171, 645–667. [Google Scholar] [CrossRef]
- Masson, O.; Baeza, A.; Bieringer, J.; Brudecki, K.; Bucci, S.; Cappai, M.; Carvalho, F.P.; Connan, O.; Cosma, C.; Dalheimer, A.; et al. Tracking of airborne radionuclides from the damaged Fukushima Daiichi nuclear reactors by European networks. Environ. Sci. Technol. 2011, 45, 7670–7677. [Google Scholar] [CrossRef]
- Koma, Y.; Shibata, A.; Ashida, T. Radioactive contamination of several materials following the Fukushima Daiichi Nuclear Power Station accident. Nucl. Mater. Energy 2017, 10, 35–41. [Google Scholar] [CrossRef]
- Imanaka, T.; Hayashi, G.; Endo, S. Comparison of the accident process, radioactivity release and ground contamination between Chernobyl and Fukushima-1. J. Radiat. Res. 2015, 56, i56–i61. [Google Scholar] [CrossRef]
- Querfeld, R.; Pasi, A.E.; Shozugawa, K.; Vockenhuber, C.; Synal, H.A.; Steier, P.; Steinhauser, G. Radionuclides in surface waters around the damaged Fukushima Daiichi NPP one month after the accident: Evidence of significant tritium release into the environment. Sci. Total Environ. 2019, 689, 451–456. [Google Scholar] [CrossRef]
- Kato, H.; Onda, Y.; Hisadome, K.; Loffredo, N.; Kawamori, A. Temporal changes in radiocesium deposition in various forest stands following the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact. 2017, 166, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.K.; Hafeez, M.A.; Kim, H.; Hong, S.; Kang, J.; Um, W. Inorganic waste forms for efficient immobilization of radionuclides. ACS EST Eng. 2021, 1, 1149–1170. [Google Scholar] [CrossRef]
- Singh, B.K.; Kim, J.; Pak, D.; Kim, K.; Um, W. Technetium (Tc)/Rhenium (Re) Solubility and Leaching Behavior from Waste Forms: An Overview. Front. Nucl. Eng. 2023, 1, 1112080. [Google Scholar] [CrossRef]
- Kersting, A.B.; Efurd, D.W.; Finnegan, D.L.; Rokop, D.J.; Smith, D.K.; Thompson, J.L. Migration of plutonium in groundwater at the Nevada Test Site. Nature 1999, 397, 56–59. [Google Scholar] [CrossRef]
- Kato, K.; Konoplev, A.; Kalmykov, S.N. Behavior of Radionuclides in the Environment I; Springer: Singapore, 2020. [Google Scholar]
- Ochiai, E. Hiroshima to Fukushima—Biohazards of Radiation; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Ochiai, E. Hiroshima to Fukushima; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Maamoun, I.; Eljamal, R.; Falyouna, O.; Bensaida, K.; Idham, M.F.; Sugihara, Y.; Eljamal, O. Radionuclides Removal from Aqueous Solutions: A Mini Review on Using Different Sorbents. Proc. Int. Exch. Innov. Conf. Eng. Sci. 2021, 7, 170–177. [Google Scholar] [CrossRef]
- Ma, J.; Wang, C.; Xi, W.; Zhao, Q.; Wang, S.; Qiu, M.; Wang, J.; Wang, X. Removal of radionuclides from aqueous solution by manganese dioxide-based nanomaterials and mechanism research: A review. ACS EST Eng. 2021, 1, 685–705. [Google Scholar] [CrossRef]
- Singh, B.K.; Tomar, R.; Kumar, S.; Jain, A.; Tomar, B.S.; Manchanda, V.K. Sorption of 137Cs, 133Ba and 154Eu by synthesized sodium aluminosilicate (Na-AS). J. Hazard. Mater. 2010, 178, 771–776. [Google Scholar] [CrossRef]
- Singh, B.K.; Tomar, R.; Tomar, R.; Tomar, S.S. Sorption of homologues of radionuclides by synthetic ion exchanger. Micropor. Mesopor. Mat. 2011, 142, 629–640. [Google Scholar] [CrossRef]
- Singh, B.K.; Jain, A.; Kumar, S.; Tomar, B.S.; Tomar, R.; Manchanda, V.K.; Ramanathan, S. Role of magnetite and humic acid in radionuclide migration in the environment. J. Contam. Hydrol. 2009, 106, 144–149. [Google Scholar] [CrossRef]
- Maskalchuk, L.N.; Baklai, A.A.; Leont’eva, T.G.; Makovskaya, N.A. Removal of Cesium Radionuclides from Aqueous Media with an Aluminosilicate Sorbent Prepared from Belaruskalii Production Waste. Radiochemistry 2019, 61, 459–463. [Google Scholar] [CrossRef]
- Bhadoria, R.; Singh, B.K.; Tomar, R. Sorption of toxic metals on sodium aluminosilicate (NAS). Desalination 2010, 254, 192–200. [Google Scholar] [CrossRef]
- Singh, B.K.; Tomar, R.; Kumar, S.; Kar, A.S.; Tomar, B.S.; Ramanathan, S.; Manchanda, V.K. Role of the humic acid for sorption of radionuclides by synthesized titania. Radiochim. Acta 2014, 102, 255–261. [Google Scholar] [CrossRef]
- Singh, B.K.; Bhadauria, J.; Tomar, R.; Tomar, B.S. Effect of humic acid on sorption of trace metal ions by sodium aluminosilicate. Desalination 2011, 268, 189–194. [Google Scholar] [CrossRef]
- Singh, B.K.; Tomar, R.; Jain, A.; Kumar, S.; Tomar, B.S.; Manchanda, V.K.; Ramanathan, S. Synthesis, characterization and role of magnetite in Cs migration in environment: Effect of humic acid. J. Appl. Geochem. 2008, 10, 507–513. [Google Scholar]
- Singh, B.K.; Mercier-Bion, F.; Lefevre, G.; Simoni, E. Effect of short chain aliphatic carboxylic acids for sorption of uranyl on rutile Zeta potential and in situ ATR-FTIR studies. J. Ind. Eng. Chem. 2016, 35, 325–331. [Google Scholar] [CrossRef]
- Wani, A.A.; Shahadat, M.; Khan, A.M.; Ali, S.W.; Ahmad, S.Z.; Uddin, M.K. Recent advances and future perspectives of polymer-based magnetic nanomaterials for detection and removal of radionuclides: A review. J. Mol. Liq. 2022, 365, 119976. [Google Scholar]
- Wang, J.; Zhuang, S. Removal of cesium ions from aqueous solutions using various separation technologies. Rev. Environ. Sci. Biotechnol. 2019, 18, 231–269. [Google Scholar] [CrossRef]
- Li, H.; Tan, Y.; Xu, X.; Wu, J. Coupled thermal-hydro model tests of double-layered buffer for nuclear waste repository. Prog. Nucl. Energy 2023, 156, 104541. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, Y.G.; Ye, W.M. A systematic review of bentonite/concrete interaction system in HLW disposal repositories: Theoretical, experimental and geochemical modelling analysis. Constr. Build. Mater. 2022, 353, 129075. [Google Scholar] [CrossRef]
- Oladoye, P.O. Natural, low-cost adsorbents for toxic Pb (II) ion sequestration from (waste) water: A state-of-the-art review. Chemosphere 2022, 287, 132130. [Google Scholar] [CrossRef]
- Wang, Z.K.; Li, T.T.; Peng, H.K.; Ren, H.T.; Lin, J.H.; Lou, C.W. Natural-clay-reinforced hydrogel adsorbent: Rapid adsorption of heavy-metal ions and dyes from textile wastewater. Water Environ. Res. 2022, 94, e10698. [Google Scholar] [CrossRef] [PubMed]
- Ayalew, A.A. A critical review on clay-based nanocomposite particles for application of wastewater treatment. Water Sci. Technol. 2022, 85, 3002–3022. [Google Scholar] [CrossRef] [PubMed]
- Ibigbami, T.B.; Adeola, A.O.; Olawade, D.B.; Ore, O.T.; Isaac, B.O.; Sunkanmi, A.A. Pristine and activated bentonite for toxic metal removal from wastewater. Water Pract. Technol. 2022, 17, 784–797. [Google Scholar] [CrossRef]
- Vieira, Y.; Netto, M.S.; Lima, É.C.; Anastopoulos, I.; Oliveira, M.L.; Dotto, G.L. An overview of geological originated materials as a trend for adsorption in wastewater treatment. Geosci. Front. 2022, 13, 101150. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, X.; Sun, D.A.; Zeng, Z. Thermal properties of GMZ bentonite pellet mixtures subjected to different temperatures for high-level radioactive waste repository. Acta Geotech. 2022, 17, 981–992. [Google Scholar] [CrossRef]
- Wu, T.; Feng, Z.; Geng, Z.; Xu, M.; Shen, Q. Restriction of Re (VII) and Se (IV) diffusion by barite precipitation in compacted bentonite. Appl. Clay Sci. 2023, 232, 106803. [Google Scholar] [CrossRef]
- Churchman, G.J.; Gates, W.P.; Theng, B.K.G.; Yuan, G. Clays and clay minerals for pollution control. Dev. Clay Sci. 2006, 1, 625–675. [Google Scholar]
- Murray, H.H. Overview—Clay mineral applications. Appl. Clay Sci. 1991, 5, 379–395. [Google Scholar] [CrossRef]
- Massaro, M.; Colletti, C.G.; Lazzara, G.; Riela, S. The use of some clay minerals as natural resources for drug carrier applications. J. Funct. Biomater. 2018, 9, 58. [Google Scholar] [CrossRef]
- Ghadiri, M.; Chrzanowski, W.; Rohanizadeh, R. Biomedical applications of cationic clay minerals. RSC Adv. 2015, 5, 29467–29481. [Google Scholar] [CrossRef]
- Choy, J.H.; Choi, S.J.; Oh, J.M.; Park, T. Clay minerals and layered double hydroxides for novel biological applications. Appl. Clay Sci. 2007, 36, 122–132. [Google Scholar] [CrossRef]
- Ruiz-Hitzky, E.; Aranda, P.; Darder, M.; Rytwo, G. Hybrid materials based on clays for environmental and biomedical applications. J. Mater. Chem. 2010, 20, 9306–9321. [Google Scholar] [CrossRef]
- Bergaya, F.; Lagaly, G. General Introduction: Clays, clay minerals and clay science. Dev. Clay Sci. 2006, 1, 1–18. [Google Scholar]
- Zheng, X.; Li, X.; Xu, Y. Study on the shear strength and microstructure of Gaomiaozi bentonite under chemical conditions in a repository. Environ. Earth Sci. 2022, 81, 352. [Google Scholar] [CrossRef]
- Choi, H.J.; Lee, J.Y.; Cho, D.K. Re-evaluation of the bentonite buffer dimension in a geological repository for spent nuclear fuel under the KURT conditions. Prog. Nucl. Energy 2022, 145, 104138. [Google Scholar] [CrossRef]
- Claverie, M.; Garcia, J.; Prevost, T.; Brendlé, J.; Limousy, L. Inorganic and hybrid (organic–inorganic) lamellar materials for heavy metals and radionuclides capture in energy wastes management—A review. Materials 2019, 12, 1399. [Google Scholar] [CrossRef]
- Thiebault, T.; Brendle, J.; Auge, G.; Limousy, L. Zwitterionic-surfactant modified LAPONITE® s for removal of ions (Cs+, Sr2+ and Co2+) from aqueous solutions as a sustainable recovery method for radionuclides from aqueous wastes. Green Chem. 2019, 21, 5118–5127. [Google Scholar] [CrossRef]
- Beall, G.W. The use of organo-clays in water treatment. Appl. Clay Sci. 2003, 24, 11–20. [Google Scholar] [CrossRef]
- Lee, S.M.; Tiwari, D. Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: An overview. Appl. Clay Sci. 2012, 59, 84–102. [Google Scholar] [CrossRef]
- Groisman, L.; Rav-Acha, C.; Gerstl, Z.; Mingelgrin, U. Sorption of organic compounds of varying hydrophobicities from water and industrial wastewater by long-and short-chain organoclays. Appl. Clay Sci. 2004, 24, 159–166. [Google Scholar] [CrossRef]
- Rytwo, G.; Rettig, A.; Gonen, Y. Organo-sepiolite particles for efficient pretreatment of organic wastewater: Application to winery effluents. Appl. Clay Sci. 2011, 51, 390–394. [Google Scholar] [CrossRef]
- Chitrakar, R.; Makita, Y.; Hirotsu, T.; Sonoda, A. Montmorillonite modified with hexadecylpyridinium chloride as highly efficient anion exchanger for perchlorate ion. Chem. Eng. J. 2012, 191, 141–146. [Google Scholar] [CrossRef]
- Milutinović-Nikolić, A.; Maksin, D.; Jović-Jovičić, N.; Mirković, M.; Stanković, D.; Mojović, Z.; Banković, P. Removal of 99Tc (VII) by organo-modified bentonite. Appl. Clay Sci. 2014, 95, 294–302. [Google Scholar] [CrossRef]
- Sultana, S.; Karmaker, B.; Saifullah, A.S.M.; Galal Uddin, M.; Moniruzzaman, M. Environment-friendly clay coagulant aid for wastewater treatment. Appl. Water Sci. 2022, 12, 6. [Google Scholar] [CrossRef]
- Yusof, M.Y.M.; Idris, M.I.; Mohamed, F.; Nor, M.M. Adsorption of radioactive element by clay: A review. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 785, p. 012020. [Google Scholar]
- Es-sahbany, H.; El Yacoubi, A.; El Hachimi, M.L.; Boulouiz, A.; El Idrissi, B.C.; El Youbi, M.S. Low-cost and eco-friendly Moroccan natural clay to remove many bivalent heavy metal ions: Cu2+, Co2+, Pb2+ and Ni2+. Mater. Today Proc. 2022, 58, 1162–1168. [Google Scholar] [CrossRef]
- Matveenko, A.V.; Varlakov, A.P.; Zherebtsov, A.A.; Germanov, A.V.; Mikheev, I.V.; Kalmykov, S.N.; Petrov, V.G. Natural Clay Minerals as a Starting Material for Matrices for the Immobilization of Radioactive Waste from Pyrochemical Processing of SNF. Sustainability 2021, 13, 10780. [Google Scholar] [CrossRef]
- Kale, R.C.; Ravi, K. A review on the impact of thermal history on compacted bentonite in the context of nuclear waste management. Environ. Technol. Innov. 2021, 23, 101728. [Google Scholar] [CrossRef]
- Chikkamath, S.; Patel, M.A.; Kar, A.S.; Tomar, B.S.; Manjanna, J. Sorption and surface complexation modeling of 137Cs on Fe (II)-montmorillonite clay mineral relevant to nuclear waste disposal. Radiochim. Acta 2021, 109, 73–83. [Google Scholar] [CrossRef]
- Vereš, J.; Orolínová, Z. Study of the treated and magnetically modified bentonite as possible sorbents of heavy metals. Acta Montan. Slovaca 2009, 14, 152–155. [Google Scholar]
- Deepthi Rani, R.; Sasidhar, P. Geochemical and thermodynamic aspects of sorption of strontium on kaolinite dominated clay samples at Kalpakkam. Environ. Earth Sci. 2012, 65, 1265–1274. [Google Scholar] [CrossRef]
- Andrejkovičová, S.; Rocha, F.; Janotka, I.; Komadel, P. An investigation into the use of blends of two bentonites for geosynthetic clay liners. Geotext. Geomembr. 2008, 26, 436–445. [Google Scholar] [CrossRef]
- Vejsada, J. The uncertainties associated with the application of batch technique for distribution coefficients determination—A case study of cesium adsorption on four different bentonites. Appl. Radiat. Isot. 2006, 64, 1538–1548. [Google Scholar] [CrossRef]
- Lee, J.O.; Kang, I.M.; Cho, W.J. Smectite alteration and its influence on the barrier properties of smectite clay for a repository. Appl. Clay Sci. 2010, 47, 99–104. [Google Scholar] [CrossRef]
- Ye, W.M.; Chen, Y.G.; Chen, B.; Wang, Q.; Wang, J. Advances on the knowledge of the buffer/backfill properties of heavily-compacted GMZ bentonite. Eng. Geol. 2010, 116, 12–20. [Google Scholar] [CrossRef]
- Liu, X.; Congress, S.S.C.; Cai, G.; Liu, L.; Puppala, A.J. Evaluating the thermal performance of unsaturated bentonite-sand-graphite as buffer material for waste repository using an improved prediction model. Can. Geotech. J. 2022. [Google Scholar] [CrossRef]
- Da, T.X.; Chen, T.; He, W.K.; Elshaikh, T.; Ma, Y.; Tong, Z.F. Applying machine learning methods to estimate the thermal conductivity of bentonite for a high-level radioactive waste repository. Nucl. Eng. Des. 2022, 392, 111765. [Google Scholar] [CrossRef]
- Alzamel, M.; Haruna, S.; Fall, M. Saturated hydraulic conductivity of bentonite–sand barrier material for nuclear waste repository: Effects of physical, mechanical thermal and chemical factors. Environ. Earth Sci. 2022, 81, 223. [Google Scholar] [CrossRef]
- Ito, S.; Tachibana, S.; Takeyama, T.; Iizuka, A. Constitutive model for swelling properties of unsaturated bentonite buffer materials during saturation. Soils Found. 2022, 62, 101161. [Google Scholar] [CrossRef]
- Zeng, Z.; Shao, J.; Sun, D.A.; Lyu, H.; Xu, Y.; Yang, C. Effect of thermal ageing on physical properties of MX80 bentonite under high-temperature conditions. Eng. Geol. 2022, 308, 106822. [Google Scholar] [CrossRef]
- Tan, Y.; Xu, X.; Ming, H. Analysis of double-layered buffer in high-level waste repository. Ann. Nucl. Energy 2022, 165, 108660. [Google Scholar] [CrossRef]
- Zheng, W.; Li, T.; Gao, Y.; Liu, Y.; Zhu, X. Analysis of the Long-Term-Coupled Thermo-Hydro-Mechanical Performances and the Retardation Capacities of Composite Bentonite Buffers Using a Numerical Simulation Method. Arab. J. Sci. Eng. 2022, 47, 4785–4800. [Google Scholar] [CrossRef]
- Shao, J.; Zeng, Z.; Sun, D.A. Effect of heating time on hydro-mechanical behavior of MX80 bentonite. Environ. Earth Sci. 2022, 81, 483. [Google Scholar] [CrossRef]
- Haynes, H.M.; Bailey, M.T.; Lloyd, J.R. Bentonite barrier materials and the control of microbial processes: Safety case implications for the geological disposal of radioactive waste. Chem. Geol. 2021, 581, 120353. [Google Scholar] [CrossRef]
- Yıldız, B.; Erten, H.; Kış, M. The sorption behavior of Cs+ ion on clay minerals and zeolite in radioactive waste management: Sorption kinetics and thermodynamics. J. Radioanal. Nucl. Chem. 2011, 288, 475–483. [Google Scholar] [CrossRef]
- Rajec, P.; Mátel, L.; Orechovská, J.; Šúcha, J.; Novák, I. Sorption of radionuclides on inorganic sorbents. J. Radioanal. Nucl. Chem. 1996, 208, 477–486. [Google Scholar] [CrossRef]
- Brtáňová, A.N.N.A.; Melichová, Z.U.Z.A.N.A.; Komadel, P.E.T.E.R. Sorption of Cu2+ from aqueous solutions by Slovak bentonites. Ceram Silik 2012, 56, 55–60. [Google Scholar]
- Chen, Y.; Wang, J. Removal of radionuclide Sr2+ ions from aqueous solution using synthesized magnetic chitosan beads. Nucl. Eng. Des. 2012, 242, 445–451. [Google Scholar] [CrossRef]
- Yu, S.; Ma, J.; Shi, Y.; Du, Z.; Zhao, Y.; Tuo, X.; Leng, Y. Uranium (VI) adsorption on montmorillonite colloid. J. Radioanal. Nucl. Chem. 2020, 324, 541–549. [Google Scholar] [CrossRef]
- Tran, E.L.; Teutsch, N.; Klein-BenDavid, O.; Weisbrod, N. Uranium and cesium sorption to bentonite colloids under carbonate-rich environments: Implications for radionuclide transport. Sci. Total Environ. 2018, 643, 260–269. [Google Scholar] [CrossRef]
- Philipp, T.; Huittinen, N.; Azzam, S.S.A.; Stohr, R.; Stietz, J.; Reich, T.; Schmeide, K. Effect of Ca (II) on U (VI) and Np (VI) retention on Ca-bentonite and clay minerals at hyperalkaline conditions-New insights from batch sorption experiments and luminescence spectroscopy. Sci. Total Environ. 2022, 842, 156837. [Google Scholar] [CrossRef]
- Seliman, A.F.; Lasheen, Y.F.; Youssief, M.A.E.; Abo-Aly, M.M.; Shehata, F.A. Removal of some radionuclides from contaminated solution using natural clay: Bentonite. J. Radioanal. Nucl. Chem. 2014, 300, 969–979. [Google Scholar] [CrossRef]
- Semenkova, A.S.; Evsiunina, M.V.; Verma, P.K.; Mohapatra, P.K.; Petrov, V.G.; Seregina, I.F.; Bolshov, M.A.; Krupskaya, V.V.; Romanchuk, A.Y.; Kalmykov, S.N. Cs+ sorption onto Kutch clays: Influence of competing ions. Appl. Clay Sci. 2018, 166, 88–93. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, J.Y. Prediction of the Adsorption Behaviors of Radionuclides onto Bentonites Using a Machine Learning Method. Minerals 2022, 12, 1207. [Google Scholar] [CrossRef]
- Izosimova, Y.; Gurova, I.; Tolpeshta, I.; Karpukhin, M.; Zakusin, S.; Zakusina, O.; Samburskiy, A.; Krupskaya, V. Adsorption of Cs (I) and Sr (II) on Bentonites with Different Compositions at Different pH. Minerals 2022, 12, 862. [Google Scholar] [CrossRef]
- Parisi, F. Adsorption and separation of crystal violet, cerium (III) and lead (II) by means of a multi-step strategy based on k10-montmorillonite. Minerals 2020, 10, 466. [Google Scholar] [CrossRef]
- Cheng, J.; Leng, Y.; Gu, R.; Yang, G.; Wang, Y.; Tuo, X. Adsorption of uranium (VI) from groundwater by amino-functionalized clay. J. Radioanal. Nucl. Chem. 2021, 327, 1365–1373. [Google Scholar] [CrossRef]
- Mao, S.; Gao, M. Functional organoclays for removal of heavy metal ions from water: A review. J. Mol. Liq. 2021, 334, 116143. [Google Scholar] [CrossRef]
- Ci, Z.; Yue, Y.; Xiao, J.; Huang, X.; Sun, Y. Spectroscopic and modeling investigation of U (VI) removal mechanism on nanoscale zero-valent iron/clay composites. J. Colloid Interface Sci. 2023, 630, 395–403. [Google Scholar] [CrossRef]
- Bao, L.; Guo, F.; Wang, H.; Larson, S.L.; Ballard, J.H.; Knotek-Smith, H.M.; Zhang, Q.; Nie, J.; Celik, A.; Islam, S.M.; et al. Functionalization of clay surface for the removal of uranium from water. Methods X 2021, 8, 101275. [Google Scholar] [CrossRef]
- Harbi, H.M.; Al-Baqawi, A.H.; El-Shahawi, M.S. Clay Minerals Functionalized by Magnetite (Fe3O4) Nanoparticles as Solid Platform for Removal of Chromium (VI) from Water: Characterization, Kinetics, Thermodynamics, Analytical Utility and Reusability Studies. Anal. Chem. Lett. 2020, 10, 636–653. [Google Scholar] [CrossRef]
- Yang, J.; Shi, K.; Gao, X.; Hou, X.; Wu, W.; Shi, W. Hexadecylpyridinium (HDPy) modified bentonite for efficient and selective removal of 99Tc from wastewater. Chem. Eng. J. 2020, 382, 122894. [Google Scholar] [CrossRef]
- Yang, J.; Tai, W.; Wu, F.; Shi, K.; Jia, T.; Su, Y.; Liu, T.; Mocilac, P.; Hou, X.; Chen, X. Enhanced removal of radioactive iodine anions from wastewater using modified bentonite: Experimental and theoretical study. Chemosphere 2022, 292, 133401. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.G.; Lee, J.Y. Adsorption of Aqueous Iodide on Hexadecyl Pyridinium-Modified Bentonite Investigated Using an Iodine–Starch Complex. Chemosensors 2022, 10, 196. [Google Scholar] [CrossRef]
- Li, D.; Seaman, J.C.; Kaplan, D.I.; Heald, S.M.; Sun, C. Pertechnetate (TcO4−) sequestration from groundwater by cost-effective organoclays and granular activated carbon under oxic environmental conditions. Chem. Eng. J. 2019, 360, 1–9. [Google Scholar] [CrossRef]
- Liu, H.; Fu, T.; Sarwar, M.T.; Yang, H. Recent progress in radionuclides adsorption by bentonite-based materials as ideal adsorbents and buffer/backfill materials. Appl. Clay Sci. 2023, 232, 106796. [Google Scholar] [CrossRef]
- Wall, N.A.; Maulden, E.; Gager, E.J.; Ta, A.T.; Ullberg, R.S.; Zeng, G.; Nava-Farias, L.; Sims, A.P.; Nino, J.C.; Phillpot, S.R.; et al. Functionalized Clays for Radionuclide Sequestration: A Review. ACS Earth Space Chem. 2022, 6, 2552–2574. [Google Scholar] [CrossRef]
- Li, D.; Kaplan, D.I.; Knox, A.S.; Crapse, K.P.; Diprete, D.P. Aqueous 99Tc, 129I and 137Cs removal from contaminated groundwater and sediments using highly effective low-cost sorbents. J. Environ. Radioact. 2014, 136, 56–63. [Google Scholar] [CrossRef]
- Yaming, L.; Mingliang, B.; Zhipeng, W.; Run, L.; Keliang, S.; Wangsuo, W. Organic modification of bentonite and its application for perrhenate (an analogue of pertechnetate) removal from aqueous solution. J. Taiwan Inst. Chem. Eng. 2016, 62, 104–111. [Google Scholar] [CrossRef]
- Yang, J.; Shi, K.; Wu, F.; Tong, J.; Su, Y.; Liu, T.; He, J.; Mocilac, P.; Hou, X.; Wu, W.; et al. Technetium-99 decontamination from radioactive wastewater by modified bentonite: Batch, column experiment and mechanism investigation. Chem. Eng. J. 2022, 428, 131333. [Google Scholar] [CrossRef]
- Hong, S.; Kim, J.; Um, W. Surface Modification of Bentonite for the Improvement of Radionuclide Sorption. J. Nucl. Fuel Cycle Waste Technol. 2022, 20, 1–12. [Google Scholar] [CrossRef]
- Soliman, M.A.; Rashad, G.M.; Mahmoud, M.R. Organo-modification of montmorillonite for enhancing the adsorption efficiency of cobalt radionuclides from aqueous solutions. Environ. Sci. Pollut. Res. 2019, 26, 10398–10413. [Google Scholar] [CrossRef]
- Hu, T.; Tan, L. Modifying attapulgite clay by ammonium citrate tribasic for the removal of radionuclide Th (IV) from aqueous solution. J. Radioanal. Nucl. Chem. 2012, 292, 819–827. [Google Scholar] [CrossRef]
- Ding, D.; Lei, Z.; Yang, Y.; Zhang, Z. Efficiency of transition metal modified akadama clay on cesium removal from aqueous solutions. Chem. Eng. J. 2014, 236, 17–28. [Google Scholar] [CrossRef]
- Shakir, K.; Ghoneimy, H.F.; Hennawy, I.T.; Elkafrawy, A.F.; Beheir, S.G.E.; Refaat, M. Simultaneous removal of chromotrope 2B and radionuclides from mixed radioactive process wastewater using organo-bentonite. Eur. J. Chem. 2011, 2, 83–93. [Google Scholar] [CrossRef]
- Guerra, D.L.; Viana, R.R.; Airoldi, C. Adsorption of thorium cation on modified clays MTTZ derivative. J. Hazard. Mater. 2009, 168, 1504–1511. [Google Scholar] [CrossRef]
- Guerra, D.L.; Viana, R.R.; Airoldi, C. Use of raw and chemically modified hectorites as adsorbents for Th (IV), U (VI) and Eu (III) uptake from aqueous solutions. Desalination 2010, 260, 161–171. [Google Scholar] [CrossRef]
- Makarov, A.V.; Safonov, A.V.; Konevnik, Y.V.; Teterin, Y.A.; Maslakov, K.I.; Teterin, A.Y.; Karaseva, Y.Y.; German, K.E.; Zakharova, E.V. Activated carbon additives for technetium immobilization in bentonite-based engineered barriers for radioactive waste repositories. J. Hazard. Mater. 2021, 401, 123436. [Google Scholar] [CrossRef]
- Klinkenberg, M.; Brandt, F.; Baeyens, B.; Bosbach, D.; Fernandes, M.M. Adsorption of barium and radium on montmorillonite: A comparative experimental and modelling study. Appl. Geochem. 2021, 135, 105117. [Google Scholar] [CrossRef]
- Stockmann, M.; Fritsch, K.; Bok, F.; Fernandes, M.M.; Baeyens, B.; Steudtner, R.; Müller, K.; Nebelung, C.; Brendler, V.; Stumpf, T.; et al. New insights into U (VI) sorption onto montmorillonite from batch sorption and spectroscopic studies at increased ionic strength. Sci. Total Environ. 2022, 806, 150653. [Google Scholar] [CrossRef]
- Glaus, M.A.; Frick, S.; Van Loon, L.R. A coherent approach for cation surface diffusion in clay minerals and cation sorption models: Diffusion of Cs+ and Eu3+ in compacted illite as case examples. Geochim. Cosmochim. Acta 2020, 274, 79–96. [Google Scholar] [CrossRef]
- Fernandes, M.M.; Baeyens, B. Cation exchange and surface complexation of lead on montmorillonite and illite including competitive adsorption effects. Appl. Geochem. 2019, 100, 190–202. [Google Scholar] [CrossRef]
- Fernandes, M.M.; Scheinost, A.C.; Baeyens, B. Sorption of trivalent lanthanides and actinides onto montmorillonite: Macroscopic, thermodynamic and structural evidence for ternary hydroxo and carbonato surface complexes on multiple sorption sites. Water Res. 2016, 99, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, M.M.; Baeyens, B.; Dähn, R.; Scheinost, A.C.; Bradbury, M.H. U (VI) sorption on montmorillonite in the absence and presence of carbonate: A macroscopic and microscopic study. Geochim. Cosmochim. Acta 2012, 93, 262–277. [Google Scholar] [CrossRef]
Types of Materials | Used Clays and Radionuclides /Metal Ions | Experimental Conditions, Characterization Techniques and Sorption Performances | References |
---|---|---|---|
NCs | Montmorillonite U(VI) | U(VI) = 30 ppm; pH = 4.0–7.0; Ionic strength (I) = ND; contact time = 30 min (m); temperature = 25–45 °C; sorbent concentration: ND. Characterization techniques: XRF, SEM and FT-IR spectroscopy. Performance: 72% U(VI) removal; 18.13 mgg−1 maximum adsorption capacity. | Yu et al. [97] |
Bentonite U(VI) and Cs(I) | U(VI) = 3.7 × 10−6 M, Cs(I) = 7.5 × 10−6 M; pH = 7.0–8.0; I = ND; contact time = 14 days (d); temperature = 25 °C; sorbent concentration: 0.1–2.0 g/L. Characterization techniques: XRD and zeta potential measurement. Performance: approx.5% U(VI) removal; 31% Cs(I) removal. | Tran et al. [98] | |
Bentonite and kaolinite U(VI) and Np(VI) | U(VI) = 5 × 10−7 M, Np(VI)= 1 × 10−7 M; pH = 8.0–13.0; I = 0.1 M; contact time = 7 d for U(VI) and 3 d for Np(VI); temperature = 25 °C; sorbent concentration: 2.0–10.0 g/L. Characterization techniques: TRLFS and zeta potential measurement. Performance: >90% U(VI) and Np(VI)removal. | Philipp et al. [99] | |
Bentonite Cs(I), Sr(II), Ba(II) and Eu(III) | Cs(I), Sr(II), Ba(II) and Eu(III) = 10 ppm; pH = 2–12; I = 0.01 M; contact time = 20 m; temperature = 25 °C; sorbent concentration = 10 g/L. Characterization techniques: XRD, XRF, SEM and ICP-OES. Performance: = 87% Cs(I) removal, 98% Sr(II) removal, 100% Ba(II) and Eu(III) removal. | Seliman et al. [100] | |
Bentonite Cs(I) | Cs(I) = 10−11–10−2 M; pH = 2–11; I = 0.01 M; contact time = 1–300 h (h); sorbent concentration = 1 g/L. Characterization techniques: XRD, FT-IR, XRF and BET analysis. Performance: approx. 100% Cs(I) removal. | Semenko-va et al. [101] | |
Bentonite Cs(I) and Sr(II) | Cs(I), Sr(II) = 2.5 × 10−5–5 × 10−3 M; pH = 2.0–10.00; I = 0.01 M; contact time = ND; sorbent concentration = 10.0 g/L. Characterization techniques: XRD, FT-IR and zeta potential measurement. Performance: 90–100% Cs(I) and Sr(II) removal. | Izosimova et al. [103] | |
K10-montmorill-onite Ce (III) and Pb (II) | Ce (III) and Pb (II)= 2–300 ppm; pH = 2 and 6; I = ND; contact time = 2–4 h; sorbent concentration = 0.4 g/L. Characterization techniques: XRD and UV-visible spectroscopy. Performance: approx. 100% Ce (III) and Pb (II) removal. | Parisi [104] | |
MCs | HDPy-modified bentonite ReO4− | Re(VII) = ND; pH = 2.0–11.0; I = 0.001–0.1 M; contact time = 1–240 m; temperature = 25–55 °C; sorbent concentration = ND. Characterization techniques: FT-IR, XPS and TEM-EDS. Performance: approx. 100% ReO4− removal. | Yang et al. [118] |
Thoron-modified montmorillonite Co(II) | Co(II) = 1 × 10−4–4 × 10−4 M; pH = 2.5–8.0; I = 0.0001–0.1 M; contact time = 0–120 m; temperature = 30–60 °C; sorbent concentration = 10.0 g/L. Characterization techniques: XRD and FT-IR spectroscopy. Performance: approx. 100% Co(II) removal. | Soliman et al. [120] | |
Ammonium-citrate tribasic-modified attapulgite clay Th (IV) | Th(IV) = 5–15 ppm; pH = 1.5–11.5; I = 0.001–0.1 M; contact time = 24 h; temperature = 25 °C; sorbent concentration = 0.3 g/L. Characterization techniques: XRD and FT-IR analyses. Performance: approx. 100% Th(IV) removal. | Hu and Tan [121] | |
Nickel (Ni) modified Akadama clay (AC) Cs(I) | Cs(I) = 10 ppm; pH = 2.0–12.0; I = ND; contact time = 0–24 h; temperature = 15–35 °C; sorbent concentration = 2.5–10 g/L. Characterization techniques: XRD, FT-IR, N2 ads–des isotherms, SEM, EDS and TG/DTA. Performance: >90% Cs(I) removal. | Ding et al. [122] | |
Cetyltrimethylammonium-bromide (CTAB) modified bentonite (137Cs), (60Co) and (152 + 154Eu) | (137Cs), (60Co) and (152 + 154Eu) = 1 × 10−6 M; pH = 1.2–12.7; I = ND; contact time = 0–4 h; temperature = 30–50 °C; sorbent concentration = 10.0 g/L. Characterization techniques: XRD, XRF and IR spectroscopy. Performance: approx. 100% (137Cs), (60Co) and (152 + 154Eu) removal. | Shakir et al. [123] | |
5-mercapto-1-methyltetrazole-modified diquite and bentonite Th(IV) | Th(IV) = 1.20–2.0 × 10−5 M; pH = 1.0–8.0; I = ND; contact time = 24 h; temperature = 25 °C; sorbent concentration = 1.0g/L. Characterization techniques: XRD, N2 ads/des isotherms, TEM and 13C NMR spectroscopy. Performance: 10.45 × 10−2 and 12.76 × 10−2 mmol/g Th(IV) adsorbed onto DMTTZ and BMTTZ, respectively. | Guerra et al. [124] | |
2-mercaptobenzi-midazole-modified hectorite clay Th4 +, U6+ and Eu3+ | Th4+, U6+ and Eu3+ = 1.25–2.5 × 10−5 M; pH = 1.0–8.0; I = ND; contact time = 12 h; temperature = 25–40 °C; sorbent concentration = 1.0 g/L. Characterization techniques: SEM, MAS 29Si and 13C NMR spectroscopy. Performance: 11.63 mmol/g, 12.85 mmol/g and 14.01 mmol/g removal of Th4+, U6+ and Eu3+, respectively. | Guerra et al. [125] | |
Activated-carbon-modified bentonite, TcO4− | TcO4− = 4 × 10−6 M; pH = ND; I = ND; contact time = 14 d; temperature = 25 °C; sorbent concentration = 1/40 (solid to liquid ratio, S/L). Characterization techniques: XPS, XANES and EXAFS. Performance: approx. 94% TcO4− removal. | Makarov et al. [126] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, B.K.; Um, W. Application of Clay Materials for Sorption of Radionuclides from Waste Solutions. Minerals 2023, 13, 239. https://doi.org/10.3390/min13020239
Singh BK, Um W. Application of Clay Materials for Sorption of Radionuclides from Waste Solutions. Minerals. 2023; 13(2):239. https://doi.org/10.3390/min13020239
Chicago/Turabian StyleSingh, Bhupendra Kumar, and Wooyong Um. 2023. "Application of Clay Materials for Sorption of Radionuclides from Waste Solutions" Minerals 13, no. 2: 239. https://doi.org/10.3390/min13020239
APA StyleSingh, B. K., & Um, W. (2023). Application of Clay Materials for Sorption of Radionuclides from Waste Solutions. Minerals, 13(2), 239. https://doi.org/10.3390/min13020239