Mineralogical and Geochemical Constraints on the Occurrence Forms of REEs in Carboniferous Karst Bauxite, Central Guizhou Province, Southwest China: A Case Study of Lindai Bauxite
Abstract
:1. Introduction
2. Geological Setting
2.1. Regional Geology
2.2. Deposit Geology
3. Sampling and Analytical Methods
4. Results and Discussion
4.1. Mineralogy and Petrography
4.2. Geochemical Compositions
4.3. REE Minerals
4.4. Genesis of REE Minerals
4.4.1. Monazite
4.4.2. Xenotime
4.5. Occurrence Forms of REE
4.6. Implications for the Formation of Bauxite
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. Study on the EU’s list of Critical Raw Materials–Final Report. 2020. Available online: https://ec.europa.eu/docsroom/documents/42883/attachments/1/translations/en/renditions/native (accessed on 5 June 2020).
- Linnen, R.L.; Samson, I.M.; Williams-Jones, A.E.; Chakhmouradian, A.R. Geochemistry of the rare-earth elements, Nb, Ta, Hf and Zr deposits. In Treatise on Geochemistry, 2nd ed.; Turekian, K.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 543–568. [Google Scholar]
- Reinhardt, N.; Proenza, J.A.; Villanova-de-Benavent, C.; Aiglsperger, T.; Bover-Arnal, T.; Torró, L.; Salas, R.; Dziggel, A. Geochemistry and Mineralogy of Rare Earth Elements (REE) in Bauxitic Ores of the Catalan Coastal Range, NE Spain. Minerals 2018, 8, 562–586. [Google Scholar] [CrossRef] [Green Version]
- Voncken, J.H.L. The ore minerals and major ore deposits of the rare earths. In The Rare Earth Elements; Voncken, J.H.L., Ed.; Springer: Cham, Switzerland, 2016; pp. 15–52. [Google Scholar]
- Liu, X.F.; Wang, Q.F.; Zhang, Q.Z.; Zhang, Y.; Li, Y. Genesis of REE minerals in the karstic bauxite in western Guangxi, China, and its constraints on the deposit formation conditions. Ore Geol. Rev. 2016, 75, 100–115. [Google Scholar] [CrossRef]
- Kiaeshkevarian, M.; Calagari, A.A.; Abedini, A.; Shamanian, G. Geochemical and mineralogical features of karst bauxite deposits from the Alborz zone (Northern Iran): Implications for conditions of formation, behavior of trace and rare earth elements and parental affinity. Ore Geol. Rev. 2016, 125, 103691. [Google Scholar] [CrossRef]
- Abedini, A.; Khosravi, M.; Dill, H.G. Rare earth element geochemical characteristics of the late Permian Badamlu karst bauxite deposit, NW Iran. J. Afr. Earth Sci. 2020, 172, 103974. [Google Scholar] [CrossRef]
- Ahmadnejad, F.; Zamanian, H.; Taghipour, B.; Zarasvandi, A.; Buccione, R.; Ellahi, S.S. Mineralogical and geochemical evolution of the Bidgol bauxite deposit, Zagros Mountain Belt, Iran: Implications for ore genesis, rare earth elements fractionation and parental affinity. Ore Geol. Rev. 2017, 86, 755–783. [Google Scholar] [CrossRef]
- Long, Y.Z.; Chi, G.X.; Liu, J.P.; Jin, Z.G.; Dai, T.G. Trace and rare earth elements constraints on the sources of the Yunfeng paleo-karstic bauxite deposit in the Xiuwen-Qingzhen area, Guizhou, China. Ore Geol. Rev. 2017, 91, 404–418. [Google Scholar] [CrossRef]
- Abedini, A.; Mongelli, G.; Khosravi, M.; Sinisi, R. Geochemistry and secular trends in the middle–late Permian karst bauxite deposits, northwestern Iran. Ore Geol. Rev. 2020, 124, 103660. [Google Scholar] [CrossRef]
- Abedini, A.; Mongelli, G.; Khosravi, M. Geochemistry of the early Jurassic Soleiman Kandi karst bauxite deposit, Irano–Himalayan belt, NW Iran: Constraints on bauxite genesis and the distribution of critical raw materials. J. Geochem. Explor. 2022, 241, 107056. [Google Scholar] [CrossRef]
- Abedini, A.; Khosravi, M.; Calagari, A.A. Geochemical characteristics of the Arbanos karst-type bauxite deposit, NW Iran: Implications for parental affinity and factors controlling the distribution of elements. J. Geochem. Explor. 2019, 200, 249–265. [Google Scholar] [CrossRef]
- Abedini, A.; Mongelli, G.; Khosravi, M. Geochemical constraints on the middle Triassic Kani Zarrineh karst bauxite deposit, Irano–Himalayan belt, NW Iran: Implications for elemental fractionation and parental affinity. Ore Geol. Rev. 2021, 133, 104099. [Google Scholar] [CrossRef]
- Gao, L.; Li, J.H.; Wang, D.H.; Xiong, X.Y.; Yi, C.W.; Han, M.Z. Outline of Metallogenic Regularity of Bauxite Deposits in China. Acta Geol. Sin. 2015, 89, 2072–2084. [Google Scholar]
- Wang, Q.F.; Deng, J.; Liu, X.F.; Zhang, Q.Z.; Sun, S.L.; Jiang, C.Z.; Zhou, F. Discovery of the REE minerals and its geological significance in the Quyang bauxite deposit, West Guangxi, China. J. Asian Earth Sci. 2010, 39, 701–712. [Google Scholar] [CrossRef]
- Deady, E.A.; Mouchos, E.; Goodenough, K.; Williamson, B.J.; Wall, F. A review of the potential for rare-earth element resources from European red muds: Examples from Seydişehir, Turkey and Parnassus-Giona, Greece. Mineral. Mag. 2016, 80, 43–61. [Google Scholar] [CrossRef] [Green Version]
- Gamaletsos, P.N.; Godelitsas, A.; Filippidis, A.; Pontikes, Y. The rare Earth elements potential of Greek Bauxite active Mines in the Light of a Sustainable REE demand. J. Sustain. Metall. 2018, 5, 20–47. [Google Scholar] [CrossRef]
- Horbe, A.M.C.; Costa, M.L.D. Geochemical evolution of a lateritic Sn Zr Th Nb Y REE-bearing ore body derived fromapogranite: The case of Pitinga, Amazonas-Brazil. J. Geochem. Explor. 1999, 66, 339–351. [Google Scholar] [CrossRef]
- Li, Z.H.; Din, J.; Xu, J.S.; Liao, C.G.; Yin, F.G.; Lu, T.; Cheng, L.; Li, J.M. Discovery of the REE minerals in the Wulong–Nanchuan bauxite deposits, Chongqing, China: Insights on conditions of formation and processes. J. Geochem. Explor. 2013, 133, 88–102. [Google Scholar] [CrossRef]
- Wang, X.M.; Jiao, Y.Q.; Du, Y.S.; Ling, W.L.; Wu, L.Q.; Cui, T.; Zhou, Q.; Jin, Z.G.; Lei, Z.Y.; Weng, S.F. REE mobility and Ce anomaly in bauxite deposit of WZD area, Northern Guizhou, China. J. Geochem. Explor. 2013, 133, 103–117. [Google Scholar] [CrossRef]
- Zhu, K.Y.; Su, H.M.; Jiang, S.Y. Mineralogical control and characteristics of rare earth elements occurrence in Carboniferous bauxites from western Henan Province, north China: A XRD, SEM-EDS and LA-ICP-MS analysis. Ore Geol. Rev. 2019, 114, 10314. [Google Scholar] [CrossRef]
- Sun, L.; Xiao, K.Y.; Lou, D.B. Mineral prospectivity of bauxite resources in China. Earth Sci. Front. 2018, 25, 82–94. (In Chinese) [Google Scholar]
- Gao, D.D.; Sheng, Z.Q.; Shi, S.H.; Chen, L.A. Studies on the Bauxite Deposit in Central Guizhou; Guizhou Science and Technology Publishing House: Guiyang, China, 1992; pp. 1–152. (In Chinese) [Google Scholar]
- Ling, K.Y.; Zhu, X.Q.; Tang, H.S.; Wang, Z.G.; Yan, H.W.; Han, T.; Chen, W.Y. Mineralogical characteristics of the karstic bauxite deposits in the Xiuwen ore belt, Central Guizhou Province, Southwest China. Ore Geol. Rev. 2015, 65, 84–96. [Google Scholar] [CrossRef]
- Ling, K.Y.; Zhu, X.Q.; Tang, H.S.; Li, S.X. Importance of hydrogeological conditions during formation of the karstic bauxite deposits, Central Guizhou Province, Southwest China: A case study at Lindai deposit. Ore Geol. Rev. 2017, 82, 198–216. [Google Scholar] [CrossRef]
- Wang, R.X.; Wang, Q.F.; Huang, Y.X.; Yang, S.J.; Liu, X.F.; Zhou, Q. Combined tectonic and paleogeographic controls on the genesis of bauxite in the Early Carboniferous to Permian Central Yangtze Island. Ore Geol. Rev. 2018, 101, 468–480. [Google Scholar] [CrossRef]
- Yang, R.D.; Gao, J.B.; Zhao, K.; Yu, J.L.; Zhu, C.L.; Gao, L.; Chen, J.Y.; Zhou, R.X. Roof and Floor Characteristics of Bauxite in Qingzhen, Guizhou and Its Implication for Bauxite Mineralization. Acta Geol. Sinca 2018, 92, 2155–2165, (in Chinese with English abstract). [Google Scholar]
- Luo, C.K.; Yang, R.D.; Chen, J.; Gao, L.; Xu, H.; Ni, X.R. Genesis of the Carboniferous karstic bauxites in Qingzhen region, central Guizhou, southwest China. J. Geochem. Explor. 2022, 235, 106955. [Google Scholar] [CrossRef]
- Wu, L.; Huang, Z.L.; Wang, Z.L.; Wang, Y.F.; Chen, J.; Wu, T. Geochemistry of bauxite in the Maochang deposit, central Guizhou. Acta Mineral. Sin. 2021, 41, 475–484. (In Chinese) [Google Scholar]
- Liu, W.; Xu, X.S.; Yu, Q. Discussion on Forming Mechanism and Evolution of the Central Guizhou Palaeouplift. Acta Sedimentol. Sin. 2011, 29, 658–664, (In Chinese with English abstract). [Google Scholar]
- Deng, X.; Yang, K.G.; Liu, Y.L.; She, Z.B. Characteristics and tectonic evolution of Qianzhong Uplift. Earth Science Frontiers 2010, 17, 79–89, (In Chinese with English abstract). [Google Scholar]
- Liu, P.; Liao, Y.C. A tentative discussion on the age of bauxite-bearing rock series in Central Guizhou-Southern Chongqing area. Geol. China 2012, 39, 661–682, (In Chinese with English abstract). [Google Scholar]
- Guizhou Geological Survey Institute. Regional Geology of China: Geological Marks of Guizhou Province; Geological Publishing House: Beijing, China, 2017. (In Chinese) [Google Scholar]
- Luo, C.K.; Yang, R.D.; Gao, J.B.; Umair, M.; Wang, L.B.; Gao, L. Viséan Fossil Plants from the Jiujialu Formation in Central Guizhou Province: Implications for Age of Bauxite and Palaeoenvironment. Acta Geol. Sin. 2020, 94, 2165–2177. [Google Scholar] [CrossRef]
- Yin, Z.M. The Texture and Structure features of Carboniferous Bauxite in China and Its Emplacement Mechanism. J. Cent. South Univ. Min. Metall. 1988, 19, 357–363. [Google Scholar]
- Clavier, N.; Mesbah, A.; Szenknect, S.; Dacheux, N. Monazite, rhabdophane, xenotime & churchite: Vibrational spectroscopy of gadolinium phosphate polymorphs. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 205, 85–94. [Google Scholar]
- Rapp, R.P.; Watson, E.B. Monazite solubility and dissolution kinetics: Implications for the thorium and light rare earth chemistry of felsic magmas. Contrib. Mineral. Petrol. 1986, 94, 304–316. [Google Scholar] [CrossRef]
- Forster, H.J. The chemical composition of REE-Y-Th-U-rich accessory minerals in peraluminous granites of the Erzgebirge-Fichtelgebirge region, Germany. Part II: Xenotime. Am. Mineral. 1998, 83, 1302–1315. [Google Scholar] [CrossRef]
- Williams, M.L.; Jercinovic, M.J.; Hetherington, C.J. Microprobe monazite geochronology: Understanding geologic processes by integrating composition and chronology. Annu. Rev. Earth Planet. Sci. 2007, 35, 137–175. [Google Scholar] [CrossRef] [Green Version]
- Santana, I.V.; Wall, F.; Botelho, N.F. Occurrence and behavior of monazite-(Ce) and xenotime-(Y) in detrital and saprolitic environments related to the Serra Dourada granite, Goiás/Tocantins State, Brazil: Potential for REE deposits. J. Geochem. Explor. 2015, 155, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Gao, J.B.; Yang, R.D.; Du, L.J.; Liu, Z.C.; Chen, J.; Feng, K.N.; Yang, G.H. Genesis for Rare Earth Elements Enrichment in the Permian Manganese Deposits in Zunyi, Guizhou Province, SW China. Acta Geol. Sin. 2020, 94, 90–102. [Google Scholar] [CrossRef]
- Maksimović, Z.; Pantó, G. Contribution to the geochemistry of the rare earth elements in the karst-bauxite deposits of Yugoslavia and Greece. Geoderma 1991, 51, 93–109. [Google Scholar] [CrossRef]
- Mongelli, G. Ce-anomalies in the textural components of Upper Cretaceous karst bauxites from the Apulian carbonate platform (southern Italy). Chem. Geol. 1997, 140, 69–79. [Google Scholar] [CrossRef]
- Mondillo, N.; Balassone, G.; Boni, M.; Rollinson, G. Karst bauxites in the Campania Apennines (southern Italy): A new approach. Period. Mineral. 2011, 80, 407–432. [Google Scholar]
- Radusinović, S.; Jelenković, R.; Pačevski, A.; Simić, V.; Božović, D.; Holclajtner-Antunović, I.; Životic, D. Content and mode of occurrences of rare earth elements in the Zagrad karstic bauxite deposit (Nikšić area, Montenegro). Ore Geol. Rev. 2017, 80, 406–428. [Google Scholar] [CrossRef]
- Rudmin, M.; Reva, I.; Sokol, E.; Abdullayev, E.; Ruban, A.; Kudryavtsev, A.; Tolkachev, O.; Mazurov, A. Minerals of Rare Earth Elements in High-Phosphorus Ooidal Ironstones of the Western Siberia and Turgai Depression. Minerals 2020, 10, 11. [Google Scholar] [CrossRef] [Green Version]
- Schandl, E.S.; Gorton, M.P. A textural and geochemical guide to the identification of hydrothermal monazite: Criteria for selection of samples for dating epigenetic hydrothermal ore deposits. Econ. Geol. 2004, 99, 1027–1035. [Google Scholar] [CrossRef]
- Aleinikoff, J.N.; Slack, J.F.; Lund, K.; Evans, K.V.; Fanning, C.M.; Mazdab, F.K.; Wooden, J.L.; Pillers, R.M. Constraints on the Timing of Co-Cu±Au Mineralization in the Blackbird District, Idaho, Using SHRIMP U-Pb Ages of Monazite and Xenotime Plus Zircon Ages of Related Mesoproterozoic Orthogneisses and Metasedimentary Rocks. Econ. Geol. 2012, 107, 1143–1175. [Google Scholar] [CrossRef]
- Liu, X.F.; Wang, Q.F.; Zhang, Q.Z.; Feng, Y.W.; Cai, S.H. Mineralogical characteristics of the superlarge Quaternary bauxite deposits in Jingxi and Debao counties, western Guangxi, China. J. Asian Earth Sci. 2012, 52, 53–62. [Google Scholar] [CrossRef]
- Liu, X.F.; Wang, Q.F.; Feng, Y.W.; Li, Z.M.; Cai, S.H. Genesis of the Guangou karstic bauxite deposit in western Henan, China. Ore Geol. Rev. 2013, 55, 162–175. [Google Scholar] [CrossRef]
- Yang, S.J.; Wang, Q.F.; Deng, J.; Wang, Y.Z.; Kang, W.; Liu, X.F.; Li, Z.M. Genesis of karst bauxite-bearing sequences in Baofeng, Henan (China), and the distribution of critical metals. Ore Geol. Rev. 2019, 115, 103–161. [Google Scholar] [CrossRef]
- Zhang, L.; Park, C.Y.; Wang, G.H.; Wu, C.J.; Santosh, M.; Chung, D.H.; Song, Y.G. Phase transformation processes in karst-type bauxite deposit from Yunnan area, China. Ore Geol. Rev. 2017, 89, 407–420. [Google Scholar] [CrossRef]
- Wang, R.X.; Wang, Q.F.; Uysal, I.T.; Ramanaidou, E.; Deng, J.; Todd, A. Mesozoic Hydrothermal Overprint on Carboniferous Bauxite in China. Econ. Geol. 2021, 116, 787–800. [Google Scholar] [CrossRef]
- Coppin, F.; Berger, G.; Bauer, A.; Castet, S.; Loubet, M. Sorption of lanthanides on smectite and kaolinite. Chem. Geol. 2002, 182, 57–68. [Google Scholar] [CrossRef]
- Karakaya, N. REE and HFS element behaviour in the alteration facies of the Erenler Dağı Volcanics (Konya, Turkey) and kaolinite occurrence. J. Geochem. Explor. 2009, 101, 185–208. [Google Scholar] [CrossRef]
- Menéndez, I.; Campeny, M.; Quevedo-González, L.; Mangas, J.; Llovet, X.; Tauler, E.; Barŕon, V.; Torrent, J.; Méndez-Ramos, J. Distribution of REE-bearing minerals in felsic magmatic rocks and paleosols from Gran Canaria, Spain: Intraplate oceanic islands as a new example of potential, non-conventional sources of rare-earth elements. J. Geochem. Explor. 2019, 204, 270–288. [Google Scholar] [CrossRef]
- Lan, Z.W.; Li, X.H.; Sano, Y.; Takahata, N.; Kagoshima, T.; Zhang, S.J.; Zhang, G.Y.; Liao, X.; Tang, X.; Gu, L.X.; et al. Two kinds of authigenic xenotime overgrowths in response to an Early Paleozoic tectonothermal event in South China. J. Asian Earth Sci. 2018, 172, 423–442. [Google Scholar] [CrossRef]
- Rasmussen, B. Early-diagenetic REE-phosphate minerals (florencite, gorceixite, crandallite, and xenotime) in marine sandstones; a major sink for oceanic phosphorus. Am. J. Sci. 1996, 296, 601–632. [Google Scholar] [CrossRef]
- Rasmussen, B.; Buick, R.; Taylor, W.R. Removal of oceanic REE by authigenic precipitation of phosphatic minerals. Earth Planet. Sci. Lett. 1998, 164, 135–149. [Google Scholar] [CrossRef]
- Laveuf, C.; Cornu, S. A review on the potentiality of Rare Earth Elements to trace pedogenetic processes. Geoderma 2009, 154, 1–12. [Google Scholar] [CrossRef]
- Ohta, A.; Kawabe, I. REE(III) adsorption into Mn dioxide (a-MnO2) and Fe oxyhyroxide: Ce (III) oxidation by a-MnO2. Geochim. Cosmochim. Acta 2001, 65, 695–703. [Google Scholar] [CrossRef]
- Ahmadnejad, F.; Mongelli, G. Geology, geochemistry, and genesis of REY minerals of the late Cretaceous karst bauxite deposits, Zagros Simply Folded Belt, SW Iran: Constraints on the ore-forming process. J. Geochem. Explor. 2022, 240, 107030. [Google Scholar] [CrossRef]
- Kühnel, R.A. The Role of Cationic and Anionic Scavengers in Laterites. Chem. Geol. 1987, 60, 31–40. [Google Scholar] [CrossRef]
- Mondillo, N.; Balassone, G.; Boni, M.; Chelle-Michou, C.; Cretella, S.; Mormone, A.; Putzolu, F.; Santoro, L.; Scognamiglio, G.; Tarallo, M. Rare Earth Elements (REE) in Al- and Fe-(Oxy)-Hydroxides in Bauxites of Provence and Languedoc (Southern France): Implications for the Potential Recovery of REEs as By-Products of Bauxite Mining. Minerals 2019, 9, 504. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar]
SiO2 | Al2O3 | TiO2 | Fe2O3 | Na2O | K2O | CaO | MgO | MnO | P2O5 | Zr | Y | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
La | −0.41 | 0.44 | 0.41 | −0.05 | 0.05 | 0.02 | −0.39 | 0.39 | −0.23 | 0.73 * | −0.09 | 0.39 |
Ce | −0.45 | 0.44 | 0.43 | 0.08 | 0.02 | 0.01 | −0.33 | −0.41 | −0.09 | 0.83 ** | −0.02 | 0.46 |
Pr | −0.25 | 0.29 | 0.25 | −0.12 | 0.24 | 0.13 | −0.20 | −0.19 | −0.27 | 0.70 * | −0.27 | 0.36 |
Nd | −0.19 | 0.21 | 0.16 | −0.05 | 0.32 | 0.16 | −0.08 | −0.10 | −0.19 | 0.74 * | −0.31 | 0.42 |
Sm | −0.22 | 0.09 | 0.06 | 0.43 | 0.25 | 0.05 | 0.07 | −0.08 | 0.32 | 0.89 ** | −0.08 | 0.74 * |
Eu | −0.29 | 0.12 | 0.11 | 0.57 | 0.16 | −0.01 | 0.02 | −0.15 | 0.46 | 0.92 ** | 0.05 | 0.83 ** |
Gd | −0.34 | 0.14 | 0.15 | 0.69 * | 0.06 | −0.07 | −0.04 | −0.23 | 0.59 | 0.92 ** | 0.18 | 0.90 ** |
Tb | −0.43 | 0.22 | 0.25 | 0.75 * | −0.04 | −0.16 | −0.16 | −0.34 | 0.63 | 0.93 ** | 0.30 | 0.95 ** |
Dy | −0.50 | 0.28 | 0.32 | 0.79 * | −0.13 | −0.20 | −0.24 | −0.43 | 0.66 | 0.92 ** | 0.39 | 0.98 ** |
Ho | −0.54 | 0.32 | 0.38 | 0.78 * | −0.19 | −0.22 | −0.27 | −0.47 | 0.65 | 0.89 ** | 0.45 | 0.99 ** |
Er | −0.58 | 0.38 | 0.44 | 0.76 * | −0.25 | −0.25 | −0.31 | −0.52 | 0.62 | 0.88 ** | 0.49 | 0.99 ** |
Tm | −0.65 | 0.46 | 0.52 | 0.72 * | −0.31 | −0.30 | −0.37 | −0.59 | 0.57 | 0.87 ** | 0.53 | 0.98 ** |
Yb | −0.68 * | 0.51 | 0.57 | 0.67 | −0.33 | −0.31 | −0.41 | −0.62 | 0.50 | 0.86 ** | 0.53 | 0.96 ** |
Lu | −0.70 * | 0.54 | 0.59 | 0.64 | −0.34 | −0.35 | −0.41 | −0.64 | 0.48 | 0.84 ** | 0.54 | 0.95 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, C.; Liang, P.; Yang, R.; Gao, J.; Chen, Q.; Mo, H. Mineralogical and Geochemical Constraints on the Occurrence Forms of REEs in Carboniferous Karst Bauxite, Central Guizhou Province, Southwest China: A Case Study of Lindai Bauxite. Minerals 2023, 13, 320. https://doi.org/10.3390/min13030320
Luo C, Liang P, Yang R, Gao J, Chen Q, Mo H. Mineralogical and Geochemical Constraints on the Occurrence Forms of REEs in Carboniferous Karst Bauxite, Central Guizhou Province, Southwest China: A Case Study of Lindai Bauxite. Minerals. 2023; 13(3):320. https://doi.org/10.3390/min13030320
Chicago/Turabian StyleLuo, Chaokun, Peng Liang, Ruidong Yang, Junbo Gao, Qun Chen, and Hongcheng Mo. 2023. "Mineralogical and Geochemical Constraints on the Occurrence Forms of REEs in Carboniferous Karst Bauxite, Central Guizhou Province, Southwest China: A Case Study of Lindai Bauxite" Minerals 13, no. 3: 320. https://doi.org/10.3390/min13030320
APA StyleLuo, C., Liang, P., Yang, R., Gao, J., Chen, Q., & Mo, H. (2023). Mineralogical and Geochemical Constraints on the Occurrence Forms of REEs in Carboniferous Karst Bauxite, Central Guizhou Province, Southwest China: A Case Study of Lindai Bauxite. Minerals, 13(3), 320. https://doi.org/10.3390/min13030320