Recovery of Copper and Gold from Waste Printed Circuit Boards Using Monosodium Glutamate Supplemented with Hydrogen Peroxide
Abstract
:1. Introduction
2. Materials and Methods
2.1. WPCBs Preparation
2.2. Aqua-Regia Digestion and Analysis of Metal Content
2.3. Eliminating the Solder Mask Layer of WPCBs
2.4. Leaching Processes and Analytical Methods
2.4.1. The First Leaching
2.4.2. The Second Leaching
2.4.3. Analytical Methods
2.5. Copper Recovery
2.6. Adsorption and Recovery of Gold
2.6.1. Gold Adsorption
2.6.2. Pre-Elution of Impurities
2.6.3. Gold Elution
2.6.4. Gold EW
2.7. Statistical Analysis
3. Results and Discussion
3.1. Elemental Composition of WPCBs
3.2. Leaching of The Untreated WPCBs
3.2.1. The First Leaching
3.2.2. The Second Leaching
3.3. Leaching of The Solder-Mask-Free WPCBs
3.3.1. The First Leaching
3.3.2. The Second Leaching
3.4. MSG Concentration
3.4.1. The First Leaching
3.4.2. The Second Leaching
3.5. H2O2 Concentration
3.5.1. The First Leaching
3.5.2. The Second Leaching
3.6. Impurities in the Leachates
3.7. Copper Recovery
3.8. Gold Recovery
3.8.1. Gold Adsorption
3.8.2. Pre-Elution of Impurities
3.8.3. Gold Elution
3.8.4. Recovery of Gold by Electrowinning (EW)
3.9. Overall Process for Recovery of Copper and Gold from Waste Printed Circuit Board by Monosodium Glutamate Supplemented with Hydrogen Peroxide
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adie, G.U.; Balogun, O.E.; Li, J.H.; Osibanjo, O. Trends in toxic metal levels in discarded laptop printed circuit boards. Adv. Mat. Res. 2014, 878, 413–419. [Google Scholar] [CrossRef]
- Saha, L.; Kumar, V.; Tiwari, J.; Rawat, S.; Singh, J.; Bauddh, K. Electronic waste and their leachates impact on human health and environment: Global ecological threat and management. Environ. Technol. Innov. 2021, 24, 102049. [Google Scholar] [CrossRef]
- Roy, H.; Rahman, T.U.; Suhan, M.B.K.; Al–Mamun, M.R.; Haque, S.; Islam, M.S. A comprehensive review on hazardous aspects and management strategies of electronic waste: Bangladesh perspectives. Heliyon 2022, 8, e09802. [Google Scholar] [CrossRef]
- Kumar, A.; Saini, H.S.; Kumar, S. Bioleaching of gold and silver from waste printed circuit boards by Pseudomonas balearica SAE1 isolated from an e–waste recycling facility. Curr. Microbiol. 2018, 75, 194–201. [Google Scholar] [CrossRef]
- Khaliq, A.; Rhamdhani, M.A.; Brooks, G.; Masood, S. Metal extraction processes for electronic waste and existing industrial routes: A review and Australian perspective. Resources 2014, 3, 152–179. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Qiu, K. A new technology for recycling materials from waste printed circuit boards. J. Hazard. Mater. 2010, 175, 823–828. [Google Scholar] [CrossRef]
- Kasper, A.C.; Carrillo Abad, J.; Garcia Gabaldon, M.; Veit, H.M.; Perez Herranz, V. Determination of the potential gold electrowinning from an ammoniacal thiosulphate solution applied to recycling of printed circuit board scraps. Waste Manag. Res. 2016, 34, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Perea, C.G.; Restrepo, O.J. Use of amino acids for gold dissolution. Hydrometallurgy 2018, 177, 79–85. [Google Scholar] [CrossRef]
- Oraby, E.A.; Li, H.; Eksteen, J.J. An alkaline glycine–based leach process of base and precious metals from powdered waste printed circuit boards. Waste Biomass Valorization 2020, 11, 3897–3909. [Google Scholar] [CrossRef]
- Altinkaya, P.; Wang, Z.; Korolev, I.; Hamuyuni, J.; Haapalainen, M.; Kolehmainen, E.; Lundström, M. Leaching and recovery of gold from ore in cyanide–free glycine media. Miner. Eng. 2020, 158, 106610. [Google Scholar] [CrossRef]
- Barani, K.; Dehghani, M.; Azadi, M.R.; Karrech, A. Leaching of a polymetal gold ore and reducing cyanide consumption using cyanide–glycine solutions. Miner. Eng. 2021, 163, 106802. [Google Scholar] [CrossRef]
- Kudpeng, K.; Thiravetyan, P. Influence of amino and organic acid structure on the extraction of gold from silicate ore. Min. Metall. Explor. 2021, 38, 2185–2194. [Google Scholar] [CrossRef]
- Li, H.; Oraby, E.; Eksteen, J.; Mali, T. Extraction of gold and copper from flotation tailings using glycine–ammonia solutions in the presence of permanganate. Minerals 2022, 12, 612. [Google Scholar] [CrossRef]
- Groudev, S.N.; Groudeva, V.I.; Spasova, I.I. Extraction of gold and silver from oxide ores by means of a combined biological and chemical leaching. Biohydrometall. Technol. 1993, 1, 417–425. [Google Scholar]
- Spasova, I.; Nicolova, M.; Veglio, F.; Groudev, S. Leaching of gold from a polymetallic sulphide ore. Annu. Univ. Min. Geol. Sodia 2006, 49, 213–216. [Google Scholar]
- Kudpeng, K.; Thayanukul, P.; Thiravetyan, P. Bioleaching of gold from silicate ore by Macrococcus caseolyticus and Acinetobacter calcoaceticus: Effect of medium, amino acids and growth supernatant. Minerals 2021, 11, 580. [Google Scholar] [CrossRef]
- Prasetyo, E.; Anderson, C.; Nurjaman, F.; Al Muttaqii, M.; Handoko, A.S.; Bahfie, F.; Mufakhir, F.R. Monosodium glutamate as selective lixiviant for alkaline leaching of zinc and copper from electric arc furnace dust. Metals 2020, 10, 644. [Google Scholar] [CrossRef]
- Perea, C.G.; Baena, O.R.; Ihle, C.F.; Estay, H. Copper leaching from wastes electrical and electronic equipment (WEEE) using alkaline monosodium glutamate: Thermodynamics and dissolution tests. Clean. Eng. Technol. 2021, 5, 100312. [Google Scholar] [CrossRef]
- Tauetsile, P.J.; Oraby, E.A.; Eksteen, J.J. Adsorption behaviour of copper and gold glycinates in alkaline media onto activated carbon. Part 2: Kinetics. Hydrometallurgy 2018, 178, 195–201. [Google Scholar] [CrossRef]
- Li, H.; Oraby, E.A.; Eksteen, J.J. Development of an integrated glycine–based process for base and precious metals recovery from waste printed circuit boards. Resour. Conserv. Recycl. 2022, 187, 106631. [Google Scholar] [CrossRef]
- Zhu, C.; Yang, S.; Wang, G.; Mo, R.; He, P.; Sun, J.; Xie, X. A new mild, clean and highly efficient method for the preparation of graphene quantum dots without by–products. J. Mater. Chem. B 2015, 3, 6871–6876. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, U.; Su, C.; Hocheng, H. Leaching of metals from printed circuit board powder by an Aspergillus niger culture supernatant and hydrogen peroxide. RSC Adv. 2016, 6, 43442–43452. [Google Scholar] [CrossRef]
- Torres, C.R.; Crastechini, E.; Feitosa, F.A.; Pucci, C.R.; Borges, A.B. Influence of pH on the effectiveness of hydrogen peroxide whitening. Oper. Dent. 2014, 39, E261–E268. [Google Scholar] [CrossRef] [Green Version]
- Eksteen, J.J.; Oraby, E.A. The leaching and adsorption of gold using low concentration amino acids and hydrogen peroxide: Effect of catalytic ions, sulphide minerals and amino acid type. Miner. Eng. 2015, 70, 36–42. [Google Scholar] [CrossRef]
- Balaji, R.; Prabhakaran, D.; Thirumarimurugan, M. A novel approach to epoxy coating removal from waste printed circuit boards by solvent stripping using NaOH under autoclaving condition. Clean. Mater. 2021, 1, 100015. [Google Scholar] [CrossRef]
- Jadhav, U.; Hocheng, H. Hydrometallurgical recovery of metals from large printed circuit board pieces. Sci. Rep. 2015, 5, 14574. [Google Scholar] [CrossRef] [Green Version]
- Kaliyaraj, D.; Rajendran, M.; Angamuthu, V.; Antony, A.R.; Kaari, M.; Thangavel, S.; Manikkam, R. Bioleaching of heavy metals from printed circuit board (PCB) by Streptomyces albidoflavus TN10 isolated from insect nest. Bioresour. Bioprocess. 2019, 6, 47. [Google Scholar] [CrossRef] [Green Version]
- Silva, W.C.; de Souza Corrêa, R.; da Silva, C.S.M.; Afonso, J.C.; da Silva, R.S.; Vianna, C.A.; Mantovano, J.L. Recovery of base metals, silicon and fluoride ions from mobile phone printed circuit boards after leaching with hydrogen fluoride and hydrogen peroxide mixtures. Waste Manag. 2018, 78, 781–788. [Google Scholar] [CrossRef]
- Rao, M.D.; Singh, K.K.; Morrison, C.A.; Love, J.B. Recycling copper and gold from e–waste by a two-stage leaching and solvent extraction process. Sep. Purif. Technol. 2021, 263, 118400. [Google Scholar] [CrossRef]
- Hannula, P.M.; Khalid, M.K.; Janas, D.; Yliniemi, K.; Lundström, M. Energy efficient copper electrowinning and direct deposition on carbon nanotube film from industrial wastewaters. J. Clean. Prod. 2019, 207, 1033–1039. [Google Scholar] [CrossRef]
- Fleming, C.A.; Mezei, A.; Bourricaudy, E.; Canizares, M.; Ashbury, M. Factors influencing the rate of gold cyanide leaching and adsorption on activated carbon, and their impact on the design of CIL and CIP circuits. Miner. Eng. 2011, 24, 484–494. [Google Scholar] [CrossRef]
- Eksteen, J.J.; Oraby, E.A.; Tanda, B.C.; Tauetsile, P.J.; Bezuidenhout, G.A.; Newton, T.; Bryan, I. Towards industrial implementation of glycine–based leach and adsorption technologies for gold–copper ores. Can. Metall. Q. 2018, 57, 390–398. [Google Scholar] [CrossRef]
- Gönen, N.; Körpe, E.; Yıldırım, M.E.; Selengil, U.Ğ.U.R. Leaching and CIL processes in gold recovery from refractory ore with thiourea solutions. Miner. Eng. 2007, 20, 559–565. [Google Scholar] [CrossRef]
- Oraby, E.A.; Eksteen, J.J.; O’Connor, G.M. Gold leaching from oxide ores in alkaline glycine solutions in the presence of permanganate. Hydrometallurgy 2020, 198, 105527. [Google Scholar] [CrossRef]
- Adams, C.R.; Porter, C.P.; Robshaw, T.J.; Bezzina, J.P.; Shields, V.R.; Hides, A.; Ogden, M.D. An alternative to cyanide leaching of waste activated carbon ash for gold and silver recovery via synergistic dual–lixiviant treatment. J. Ind. Eng. Chem. 2020, 92, 120–130. [Google Scholar] [CrossRef]
- Kwak, I.S.; Bae, M.A.; Won, S.W.; Mao, J.; Sneha, K.; Park, J.; Yun, Y.S. Sequential process of sorption and incineration for recovery of gold from cyanide solutions: Comparison of ion exchange resin, activated carbon and biosorbent. Chem. Eng. J. 2010, 165, 440–446. [Google Scholar] [CrossRef]
- McDougall, G.J.; Hancock, R.D. Gold complexes and activated carbon. Gold Bull. 1981, 14, 138–153. [Google Scholar] [CrossRef] [Green Version]
- Kwak, I.S.; Yun, Y.S. Recovery of zero–valent gold from cyanide solution by a combined method of biosorption and incineration. Bioresour. Technol. 2010, 101, 8587–8592. [Google Scholar] [CrossRef]
- Lucas, A.; Rate, A.; Zhang, H.; Salmon, S.U.; Radford, N. Development of the diffusive gradients in thin films technique for the measurement of labile gold in natural waters. Anal. Chem. 2012, 84, 6994–7000. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, M.H.; Awad, H.M. Improved recovery of gold and silver from thiosulfate solution on activated carbon in presence of ammonium persulfate. Physicochem. Probl. Miner. Process. 2019, 55, 1271–1285. [Google Scholar] [CrossRef]
- De Andrade, L.M.; de Alves, C.M.; Kohler, C.M.P.; Romano, E.D.C.; Soares, T.J.A. Recovery of copper and silver of printed circuit boards from obsolete computers by one–step acid leaching. Detritus 2021, 4, 86–91. [Google Scholar] [CrossRef]
- Pinho, S.C.; Ferraz, C.A.; Almeida, M.F. Copper recovery from printed circuit boards using ammonia–ammonium sulphate system: A sustainable approach. Waste Biomass Valorization 2022, 1–9. [Google Scholar] [CrossRef]
- El–Rabiee, M.M.; Helal, N.H.; Abd El–Hafez, G.M.; Badawy, W.A. Corrosion control of vanadium in aqueous solutions by amino acids. J. Alloy. Compd. 2008, 459, 466–471. [Google Scholar] [CrossRef]
- Ilankoon, N.D.; Aldrich, C.; Oraby, E.A.; Eksteen, J.J. Extraction of gold and copper from a gold ore thiosulfate leachate by use of functionalized magnetic nanoparticles. Miner. Process. Extr. Metall. Rev. 2020, 41, 311–322. [Google Scholar] [CrossRef]
- Dobrowolski, R.; Kuryło, M.; Otto, M.; Mróz, A. Determination of gold in geological materials by carbon slurry sampling graphite furnace atomic absorption spectrometry. Talanta 2012, 99, 750–757. [Google Scholar] [CrossRef]
- Lee, C.K.; Rhee, K.I.; Sohn, H.J. Recovery of gold from electronic scrap by hydrometallurgical process. J. Korean Inst. Resour. Recycl. 1997, 6, 36–40. [Google Scholar]
- Kasper, A.C.; Veit, H.M. Gold recovery from printed circuit boards of mobile phones scraps using a leaching solution alternative to cyanide. Braz. J. Chem. Eng. 2018, 35, 931–942. [Google Scholar] [CrossRef] [Green Version]
- Ippolito, N.M.; Birloaga, I.; Ferella, F.; Centofanti, M.; Vegliò, F. Preliminary study on gold recovery from high grade e–waste by thiourea leaching and electrowinning. Minerals 2021, 11, 235. [Google Scholar] [CrossRef]
- Khezri, M.; Rezai, B.; Abdollahzadeh, A.A.; Wilson, B.P.; Molaeinasab, M.; Lundström, M. Investigation into the effect of mechanical activation on the leaching of chalcopyrite in a glycine medium. Hydrometallurgy 2021, 203, 105492. [Google Scholar] [CrossRef]
- Oraby, E.A.; Eksteen, J.J.; Karrech, A.; Attar, M. Gold extraction from paleochannel ores using an aerated alkaline glycine lixiviant for consideration in heap and in–situ leaching applications. Miner. Eng. 2019, 138, 112–118. [Google Scholar] [CrossRef]
- Oraby, E.A.; Eksteen, J.J.; Tanda, B.C. Gold and copper leaching from gold–copper ores and concentrates using a synergistic lixiviant mixture of glycine and cyanide. Hydrometallurgy 2017, 169, 339–345. [Google Scholar] [CrossRef]
- Sun, Z.; Xiao, Y.; Sietsma, J.; Agterhuis, H.; Yang, Y. A cleaner process for selective recovery of valuable metals from electronic waste of complex mixtures of end–of–life electronic products. Environ. Sci. Technol. 2015, 49, 7981–7988. [Google Scholar] [CrossRef]
- Davidson, R.J. The mechanism of gold adsorption on activated charcoal. J. S. Afr. Inst. Min. Metall. 1974, 75, 67–76. [Google Scholar]
- McDougall, G.J.; Hancock, R.D.; Nicol, M.J.; Wellington, O.L.; Copperthwaite, R. The mechanism of the adsorption of gold cyanide on activated carbon. J. S. Afr. Inst. Min. Metall. 1980, 80, 344–356. [Google Scholar]
- Adams, M.D.; Fleming, C.A. The mechanism of adsorption of aurocyanide onto activated carbon. Metall. Mater. Trans. B 1989, 20, 315–325. [Google Scholar] [CrossRef]
- Tu, Z.; Lu, S.; Chang, X.; Li, Z.; Hu, Z.; Zhang, L.; Tian, H. Selective solid–phase extraction and separation of trace gold, palladium and platinum using activated carbon modified with ethyl–3–(2–aminoethylamino)–2–chlorobut–2-enoate. Microchim. Acta 2011, 173, 231–239. [Google Scholar] [CrossRef]
- Ponghiran, W.; Charoensaeng, A.; Khaodhiar, S. The environmental impact assessment of gold extraction processes for discarded computer RAM: A comparative study of two leaching chemicals. J. Mater. Cycles Waste Manag. 2021, 23, 1412–1422. [Google Scholar] [CrossRef]
- Xia, M.; Bao, P.; Liu, A.; Wang, M.; Shen, L.; Yu, R.; Zeng, W. Bioleaching of low–grade waste printed circuit boards by mixed fungal culture and its community structure analysis. Resour. Conserv. Recycl. 2018, 136, 267–275. [Google Scholar] [CrossRef]
- Toifl, M.; Nash, D.; Roddick, F.; Porter, N. Effect of centrifuge conditions on water and total dissolved phosphorus extraction from soil. Soil Res. 2003, 41, 1533–1542. [Google Scholar] [CrossRef]
- Fraters, D.; Boom, G.J.; Boumans, L.J.; de Weerd, H.; Wolters, M. Extraction of soil solution by drainage centrifugation—Effects of centrifugal force and time of centrifugation on soil moisture recovery and solute concentration in soil moisture of loess subsoils. Environ. Monit. Assess. 2017, 189, 83. [Google Scholar] [CrossRef] [Green Version]
- Imoto, Y.; Yasutaka, T.; Someya, M.; Higashino, K. Influence of solid-liquid separation method parameters employed in soil leaching tests on apparent metal concentration. Sci. Total Environ. 2018, 624, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Simons, A.; Breuer, P. A review of copper cyanide recovery technologies for the cyanidation of copper containing gold ores. Miner. Eng. 2012, 25, 1–13. [Google Scholar] [CrossRef]
Lixiviant | Oxidizer | Additive | Sample | Leaching (%) | Time | Initial pH | Temp. (°C) | Pulp Density (%) | Reference |
---|---|---|---|---|---|---|---|---|---|
1. Pure amino acids | |||||||||
0.5 M Glutamate | 0.03 KMnO4 | - | Pre-treated computer pin | 11 (Au) | 24 | 9.4 | 25 | - | [8] |
1.5 kg t−1 glycine | 3 kg t−1 KMnO4 | - | Gold oxide ore | 85 (Au) | 48 h | 10.5 | RT a | 30 | [9] |
1.25 M glycine | - | 1 L min−1 | Gold ore | 90 (Au) | 24 h | 12 | 60 | 10 | [10] |
0.5 M glycine | 500 ppm NaCN | Polymetal gold ore | 90 (Au) 27 (Cu) | 72 h | 11 | RT a | 30 | [11] | |
200 ppm NaCN | 80 (Au) 10 (Cu) | ||||||||
750 μM glycine | - | - | Silicate ore | 34 (Au) | 15 days | 7 | 30 | 4 | [12] |
750 μM aspartic acid | 41 (Au) | ||||||||
750 μM glutamic acid | 40 (Au) | ||||||||
750 μM lysine | 36 (Au) | ||||||||
750 μM tryptophan | 26 (Au) | ||||||||
20 g/L glycine | 10 g L−1 | 20 g L−1 carbon | Flotation tailings | 77 (Au) 65 (Cu) | 48 h | 10.5 | RT a | 30 | [13] |
2. Microbial amino acids | |||||||||
Bacillus sp. and Pseudomonas sp. | - | - | Gold-bearing oxide ore | 68 (Au) 54 (Ag) | 20 days | Heap leaching | [14] | ||
Heterotrophic bacteria | - | Thiosulfate and copper ions | Pre-treated polymetallic sulfide ore | 79 (Au) 70 (Cu) 59 (Ag) | 30 days | Heap leaching (pH: 9.5–10.0) | [15] | ||
Growth supernatant of Macrococcus caseolyticus and Acinetobacter calcoaceticus | - | - | Silicate ore | 40 (Au) | 15 days | 7 | 30 | 4 | [16] |
3. Monosodium glutamate (MSG) | |||||||||
1 M MSG | - | - | Electric arc furnace dust | 86 (Cu) | 4 h | 9 | 30 55 80 (Minor impact) | 5 | [17] |
99 (Zn) | 2 h | ||||||||
0.5 M MSG | - | Pins of computer | 92 (Cu) | 2 h | 9.44 | RT a | 0.039 | [18] |
Elements | Concentration (ppm) | |
---|---|---|
Untreated WPCBs | Solder-Mask-Free WPCBs | |
Au | 22.55 ± 7.11 | 23.67 ± 6.29 |
Cd | 4.96 ± 3.27 | 0.63 ± 0.01 |
Co | 80.61 ± 0.17 | 4.20 ± 0.18 |
Cr | 330.45 ± 8.11 | 108.75 ± 4.10 |
Cu | 36,905.73 ± 480.23 | 36,654.68 ± 193.33 |
Fe | 18,935.41 ± 391.13 | 726.63 ± 15.16 |
Mg | 786.86 ± 30.07 | 327.24 ± 15.27 |
Mn | 69.79 ± 2.00 | 63.09 ± 4.07 |
Mo | 1.19 ± 1.22 | 3.26 ± 2.85 |
Ni | 1211.51 ± 27.38 | 329.84 ± 28.02 |
Ti | 1800.41 ± 36.08 | 268.66 ± 8.68 |
V | 3.32 ± 0.21 | 0.74 ± 0.28 |
Zn | 7291.14 ± 168.21 | 7242.13 ± 21.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khetwunchai, N.; Akeprathumchai, S.; Thiravetyan, P. Recovery of Copper and Gold from Waste Printed Circuit Boards Using Monosodium Glutamate Supplemented with Hydrogen Peroxide. Minerals 2023, 13, 321. https://doi.org/10.3390/min13030321
Khetwunchai N, Akeprathumchai S, Thiravetyan P. Recovery of Copper and Gold from Waste Printed Circuit Boards Using Monosodium Glutamate Supplemented with Hydrogen Peroxide. Minerals. 2023; 13(3):321. https://doi.org/10.3390/min13030321
Chicago/Turabian StyleKhetwunchai, Natrawee, Saengchai Akeprathumchai, and Paitip Thiravetyan. 2023. "Recovery of Copper and Gold from Waste Printed Circuit Boards Using Monosodium Glutamate Supplemented with Hydrogen Peroxide" Minerals 13, no. 3: 321. https://doi.org/10.3390/min13030321
APA StyleKhetwunchai, N., Akeprathumchai, S., & Thiravetyan, P. (2023). Recovery of Copper and Gold from Waste Printed Circuit Boards Using Monosodium Glutamate Supplemented with Hydrogen Peroxide. Minerals, 13(3), 321. https://doi.org/10.3390/min13030321