Properties of Fine-Grained Rock Waste from the Pilawa Gorna Amphibolite and Migmatite Aggregates Production Plant
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torres, P.; Manjate, R.S.; Quaresma, S.; Fernandes, H.R.; Ferreira, J.M.F. Development of ceramic floor tile compositions based on quartzite and granite sludges. J. Eur. Ceram. Soc. 2007, 27, 4649–4655. [Google Scholar] [CrossRef]
- Vasic, M.V.; Mijatovic, N.; Radojevic, Z. Aplitic Granite Waste as Raw Material for the Production of Outdoor Ceramic Floor Tiles. Materials 2022, 15, 3145. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, J.Y.; Kim, Y.H.; Kim, D.; Kim, J.; Han, J.G. Evaluating the eco-compatibility of mortars with feldspar-based fine aggregate. Case Stud. Constr. Mater. 2022, 16, e00781. [Google Scholar] [CrossRef]
- Vaitkevičius, V.; Šerelis, E.; Lygutaitė, R. Production Waste of Granite Rubble Utilisation in Ultra High. J. Sustain. Archit. Civ. Eng. 2013, 2, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Arivumangai, A.; Felixkala, T. Strength and durability properties of granite powder concrete. J. Civ. Eng. Res. 2014, 4, 1–6. [Google Scholar] [CrossRef]
- Grabiec, A.M.; Zawal, D.; Kostrzewski, W. Effect of Waste Mineral Additives on Flow Stability Over Time in Self-Compacting Concrete Mixes With Low Clinker Content. J. Ecol. Eng. 2015, 16, 206–214. [Google Scholar] [CrossRef] [Green Version]
- Mashaly, A.O.; Shalaby, B.N.; Rashwan, M.A. Performance of mortar and concrete incorporating granite sludge as cement replacement. Constr. Build. Mater. 2018, 169, 800–818. [Google Scholar] [CrossRef]
- Savadkoohi, M.S.; Reisi, M. Environmental protection based sustainable development by utilization of granite waste in Reactive Powder Concrete. J. Clean. Prod. 2020, 266, 121973. [Google Scholar] [CrossRef]
- Shwetha, K.G.; Kumar, C.M.; Dalawai, V.N.; Anadinni, S.B.; Sowjanya, G.V. Comparative study on strengthening of concrete using granite waste. Mater. Today Proc. 2022, 62, 5317–5322. [Google Scholar] [CrossRef]
- Dobiszewska, M.; Beycioğlu, A. Physical Properties and Microstructure of Concrete with Waste Basalt Powder Addition. Materials 2020, 13, 3503. [Google Scholar] [CrossRef] [PubMed]
- Vieira CM, F.; Soares, T.M.; Sánchez, R.; Monteiro, S.N. Incorporation of granite waste in red ceramics. Mater. Sci. Eng. A 2004, 373, 115–121. [Google Scholar] [CrossRef]
- Souza, A.J.; Pinheiro, B.C.A.; Holanda, J.N.F. Recycling of gneiss rock waste in the manufacture of vitrified floor tiles. J. Environ. Manag. 2010, 91, 685–689. [Google Scholar] [CrossRef] [PubMed]
- Cetin, S.; Marangoni, M.; Bernardo, E. Lightweight glass–ceramic tiles from the sintering of mining tailings. Ceram. Int. 2015, 41, 5294–5300. [Google Scholar] [CrossRef]
- Pazniak, A.; Barantseva, S.; Kuzmenkova, O.; Kuznetsov, D. Effect of granitic rock wastes and basalt on microstructure and properties of porcelain stoneware. Mater. Lett. 2018, 225, 122–125. [Google Scholar] [CrossRef]
- Dalmora, A.C.; Ramos, C.G.; Oliveira, M.L.S.; Teixeira, E.C.; Kautzmann, R.M.; Taffarel, S.R.; De Brum, I.A.S.; Silva, L.F.O. Chemical characterization, nano-particle mineralogy and particle size distribution of basalt dust wastes. Sci. Total Environ. 2016, 539, 560–565. [Google Scholar] [CrossRef]
- Dos Santos Teixeira, A.M.; Dos Santos Garrido, F.M.; Medeiros, M.E.; Sampaio, J.A. Effect of thermal treatments on the potassium and sodium availability in phonolite rock powder. Int. J. Miner. Process. 2015, 145, 57–65. [Google Scholar] [CrossRef]
- Ramos, C.G.; Oliveira ML, S.; Pena, M.F.; Cantillo, A.M.; Ayarza LP, L.; Korchagin, J.; Bortoluzzi, E.C. Nanoparticles generated during volcanic rock exploitation: An overview. J. Environ. Chem. Eng. 2021, 9, 106441. [Google Scholar] [CrossRef]
- Da Silva, F.J.P.; De Carvalho, A.M.X.; De Castro Borges, P.H. The gabbro dacite blend as soil remineralizer. Braz. J. Agric. Sci. 2022, 17, e1419. [Google Scholar] [CrossRef]
- Ramos, C.G.; Querol, X.; Dalmora, A.C.; De Jesus Pires, K.C.; Schneider IA, H.; Oliveira LF, S.; Kautzmann, R.M. Evaluation of the potential of volcanic rock waste from southern. Brazil as a natural soil fertilizer. J. Clean. Prod. 2017, 142, 2700–2706. [Google Scholar] [CrossRef]
- Nunes, J.M.G.; Kautzmann, R.M.; Oliveira, C. Evaluation of the natural fertilizing potential of basalt dust wastes from the mining district of Nova Prata (Brazil). J. Clean. Prod. 2014, 84, 649–656. [Google Scholar] [CrossRef]
- Plata, L.G.; Ramos, C.G.; Oliveira, M.L.S.; Oliveira, L.F.S. Release kinetics of multi-nutrients from volcanic rock mining by-products: Evidences for their use as a soil remineralizer. J. Clean. Prod. 2021, 279, 123668. [Google Scholar] [CrossRef]
- Gillman, G.P.; Burkett, D.C.; Coventry, R.J. Amending highly weathered soils with finely ground basalt rock. Appl. Geochem. 2002, 17, 987–1001. [Google Scholar] [CrossRef]
- Sikora, L.J. Effects of basaltic mineral fines on composting. Waste Manag. 2004, 24, 139–142. [Google Scholar] [CrossRef]
- Drobot, N.F.; Noskova, O.A.; Steblevskii, A.V.; Fomichev, S.V.; Krenev, V.A. Recovery of valuable components from basalt waste by sintering it with sodium carbonate. Theor. Found. Chem. Eng. 2011, 45, 769–775. [Google Scholar] [CrossRef]
- Dino, G.A.; Cavallo, A.; Rossetti, P.; Garamvölgyi, E.; Sándor, R.; Coulon, F. Towards sustainable mining: Exploiting raw materials from extractive waste facilities. Sustainability 2020, 12, 2383. [Google Scholar] [CrossRef] [Green Version]
- Vrbický, T.; Přikryl, R. Recovery of Some Critical Raw Materials from Processing Waste of Feldspar Ore Related to Hydrothermally Altered Granite: Laboratory-Scale Beneficiation. Minerals 2021, 11, 455. [Google Scholar] [CrossRef]
- Brzezinski, D.; Miskiewicz, W. Kamienie lamane i bloczne. In Bilans Zasobow Zloz Kopalin w Polsce wg Stanu na 31.12.2020 r; Panstwowy Instytut Geologiczny: Warszawa, Poland, 2002; pp. 106–128. [Google Scholar]
- Cymerman, Z. Rozwoj strukturalny metamorfiku sowiogorskiego w okolicy Pilawy Gornej, Sudety. Geol. Sudet. 1989, 23, 107–153. [Google Scholar]
- Pieczka, A.; Golebiowska, B.; Jelen, P.; Wlodek, A.; Szeleg, E.; Szuszkiewicz, A. Towards Zn-dominant tourmaline: A case of zn-rich fluor-elbaite and elbaite from the Julianna system at Pilawa Gorna, Lower Silesia, SW Poland. Minerals 2018, 8, 126. [Google Scholar] [CrossRef] [Green Version]
- Szuszkiewicz, A.; Szeleg, E.; Pieczka, A.; Ilnicki, S.; Nejbert, K.; Turniak, K.; Banach, M.; Lodzinski, M.; Rozniak, R.; Michalowski, P. The Julianna pegmatite vein system at the Pilawa Gorna Mine, Gory Sowie Block, SW Poland—preliminary data on geology and descriptive mineralogy. Geol. Q. 2013, 57, 467–484. [Google Scholar] [CrossRef] [Green Version]
- Galos, K. Kopalnia Pilawa Gorna nowy dostawca kruszyw naturalnych lamanych na Dolnym Ślasku. Surowce Masz. Bud. 2007, 3, 24–27. [Google Scholar]
- Gawenda, T. Analiza porownawcza mobilnych i stacjonarnych ukladow technologicznych przesiewania i kruszenia. Rocz. Ochr. Srodowiska 2013, 15, 1318–1335. [Google Scholar]
- Stefanicka, M. Mobilne i stacjonarne uklady przerobcze na przykladzie kopalni Pilawa “Gorna”. Pr. Nauk. Inst. Gor. Politech. Wroc. Stud. Mater. 2011, 132, 277–289. [Google Scholar]
- Galos, K.; Luczak, J.; Michalowski, P.; Patyk, J. Sukces w zgodzie z natur—historia powstania kopalni “Pilawa Gorna”. Pr. Nauk. Inst. Gor. Politech. Wroc. 2009, 125, 63–78. [Google Scholar]
- Kompania Gornicza SP. Z O.O. Available online: https://kompaniagornicza.pl (accessed on 21 November 2022).
- Lubas, M.; Wyszomirski, P. Niekonwencjonalne wykorzystanie amfibolitow dolnoslaskich. Mater. Ceram./Ceram. Mater. 2009, 61, 31–35. [Google Scholar]
- Maliszewski, M.; Pomorski, A.; Cichon, T. Mozliwosci wykorzystania trudno zbywalnych frakcji amfibolitu ze zloza Pagorki Wschodnie. Gor. Odkryw. 2017, 58, 4–10. [Google Scholar]
- Borowski, G.; Swiderski, T.; Ozga, M. Stone dust agglomeration for utilizing as building material. Adv. Sci. Technol. Res. J. 2017, 11, 168–174. [Google Scholar] [CrossRef] [Green Version]
- Luszczkiewicz, A.; Duchnowska, M.; Muszer, A. Wstepne Badania Przerobcze Pylow Skalnych z Kopalni DSS S.A. “Pilawa Gorna”; Raport nr S-005/2011; Politechnika Wroclawska, Instytut Gornictwa, Wydzial Geoinzynierii, Gornictwa I Geologii: Wroclaw, Poland, 2011. [Google Scholar]
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Fergusson, J.E. Inorganic Chemistry and the Earth: Chemical Resources, Their Extraction, Use, and Environmental Impact; Pergamon Press: Sydney, Australia, 1982; 400p. [Google Scholar]
- Gruszczyk, H. Nauka o zlozach, 2nd ed.; Wydawnictwa Geologiczne: Warszawa, Poland, 1984. [Google Scholar]
Particle Size, mm | Yield, % | Cumulative Yield, % |
---|---|---|
<0.025 | 41.83 | 41.83 |
0.025–0.040 | 12.56 | 54.39 |
0.040–0.063 | 16.35 | 70.74 |
>0.063 | 29.26 | 100.00 |
Chemical Element | Unit | Accuracy of Analysis | Content in Feed | UCC * | Concentration Coefficient ** |
---|---|---|---|---|---|
Al | % | 0.01 | 8.04 | 7.74 | 1.0 |
Ca | % | 0.01 | 4.37 | 2.95 | 1.5 |
Ctotal | % | 0.01 | 0.57 | 0.32 | 1.8 |
Fe | % | 0.05 | 6.66 | 3.09 | 2.2 |
K | % | 0.1 | 1.2 | 2.86 | 0.4 |
Mg | % | 0.01 | 2.79 | 1.35 | 2.1 |
P | % | 0.005 | 0.154 | 0.0665 | 2.3 |
S | % | 0.01 | 0.76 | 0.0953 | 8.0 |
Si | % | 0.01 | 26.2 | 30.3 | 0.9 |
Ti | % | 0.01 | 0.76 | 0.312 | 2.4 |
Cu | ppm | 2 | 89 | 14.3 | 6.2 |
Ni | ppm | 10 | 110 | 18.6 | 5.9 |
Cr | ppm | 30 | 110 | 35 | 3.1 |
Co | ppm | 0.2 | 35.3 | 11.6 | 3.0 |
Se | ppm | 0.8 | 13.2 | 0.083 | 159.0 |
Zn | ppm | 30 | 120 | 52 | 2.3 |
Pb | ppm | 0.8 | 9.3 | 17 | 0.5 |
Ag | ppm | 10 | <10 | 0.055 | - |
Cd | ppm | 2 | <2 | 0.102 | - |
As | ppm | 5 | <5 | 2 | - |
Sn | ppm | 0.5 | 2.9 | 2.5 | 1.2 |
Sb | ppm | 2 | <2 | 0.31 | - |
Mo | ppm | 1 | 2 | 1.4 | 1.4 |
B | ppm | 10 | <10 | 11 | <1.0 |
Li | ppm | 3 | 30 | 22 | 1.4 |
Be | ppm | 3 | <3 | 3.1 | <1.0 |
V | ppm | 5 | 210 | 53 | 4.0 |
Mn | ppm | 3 | 1530 | 527 | 2.9 |
Ga | ppm | 0.2 | 18.3 | 14 | 1.3 |
Ge | ppm | 0.7 | 3.2 | 1.4 | 2.3 |
Rb | ppm | 0.4 | 48.4 | 110 | 0.4 |
Sr | ppm | 3 | 194 | 3.16 | 61.4 |
Nb | ppm | 2.4 | 9 | 26 | 0.3 |
In | ppm | 0.2 | <0.2 | 0.061 | - |
Te | ppm | 6 | <6 | - | - |
Cs | ppm | 0.1 | 1.9 | 5.8 | 0.3 |
Ba | ppm | 3 | 425 | 668 | 0.6 |
ΣRΕΕ+Y | ppm | 0.1 | 207.8 | 165.1 | 1.3 |
Hf | ppm | 10 | <10 | 5.8 | - |
Ta | ppm | 0.2 | 0.5 | 1.5 | 0.3 |
W | ppm | 0.7 | <0.7 | 1.4 | <1.0 |
Tl | ppm | 0.1 | 0.8 | 0.75 | 1.1 |
Bi | ppm | 2 | <2 | 0.123 | - |
Th | ppm | 0.1 | 8.1 | 10.3 | 0.8 |
U | ppm | 0.1 | 2.3 | 2.5 | 0.9 |
Mineral/Group of Minerals | Content, % | Mineral/Group of Minerals | Content, % | Mineral/Group of Minerals | Content, % |
---|---|---|---|---|---|
quartz | 14.8 | biotite | 13.1 | pyrite | 0.4 |
albite | 1.0 | muscovite | 0.2 | apatite | 0.7 |
plagioclase | 36.4 | grossular | 0.3 | titanite | 0.3 |
orthoclase | 0.9 | almandine-spessartite | 1.7 | zircon | 0.1 |
hornblende | 23.2 | chlorite | 2.0 | diopside | 0.7 |
kersutite | 1.3 | ilmenite | 0.6 | goethite | 0.1 |
tremolite-actinolite | 0.3 | allanite (Ce) | 0.1 | calcite | 0.3 |
anthophyllite | 0.3 | pyrrhotite | 0.9 | Fe oxides | 0.1 |
Product | Yield | Ctotal | S | Ti | Cu | Ni | |||||
γ, % | λ, % | ε, % | λ, % | ε, % | λ, % | ε, % | λ, ppm | ε, % | λ, ppm | ε, % | |
FC | 0.92 | 60.52 | 97.43 | 1.62 | 1.46 | 0.40 | 0.50 | 4970 | 44.05 | 90 | 0.89 |
FSP | 1.39 | 0.34 | 0.82 | 4.13 | 5.60 | 0.72 | 1.36 | 652 | 8.71 | 290 | 4.32 |
FT | 97.69 | 0.01 | 1.75 | 0.97 | 92.95 | 0.74 | 98.14 | 50 | 47.24 | 90 | 94.79 |
Feed | 100.00 | 0.57 | 100.00 | 1.02 | 100.00 | 0.73 | 100.00 | 104 | 100.0 | 93.05 | 100.00 |
Product | Yield | Mo | Nb | Ta | Cs | REE + Y | |||||
γ, % | λ, ppm | ε, % | λ, ppm | ε, % | λ, ppm | ε, % | λ, ppm | ε, % | λ, ppm | ε, % | |
FC | 0.92 | 248 | 62.94 | 7.8 | 0.85 | 0.6 | 1.02 | 0.8 | 0.35 | 214.3 | 0.92 |
FSP | 1.39 | 24 | 9.18 | 9.5 | 1.57 | 0.5 | 1.28 | 1.9 | 1.25 | 235.4 | 1.52 |
FT | 97.69 | 1 | 27.88 | 8.4 | 97.58 | 0.5 | 97.70 | 2.1 | 98.41 | 214.0 | 97.56 |
Feed | 100.00 | 3.62 | 100.00 | 8.4 | 100.00 | 0.5 | 100.00 | 2.1 | 100.00 | 214.3 | 100.00 |
Product | Yield γ, % | Ore Minerals + Graphite | Graphite | Pyrrhotite | Chalcopyrite | Pyrite | Other Components * | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
λ, % | ε, % | λ, % | ε, % | λ, % | ε, % | λ, % | ε, % | λ, % | ε, % | λ, % | ||
FC | 39.9 | 94.17 | 90.50 | 90.57 | 99.94 | 1.94 | 17.01 | 1.47 | 84.43 | 0.10 | 67.26 | 5.91 |
FSP | 60.1 | 6.56 | 9.50 | 0.03 | 0.06 | 6.28 | 82.99 | 0.18 | 15.57 | 0.03 | 32.74 | 93.47 |
Feed | 100.0 | 41.50 | 100.00 | 36.14 | 100.00 | 4.55 | 100.00 | 0.69 | 100.00 | 0.06 | 100.00 | 58.55 |
Product | Yield | Ca | Fe | Mg | S | Ti | |||||
γ, % | λ, % | ε, % | λ, % | ε, % | λ, % | ε, % | λ, % | ε, % | λ, % | ε, % | |
GC (GC1 + GC2) | 5.50 | 5.19 | 6.59 | 11.86 | 9.94 | 3.27 | 6.48 | 2.14 | 18.43 | 1.74 | 12.68 |
GSP2 | 0.13 | 4.34 | 0.13 | 10.80 | 0.21 | 2.72 | 0.13 | 3.32 | 0.68 | 0.92 | 0.16 |
GSP1 | 0.22 | 3.42 | 0.17 | 7.98 | 0.27 | 3.36 | 0.27 | 0.48 | 0.17 | 1.07 | 0.31 |
GT | 94.15 | 4.28 | 93.11 | 6.24 | 89.57 | 2.74 | 93.12 | 0.55 | 80.73 | 0.70 | 86.85 |
Feed | 100.00 | 4.33 | 100.00 | 6.55 | 100.00 | 2.77 | 100.00 | 0.64 | 100.00 | 0.75 | 100.00 |
Product | Yield | Cu | Ni | Mn | Nb + Ta | REE + Y | |||||
γ, % | λ, ppm | ε, % | λ, ppm | ε, % | λ, ppm | ε, % | λ, ppm | ε, % | λ, ppm | ε, % | |
GC (GC1 + GC2) | 5.50 | 69.9 | 10.15 | 150.1 | 19.42 | 4171.3 | 14.53 | 15.3 | 9.37 | 569.5 | 14.54 |
GSP2 | 0.13 | 113.0 | 0.39 | 220.0 | 0.68 | 1990.0 | 0.16 | 9.7 | 0.14 | 319.6 | 0.19 |
GSP1 | 0.22 | 61.0 | 0.36 | 80.0 | 0.42 | 1870.0 | 0.26 | 14.6 | 0.36 | 202.0 | 0.21 |
GT | 94.15 | 35.9 | 89.11 | 35.9 | 79.48 | 1425.2 | 85.05 | 8.6 | 90.13 | 194.5 | 85.06 |
Feed | 100.00 | 37.9 | 100.00 | 42.5 | 100.00 | 1577.9 | 100.00 | 9.0 | 215.2 | 100.00 |
Product | Yield γ, % | Ore Minerals | Pyrrhotite | Pyrite | Ilmenite | Rutile | Magnetite | Monazite | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
λ, % | ε, % | λ, % | ε, % | λ, % | ε, % | λ, % | ε, % | λ, % | ε, % | λ, % | ε, % | λ, % | ε, % | |||
GC | GC1 | 61.19 | 13.9 | 71.10 | 6.7 | 71.40 | 1.4 | 60.99 | 5.0 | 71.71 | 0.5 | 93.62 | 0.1 | 100.0 | 0.2 | 100.0 |
GC2 | 36.49 | 8.4 | 25.63 | 3.7 | 23.52 | 1.4 | 36.37 | 3.2 | 27.37 | 0.0 | 0.00 | 0.0 | 0.00 | 0.0 | 0.00 | |
GSP2 | 2.32 | 16.9 | 3.27 | 12.6 | 5.09 | 1.6 | 2.64 | 1.7 | 0.92 | 0.9 | 6.38 | 0.0 | 0.00 | 0.0 | 0.00 | |
Feed | 100.0 | 12.0 | 100.0 | 5.7 | 100.0 | 1.4 | 100.0 | 4.3 | 100.0 | 0.3 | 100.0 | 0.1 | 100.0 | 0.1 | 100.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duchnowska, M.; Bakalarz, A.; Luszczkiewicz, A. Properties of Fine-Grained Rock Waste from the Pilawa Gorna Amphibolite and Migmatite Aggregates Production Plant. Minerals 2023, 13, 345. https://doi.org/10.3390/min13030345
Duchnowska M, Bakalarz A, Luszczkiewicz A. Properties of Fine-Grained Rock Waste from the Pilawa Gorna Amphibolite and Migmatite Aggregates Production Plant. Minerals. 2023; 13(3):345. https://doi.org/10.3390/min13030345
Chicago/Turabian StyleDuchnowska, Magdalena, Alicja Bakalarz, and Andrzej Luszczkiewicz. 2023. "Properties of Fine-Grained Rock Waste from the Pilawa Gorna Amphibolite and Migmatite Aggregates Production Plant" Minerals 13, no. 3: 345. https://doi.org/10.3390/min13030345
APA StyleDuchnowska, M., Bakalarz, A., & Luszczkiewicz, A. (2023). Properties of Fine-Grained Rock Waste from the Pilawa Gorna Amphibolite and Migmatite Aggregates Production Plant. Minerals, 13(3), 345. https://doi.org/10.3390/min13030345