Case Histories of Orogenic Gold Deposits
Abstract
:1. Introduction
2. Geologic Setting and Mineralization Characteristics
3. Discussion and Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kolb, J.; Dziggel, A.; Bagas, L. Hypozonal lode gold deposits: A genetic concept based on a review of the New Consort, Renco, Hutti, Hira Buddini, Navachab, Nevoria and The Granites deposits. Precambrian Res. 2015, 262, 20–44. [Google Scholar] [CrossRef]
- Dziggel, A.; Poujol, M.; Otto, A.; Kisters, A.F.M.; Trieloff, M.; Schwarz, W.; Meyer, F.M. New U–Pb and 40Ar/39Ar ages from the northern part of the Barberton greenstone belt, South Africa: Implications for the formation of Mesoarchaean gold deposits. Precambrian Res. 2010, 179, 206–220. [Google Scholar] [CrossRef]
- Dziggel, A.; Otto, A.; Kisters, A.F.M.; Meyer, F.M. Tectono-metamorphic controls on Archaean gold mineralization in the Barberton greenstone belt. South Africa: An example from the New Consort gold mine. In Earth’s Oldest Rocks. Developments in Precambrian Geology; Van Kranendonk, M.J., Smithies, R.H., Bennet, V., Eds.; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Dziggel, A.; Knipfer, S.; Kisters, A.F.M.; Meyer, F.M. P–T and structural evolution during exhumation of high-T, medium-P basement rocks in the Barberton Mountain Land, South Africa. J. Metamorph. Geol. 2006, 24, 535–551. [Google Scholar] [CrossRef]
- Dziggel, A.; Stevens, G.; Poujol, M.; Anhaeusser, C.R.; Armstrong, R.A. Metamorphism of the granite-greenstone terrane to the south of the Barberton greenstone belt, South Africa: An insight into the tectono-thermal evolution of the lower portions of the Onverwacht Group. Precambrian Res. 2002, 114, 221–247. [Google Scholar] [CrossRef]
- Kisters, A.F.; Belcher, R.W.; Poujol, M.; Dziggel, A. Continental growth and convergence-related arc plutonism in the Mesoarchaean: Evidence from the Barberton granitoid-greenstone terrain, South Africa. Precambrian Res. 2010, 178, 15–26. [Google Scholar] [CrossRef]
- Kisters, A.F.M.; Stevens, G.; Dziggel, A.; Armstrong, J.T. Extensional detachment faulting at the base of the Barberton greenstone belt: Evidence for a 3.2 Ga orogenic collapse. Precambrian Res. 2003, 127, 355–378. [Google Scholar] [CrossRef]
- Otto, A.; Dziggel, A.; Kisters, A.F.M.; Meyer, F.M. The New Consort Gold Mine, Barberton greenstone belt, South Africa: Orogenic gold mineralization in a condensed metamorphic profile. Miner. Depos. 2007, 42, 715–735. [Google Scholar] [CrossRef]
- Otto, A. Tektono-Metamorphe Kontrolle der Archaischen Goldmineralisation in der New Consort Gold Mine, Barberton Grünsteingürtel, Südafrika. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 1997; 160p. Available online: https://publications.rwth-aachen.de/record/50397/files/Otto_Alexander.pdf (accessed on 20 January 2023).
- Ribeiro-Rodrigues, L.C.; Gouveia de Oliveira, C.; Friedrich, G. The Archean BIF-hosted Cuiabá Gold deposit, Quadrilátero Ferrífero, Minas Gerais, Brazil. Ore Geol. Rev. 2007, 32, 543–570. [Google Scholar] [CrossRef]
- Lobato, L.M.; Ribeiro-Rodrigues, L.C.; Vieira, F.W.R. Brazil’s premier gold province. Part II: Geology and genesis of gold deposits in the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero. Miner. Depos. 2001, 36, 249–277. [Google Scholar] [CrossRef]
- Ribeiro-Rodrigues, L.C.; Friedrich, G.; Meyer, F.M. The Cuiabá gold deposit, Minas Gerais, Brazil. Erzmetall (World Min.) 1999, 52, 424–437. [Google Scholar]
- Ribeiro-Rodrigues, L.C. Gold in Archaen banded ironformation of the Quadrilátero Ferrífero, Minas Gerais, Brazil—The Cuiabá Mine. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 1998; 264p. Band 27. [Google Scholar]
- Kolb, J.; Hellmann, A.; Rogers, A.; Sindern, S.; Vennemann, T.; Böttcher, M.E.; Meyer, F.M. The Role of a Transcrustal Shear Zone in Orogenic Gold Mineralization at the Ajjanahalli Mine, Dharwar Craton, South India. Econ. Geol. 2004, 99, 743–759. [Google Scholar] [CrossRef]
- Sarma, D.S.; Fletcher, I.R.; Rasmussen, B.; McNaughton, N.J.; Mohan, M.R.; Groves, D.I. Archaean gold mineralization synchronous with late cratonization of the Western Dharwar Craton, India: 2.52 Ga U–Pb ages of hydrothermal monazite and xenotime in gold deposits. Miner. Depos. 2011, 46, 273–288. [Google Scholar] [CrossRef]
- Kisters, A.F.M.; Kolb, J.; Meyer, F.M.; Hoernes, S. Hydrologic segmentation of high-temperature shear zones: Structural, geochemical, and isotopic constraints from auriferous mylonites of the Renco Mine, southern Zimbabwe. J. Struct. Geol. 2000, 22, 811–829. [Google Scholar] [CrossRef]
- Kisters, A.F.M.; Kolb, J.; Meyer, F.M. Gold mineralization in high-grade metamorphic shear zones of the Renco Mine, southern Zimbabwe. Econ. Geol. 1998, 93, 587–601. [Google Scholar] [CrossRef]
- Kolb, J.; Kisters, A.F.M.; Meyer, F.M.; Siemes, H. Polyphase deformation of mylonites of the Renco gold mine, Northern Marginal Zone, Limpopo Belt, Zimbabwe: Identified by crystallographic preferred orientation of quartz. J. Struct. Geol. 2003, 25, 253–262. [Google Scholar] [CrossRef]
- Kolb, J.; Meyer, F.M. Fluid inclusion record of the hypozonal orogenic Renco gold deposit (Zimbabwe) during the retrograde P–T evolution. Contrib. Mineral. Petrol. 2002, 143, 495–509. [Google Scholar] [CrossRef]
- Kolb, J.; Kisters, A.F.M.; Hoernes, S.; Meyer, F.M. The origin of fluids and nature of fluid-rock interaction in auriferous mylonites of the Renco Mine, southern Zimbabwe. Miner. Depos. 2000, 35, 109–125. [Google Scholar] [CrossRef]
- Rogers, A.J.; Kolb, J.; Meyer, F.M.; Vennemann, T. Two stages of gold mineralization at Hutti mine, India. Miner. Depos. 2012, 48, 99–114. [Google Scholar] [CrossRef]
- Kolb, J.; Meyer, F.M. Balanced mineral reactions for alteration zones developed in auriferous shear zones of the Hutti Mine, Dharwar Craton, India. Z. Dtsch. Ges. Geowiss 2008, 159, 331–347. [Google Scholar] [CrossRef]
- Rogers, A.; Kolb, J.; Meyer, F.; Armstrong, R. Tectono-magmatic evolution of the Hutti-Maski Greenstone Belt, India: Constrained using geochemical and geochronological data. J. Asian Earth Sci. 2007, 31, 55–70. [Google Scholar] [CrossRef]
- Rogers, A.J. Petrological, Geochemical and Stable Isotope Characterization of Auriferous Shear Zones at the Hutti-Maski Gold Mine, Dharwar Craton, India. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2005; 275p. Band 40. [Google Scholar]
- Rogers, A.; Kolb, J.; Meyer, F.M. P-T conditions and fluid evolution in the Hutti Gold Mine, India. Ber. Der Dtsch. Mineral.Ges. Suppl. Eur. J. Mineral. 2002, 14, 138. [Google Scholar]
- Kolb, J.; Rogers, A.; Meyer, F.M. Relative timing of deformation and two-stage gold mineralization at Hutti mine, Dharwar Craton, India. Miner. Depos. 2005, 40, 156–174. [Google Scholar] [CrossRef]
- Kolb, J.; Rogers, A.; Meyer, F.; Vennemann, T.W. Development of fluid conduits in the auriferous shear zones of the Hutti Gold Mine, India: Evidence for spatially and temporally heterogeneous fluid flow. Tectonophysics 2004, 378, 65–84. [Google Scholar] [CrossRef]
- Hellmann, A. Die Genese der Goldlagerstätte Hira Buddini, Südindien. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2009; 351p. Available online: https://publications.rwthaachen.de/record/50139/files/Hellmann_Andre.pdf (accessed on 10 January 2023).
- Krienitz, M.-S.; Trumbull, R.B.; Hellmann, A.; Kolb, J.; Meyer, F.M.; Wiedenbeck, M. Hydrothermal gold mineralization at the Hira Buddini gold mine, India: Constraints on fluid evolution and fluid sources from boron isotopic compositions of tourmaline. Miner. Depos. 2008, 43, 421–434. [Google Scholar] [CrossRef]
- Meyer, F.M.; Robb, L.J. The geochemistry of black shales from the Chuniespoort Group, Transvaal Sequence, eastern Transvaal, South Africa. Econ. Geol. 1996, 91, 111–121. [Google Scholar] [CrossRef]
- Meyer, F.M.; Welke, H.J.; Robb, L.J. Mineralogical and chemical characteristics of flat reefs in the Sabie-Pilgrim’s Rest Goldfield. In Geocongress’86; The Geological Society of South Africa: Marshalltown, South Africa, 1986; pp. 535–540. [Google Scholar]
- Summer, D.Y.; Bowring, S.A. U-Pb geochronologic constraints on deposition of the Campbellrand Subgroup, Transvaal Supergroup, South Africa. Precambrian Res. 1996, 79, 25–35. [Google Scholar] [CrossRef]
- Boer, R.H.; Meyer, F.M.; Robb, L.J.; Graney, J.R.; Vennemann, T.W.; Kesler, S.E. Mesothermal-typ mineralization in the Sabie-Pilgrim’s Rest Goldfield, South Africa. Econ. Geol. 1995, 90, 860–876. [Google Scholar] [CrossRef]
- Billay, A.Y.; Kisters, A.F.M.; Meyer, F.M.; Schneider, J. The geology of the Lega Dembi gold deposit, southern Ethiopia: Implications for Pan-African gold exploration. Miner. Depos. 1997, 32, 491–504. [Google Scholar] [CrossRef]
- Wulff, K. Petrography, Geochemistry, and Stable Isotope Characteristics of the Navachab Gold Deposit, Namibia. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2008; 203p. Available online: https://publications.rwth-aachen.de/record/50787/files/Wulff_Katharina.pdf (accessed on 1 January 2023).
- Dziggel, A.; Wulff, K.; Kolb, J.; Meyer, F. Processes of high-T fluid–rock interaction during gold mineralization in carbonate-bearing metasediments: The Navachab gold deposit, Namibia. Miner. Depos. 2009, 44, 665–687. [Google Scholar] [CrossRef]
- Dziggel, A.; Wulff, K.; Kolb, J.; Meyer, F.M.; Lahaye, Y. Significance of oscillatory and bell-shaped growth zoning in hydrothermal garnet: Evidence from the Navachab gold deposit, Namibia. Chem. Geol. 2009, 262, 262–276. [Google Scholar] [CrossRef]
- Kisters, A.F.M. Controls of gold-quartz vein formation during regional folding in amphibolite-facies, marble dominated metasediments of the Navachab Gold Mine in the Pan-African Damara Belt, Namibia. S. Afr. J. Geol. 2005, 108, 365–380. [Google Scholar] [CrossRef]
- Kisters, A.F.; Jordaan, L.; Neumaier, K. Thrust-related dome structures in the Karibib district and the origin of orthogonal fabric domains in the south Central Zone of the Pan-African Damara belt, Namibia. Precambrian Res. 2004, 133, 283–303. [Google Scholar] [CrossRef]
- Wulff, K.; Dziggel, A.; Kolb, J.; Vennemann, T.; Böttcher, M.E.; Meyer, F.M. Origin of Mineralizing Fluids of the Sediment-Hosted Navachab Gold Mine, Namibia: Constraints from Stable (O, H, C, S) Isotopes. Econ. Geol. 2010, 105, 285–302. [Google Scholar] [CrossRef]
- Chugaev, A.; Znamensky, S.E. Lead Isotope Characteristics of the Mindyak Gold Deposit, Southern Urals: Evidence for the Source of Metals. Geol. Ore Depos. 2018, 60, 52–61. [Google Scholar] [CrossRef]
- Ertl, R.G.W.; Znamensky, S.; Kisters, A.F.M.; Meyer, F.M.; Seravkin, I.B.; Kosarev, A.M. The Mindyak gold deposit in the southern Urals, Russia—A mineralization between epi- and mesozonal levels. EUG Abstract supplement no. 1. Terra Nova 1999, 10, 764. [Google Scholar]
- Kisters, A.F.M.; Meyer, F.M.; Seravkin, I.B.; Znamenski, S.N.; Kosarev, A.M.; Ertl, R.G.W. The geological setting of lode-gold deposits in the central south Urals: A review. Geol. Rundschau 1999, 87, 603–616. [Google Scholar] [CrossRef]
- Kolb, J.; Sindern, S.; Kisters, A.F.M.; Meyer, F.M.; Hoernes, S.; Schneider, J. Timing of Uralian orogenic gold mineralization at Kochkar in the evolution of the East Uralian granite-gneiss terrane. Miner. Depos. 2005, 40, 473–491. [Google Scholar] [CrossRef]
- Kisters, A.F.M.; Meyer, F.M.; Znamensky, S.E.; Seravkin, I.B.; Ertl, R.G.W.; Kosarev, A.M. Structural controls of lode-gold mineralization by mafic dykes in late-Paleozoic granitoids of the Kochkar district, southern Urals, Russia. Miner. Depos. 2009, 35, 157–168. [Google Scholar] [CrossRef]
- Kisters, A.F.M.; Meyer, F.M.; Znamensky, S.E.; Seravkin, I.B.; Ertl, R.G.W.; Kosarev, A. Dyke-shear zone relationships in late-Paleozoic granitoids of the Plast massif and their significance for lode-gold mineralization in the Kochkar district, southern Urals, Russia. Econ. Geol. Res. Unit Inf. Circular 1999, 335, 1–19. [Google Scholar]
- Ernowo, E.; Idrus, A.; Meyer, F.M. Elemental Gains and Losses during Hydrothermal Alteration in Awak Mas Gold Deposit, Sulawesi Island, Indonesia: Constraints from Balanced Mineral Reactions. Minerals 2022, 12, 1630. [Google Scholar] [CrossRef]
- Ernowo, E.; Meyer, F.M.; Idrus, A. Hydrothermal alteration and gold mineralization of the Awak Mas metasedimentary rock-hosted gold deposit, Sulawesi, Indonesia. Ore Geol. Rev. 2019, 113, 103083. [Google Scholar] [CrossRef]
- Ernowo, E. Hydrothermal Alteration and Gold Mineralization of the Awak Mas Gold Deposit, Sulawesi Island, Indonesia. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2017; 200p. [Google Scholar]
- Ernowo, E.; Meyer, F.M.; Idrus, A. Hydrothermal alteration and gold mineralization of the meta-sedimentary rock hosted gold deposit Awak Mas, Sulawesi Island, Indonesia. In Proceeding of the 35th International Geological Congress, Cape Town, South Africa, 27 August–4 September 2016. [Google Scholar]
- Ernowo, E.; Meyer, F.M.; Idrus, A.; Widyanarko, H.; Endrasari, N.L. An update of key characteristics of Awak Mas mesothermal gold deposit, Sulawesi Island, Indonesia. In Proceedings of the MGEI Annual Meeting, Bandung, Indonesia, 4–6 October 2016. [Google Scholar]
- Hakim, A.Y.; Melcher, F.; Prochaska, W.; Bakker, R.; Rantitsch, G. Formation of epizonal gold mineralization within the Latimojong Metamorphic Complex, Sulawesi, Indonesia: Evidence from mineralogy, fluid inclusions and Raman spectroscopy. Ore Geol. Rev. 2018, 97, 88–108. [Google Scholar] [CrossRef]
- White, L.T.; Hall, R.; Armstrong, R.A.; Barber, A.J.; Fadel, M.B.; Baxter, A.; Wakita, K.; Manning, C.; Soesilo, J. The geological history of the Latimojong region of western Sulawesi, Indonesia. J. Asian Earth Sci. 2017, 138, 72–91. [Google Scholar] [CrossRef]
- Gaboury, D. Parameters for the formation of orogenic gold deposits. Appl. Earth Sci. 2019, 128, 124–133. [Google Scholar] [CrossRef] [Green Version]
- Groves, D.I.; Goldfarb, R.J.; Gebre-Mariam, M.; Hagemann, S.G.; Robert, F. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol. Rev. 1998, 13, 7–27. [Google Scholar] [CrossRef]
- Gebre-Mariam, M.; Hagemann, S.G.; Groves, D.I. A classification scheme for epigenetic Archaean lode-gold deposits. Miner. Depos. 1995, 30, 408–410. [Google Scholar] [CrossRef]
- Groves, D.I. The crustal continuum model for late-Archaean lode-gold deposits of the Yilgarn Block, Western Australia. Miner Depos. 1993, 28, 366–374. [Google Scholar] [CrossRef]
- Hagemann, S.G.; Cassidy, K.F. Archean orogenic lode gold deposits. In Gold in 2000: Reviews in Economic Geology; Hagemann, S.G., Brown, P.E., Eds.; Society of Economic Geologists: Littleton, CO, USA, 2000; pp. 9–68. [Google Scholar]
- Bierlein, F.P.; Groves, D.I.; Cawood, P.A. Metallogeny of accretionary orogens—The connection between lithospheric processes and metal endowment. Ore Geol. Rev. 2009, 36, 282–292. [Google Scholar] [CrossRef]
- Phillips, G.N.; Powell, R. Formation of gold deposits: A metamorphic devolatilization model. J. Metam. Geol. 2010, 28, 689–718. [Google Scholar] [CrossRef]
- Connolly, J.A.D. The mechanics of metamorphic fluid expulsion. Elements 2010, 6, 165–172. [Google Scholar] [CrossRef]
- Phillips, G.N.; Powell, R. Formation of gold deposits: Review and evaluation of the continuum model. Earth-Sci. Rev. 2009, 94, 1–21. [Google Scholar] [CrossRef]
- Groves, D.I.; Santosh, M.; Zhang, L. A scale-integrated exploration model for orogenic gold deposits based on a mineral system approach. Geosci. Front. 2020, 11, 719–738. [Google Scholar] [CrossRef]
- Bogossian, J.; Kemp, A.I.S.; Hagemann, S.G. Linking Gold Systems to the Crust-Mantle Evolution of Archean Crust in Central Brazil. Minerals 2021, 11, 944. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Groves, D.I. Orogenic gold: Common vs evolving fluid and metal sources through time. Lithos 2015, 233, 2–26. [Google Scholar] [CrossRef]
- Hart, C.J.R.; Mair, J.L.; Goldfarb, R.J.; Groves, D.I. Source and Redox Controls of Intrusion-RelatedMetallogeny, Tombstone-Tungsten Belt, Yukon, Canada. In Fifth Hutton Symposium Volume, Transactions of the Royal Society of Edinburgh: Edinburgh Earth Sciences; Cambridge University Press: Cambridge, UK, 2004; pp. 339–356. [Google Scholar]
- Ridley, J.R.; Diamond, L.W. Fluid chemistry of orogenic lode gold deposits and implications for genetic models. Rev. Econ. Geol. 2000, 13, 141–162. [Google Scholar] [CrossRef]
- Hoefs, J. Stable Isotope Geochemistry; Springer: Berlin, Germany, 2009. [Google Scholar]
- Singer, D.A. World class base and precious metal deposits; a quantitative analysis. Econ. Geol. 1995, 90, 88–104. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Groves, D.I.; Gardoll, S. Orogenic gold and geologic time: A global synthesis. Ore Geol. Rev. 2001, 18, 1–75. [Google Scholar] [CrossRef]
- Hronsky, J.M.A.; Groves, D.I.; Loucks, R.R.; Begg, G.C. A unified model for gold mineralisation in accretionary orogens and implications for regional-scale exploration targeting methods. Miner. Depos. 2012, 47, 339–358. [Google Scholar] [CrossRef]
- Groves, D.I.; Goldfarb, R.J.; Santosh, M. The conjunction of factors that lead to formation of giant gold provinces and deposits in non-arc settings. Geosci. Front. 2015, 7, 303–314. [Google Scholar] [CrossRef] [Green Version]
- Groves, D.I.; Santosh, M.; Deng, J.; Wang, Q.; Yang, L.; Zhang, L. A holistic model for the origin of orogenic gold deposits and its implications for exploration. Miner. Depos. 2019, 55, 275–292. [Google Scholar] [CrossRef]
- Phillips, G.N.; Powell, R. A practical classification of gold deposits, with a theoretical basis. Ore Geol Rev. 2015, 65, 568–573. [Google Scholar] [CrossRef]
- Hsu, Y.-J.; Zajacz, Z.; Ulmer, P.; Heinrich, C.A. Chlorine partitioning between granitic melt and H2O-CO2-NaCl fluids in the Earth’s upper crust and implications for magmatic-hydrothermal ore genesis. Geochim. Cosmochim. Acta 2019, 261, 171–190. [Google Scholar] [CrossRef]
Deposit | Regional Geologic Settings |
---|---|
New Consort | Barberton Greenstone Belt |
Cuiabá | Rio das Velhas Supergroup (Nova Lima Group) |
Ajjannahalli | West Dhawar Craton (Chitradurga Greenstone Belt) |
Renco | Limpobo Belt (Northern Marginal Zone) |
Hutti | East Dhawar Craton (Hutti-Maski Greenstone Belt) |
Hira Buddini | East Dhawar Craton (Hutti-Maski Greenstone Belt) |
Pilgrim’s Rest | Transvaal Supergoup (Malmani Subgroup) |
Lega Dembi | Megado belt (Adola Granite-Greenstone Terrane) |
Navachab | Damara Belt (Southern Central Zone) |
Mindyak | Main Uralian Fault Zone (Magnitogorsk Megazone) |
Kochkar | East Uralian Zone (Plast Granite Massif) |
Awak Mas | Latimojong Formation |
Deposit | Host Structure |
---|---|
New Consort | Consort Bar shear zone |
Cuiabá | Cuiabá tubular sheath fold |
Ajjanahalli | Chitradurga boundary shear zone |
Renco | North Limpopo thrust zone (high-T mylonite zone) |
Hutti | Hutti-Maske shear zone (high-angle shear zone system) |
Hira Buddini | Reverse shear zone |
Pilgrims’s Rest | Shallow dipping thrust faults |
Lega Dembi | Lega-Dembi-Aflata shear zone |
Navachab | Mon Repos thrust zone |
Mindyak | Strike-slip fault zones (Main Uralian Fault) |
Kochkar | Shear zones at mafic dike-granitoid contacts |
Awak Mas | Oblique normal faults, extensional shears |
Deposit | Host Rock Lithology |
---|---|
New Consort | Mafic-ultramafic volcanics |
Cuiabá | Algoma-type BIF, mafic volcanics |
Ajjanahalli | Oxide-, Carbonate-facies BIF |
Renco | Enderbite |
Hutti | Amphibolite, felsic schist |
Hira Buddini | Metabasalt, metagabbro, metadacite |
Pilgrim’s Rest | Carbonaceous shale, gabbroic sills |
Lega Dembi | Graphitic meta-sediments |
Navachab | Marble, calc-silicates, biotite shist |
Mindyak | Fe-rich diabase, carbonaceous shale |
Kochkar | Mafic dykes, granitoid |
Awak Mas | Carbonaceous phyllites and shists |
Deposit | Timing Relative to Metamorphism |
---|---|
New Consort | 2 stages, post-peak metamorphism |
Cuiabá | syn- to late-peak metamorphism |
Ajjanahalli | post-peak metamorphism |
Renco | post-peak metamorphism |
Hutti | 2 stages, post peak metamorphism |
Hira Buddini | 2 stages, post peak metamorphism |
Pilgrim’s Rest | post metamorphism |
Lega Dembi | syn- to late-peak metamorphism |
Navachab | 2 stages, syn-peak metamorphism |
Mindyak | post-peak metamorphism |
Kochkar | peak-metamorphism |
Awak Mas | post metamorphism |
Deposit | Alteration Assemblage |
---|---|
New Consort | 1st stage: garnet, diopside, hornblende, K-feldspar, quartz, calcite, biotite |
2nd stage: hornblende, plagioclase, K-feldspar, biotite, quartz | |
Cuiabá | chlorite, carbonate, sericite, quartz, zoisite/clinozoisite |
Ajjanahalli | chlorite, stilpnomelane, minnesotaite, sericite, ankerite |
Renco | garnet, biotite, K-feldspar, quartz |
Hutti | 1st stage: biotite, chlorite, plagioclase. |
2nd stage: chlorite, K-feldspar | |
Hira Buddini | 1st stage: biotite, K-feldspar, albite, actinolite, tourmaline, calcite |
2nd stage: muscovite, epidote, chlorite, quartz, calcite | |
Pilgrims’s Rest | ferruginous carbonates, quartz, chlorite, sericite, rutile |
Lega Dembi | actinolite, biotite chlorite, epidote, calcite, sericite, kyanite |
Navachab | 1st stage: garnet, diopside, quartz, K- feldspar. |
2nd stage: garnet, biotite | |
Mindyak | quartz, albite, sericite, chlorite, carbonates |
Kochkar | biotite, actinolite, albite, K- feldspar, quartz, epidote, tourmaline |
Awak Mas | sericite, calcite, epidote |
Deposit | Ore Mineralogy |
---|---|
New Consort | 1st stage: arsenopyrite, pyrrhotite, loellingite |
2nd stage: arsenopyrite, loellingite, pyrrhotite, chalcopyrite, pyrite, gold, ullmannite, stibnite, native antimony, bismuth, maldonite | |
Cuiabá | pyrite, pyrrhotite, arsenopyrite, chalcopyrite, sphalerite, gold |
Ajjanahalli | pyrite, pyrrhotite, marcasite, arsenopyrite, chalcopyrite, sphalerite, gold |
Renco | pryrite, pyrrhotite, chalcopyrite, sphalerite molybdenite, cubanite, magnetite ilmenite rutile, native bismuth, bismuth alloys, gold |
Hutti | 1st stage: pyrite, arsenopyrite, gold |
2nd stage: arsenopyrite, pyrrhotite, chalcopyrite, gold, scheelite | |
Hira Buddini | pyrite, chalcopyrite, magnetite, apatite, sphalerite, gold |
Pilgrims’s Rest | pyrite, arsenopyrite, fahlores, chalcopyrite, bismuthinite, native bismuth, gold |
Lega Dembi | pyrite, pyrrhotite, arsenopyrite, chalcopyrite, galena, gersdorffite, sphalerite, tellurides, niccolite, bournonite, silvertetrahedrite, molybdenite, gold |
Navachab | 1st and 2nd stage: pyrrhotite, chalcopyrite, sphalerite, arsenopyrite, gold, bismuth, bismuthinite, bismuth tellurides, molybdenite, graphite |
Mindyak | pyrite, arsenopyrite, chalcopyrite, sphalerite, galena |
Kochkar | pyrite, arsenopyrite, chalcopyrite, sphalerite, tetradymite, gold, galena |
Awak Mas | pyrite, galena, chalcopyrite, gold |
δ34S (‰) Pyrite | δ18O (‰) Quartz | δD (‰) Quartz | Fluid Salinity (wt. % NaCleq.) | Fluid Phase Separation | Fluid Origin | |
---|---|---|---|---|---|---|
New Consort | - | - | - | magmatic/externally derived | ||
Cuiabá | - | - | - | metamorphic | ||
Ajjanahalli | +2.1–+2.7 | 13.6–14.4 | 87Sr/86Sr (Ro) 0.7068–0.7078 | mixed magmatic/metamorphic | ||
Renco | - | 7.8–9.2 | - | 2–10 | + | magmatic/externally derived |
Hutti | - | 12.1–12.2 | −51–−61 | 1–5 | + | mixed magmatic/metamorphic |
Hira Buddini | - | - | tourmaline δ11B = −4–+9 ‰ | 0–21 | + | mixed magmatic/metamorphic |
Pilgrims’s Rest | −2.8–+3.1 | 14.1–16.1 | −51–−61 | 5–23 | + | mixed contact metamorphism/basinal brines |
Lega Dembi | - | - | 87Sr/86Sr (R0) = 0.771 | 3–16 | + | metamorphic |
Navachab | +1.0–+8.3 | 12.2–17.9 | −50–−55 ‰ | 4–16 | + | mixed magmatic/metamorphic |
Mindyak | +1.0–+4.1 | 18.2–21.5 | calcite δ13C = −5.31–−7.63, | 3–7 | + | metamorphic |
Kochkar | 10.5–11.8 | 87Sr/86Sr (R0) = 0.7093 | 11–14 | + | Mixed magmatic/metamorphic | |
Awak Mas | −6.6–+12.9 | 10.2–12.7 | - | 2–6 | + | metamophic |
Deposit | Ore Reserves (Mt) (Proven & Probable) | Historic Au Production (t) | Annual Au Production (kg) | Au Grade (g/t) |
---|---|---|---|---|
New Consort | 1.41 | 59.54 | 340.2 | 9.4 |
Cuiabá | 7.89 | 4.68 | ||
Ajjanahalli | 7.34 | (1995–2002) 0.963 | 1.43 | |
Renco | 2.90 | 6.03 | ||
Hutti | 9.25 | 89.59 | 5.62 | |
Hira Buddini | 0.51 | 4.16 | ||
Pilgrim’s Rest | 45.5 | (1872–1972) 168 | (1999–2014) 284 | 4.17 |
Lega Dembi Closed 2018 | 20.8 | 77 | 3.71 | |
Navachab | 45.3 | 35.29 | 1501 | 1.29 |
Mindyak closed | 12.2 | 30.1 | 2.5 | |
Kochkar | 10.7 | 300 | 4.9 | |
Awak Mas | 20.2 | 1.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meyer, F.M. Case Histories of Orogenic Gold Deposits. Minerals 2023, 13, 369. https://doi.org/10.3390/min13030369
Meyer FM. Case Histories of Orogenic Gold Deposits. Minerals. 2023; 13(3):369. https://doi.org/10.3390/min13030369
Chicago/Turabian StyleMeyer, Franz Michael. 2023. "Case Histories of Orogenic Gold Deposits" Minerals 13, no. 3: 369. https://doi.org/10.3390/min13030369
APA StyleMeyer, F. M. (2023). Case Histories of Orogenic Gold Deposits. Minerals, 13(3), 369. https://doi.org/10.3390/min13030369