Mineral Resource Classification Using Geostatistical and Fractal Simulation in the Masjed Daghi Cu–Mo Porphyry Deposit, NW Iran
Abstract
:1. Introduction
2. Geological Setting
3. Material and Methods
3.1. Dataset
3.2. TBSIM
- -
- Raw data values should be declustered;
- -
- Declustered data are transformed to standard normal distribution;
- -
- Variograms are generated based on the transformed data;
- -
- Turning band simulation using the transformed data and variogram is performed;
- -
- Then, the simulation data must be back-transformed from normal distribution to the original scale;
- -
- Eventually, the realization maps of TBSIM are generated.
3.3. C–N Fractal Model
3.4. C–V Fractal Model
3.5. Hybrid Regression Models
4. Results and Discussion
4.1. Pre-Processing
4.2. Application of TBSIM for CCV Calculation
4.3. Mineral Resource Classification using CCV–V Fractal Modeling
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kingston, G. Reserve classification of identified nonfuel mineral resources by the bureau of mines minerals availability system. J. Int. Assoc. Math. Geol. 1977, 9, 273–279. [Google Scholar] [CrossRef]
- Guardiano, E.; Parker, H.; Isaaks, E. Prediction of Recoverable Reserves Using Conditional Simulation: A Case Study for the Fort Knox Gold Project, Alaska; Unpublished Technical Report; Mineral Resource Development Inc.: Port Moresby, Papua New Guinea, 1995. [Google Scholar]
- Dimitrakopoulos, R.; Godoy, M.; Chou, C. Resource/reserve classification with integrated geometric and local grade variability measures. In Proceedings of the Orebody Modelling and Strategic Mine Planning, Perth, WA, USA, 16–18 March 2009; pp. 207–214. [Google Scholar]
- Asghari, O.; Esfahani, N.M. A new approach for the geological risk evaluation of coal resources through a geostatistical simulation. Arab. J. Geosci. 2013, 6, 929–943. [Google Scholar] [CrossRef]
- Peattie, R.; Dimitrakopoulos, R. Forecasting Recoverable Ore Reserves and Their Uncertainty at Morila Gold Deposit, Mali: An Efficient Simulation Approach and Future Grade Control Drilling. Math. Geosci. 2013, 45, 1005–1020. [Google Scholar] [CrossRef]
- Tajvidi, E.; Monjezi, M.; Asghari, O.; Emery, X.; Foroughi, S. Application of joint conditional simulation to uncertainty quantification and resource classification. Arab. J. Geosci. 2015, 8, 455–463. [Google Scholar] [CrossRef]
- Goodfellow, R.; Dimitrakopoulos, R. Global optimization of open pit mining complexes with uncertainty. Appl. Soft Comput. 2016, 40, 292–304. [Google Scholar] [CrossRef]
- Menin, R.; Diedrich, C.; Reuwsaat, J.; De Paula, W. Drilling grid analysis for defining open-pit and underground mineral resource classification through production data. In Geostatistics Valencia 2016; Gomez-Hernandez, J., Rodrigo-Ilarri, J., Clavero, M.R., Cassiraga, E., Vargas-Guzma, J., Eds.; Quantitative Geology and Geostatistics, 19; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Battalgazy, N.; Madani, N. Categorization of Mineral Resources Based on Different Geostatistical Simulation Algorithms: A Case Study from an Iron Ore Deposit. Nat. Resour. Res. 2019, 28, 1329–1351. [Google Scholar] [CrossRef]
- Caers, J.; Zhang, T. Multiple-point geostatistics: A quantitative vehicle for integrating geologic analogs into multiple reservoir models. AAPG Mem. 2004, 80, 383–394. [Google Scholar] [CrossRef]
- Chile, J.P.; Delfiner, P. Geostatistics: Modeling Spatial Uncertainty, 2nd ed.; Wiley: New York, NY, USA, 2012. [Google Scholar]
- Cheng, Q.; Agterberg, F.; Bonham-Carter, G.F. A spatial analysis method for geochemical anomaly separation. J. Geochem. Explor. 1996, 56, 183–195. [Google Scholar] [CrossRef]
- Rossi, M.; Deutsch, C. Mineral Resource Estimation; Springer: Berlin/Heidelberg, Germany, 2014; 332p. [Google Scholar] [CrossRef]
- Soltani, F.; Afzal, P.; Asghari, O. Delineation of alteration zones based on Sequential Gaussian Simulation and concentration–volume fractal modeling in the hypogene zone of Sungun copper deposit, NW Iran. J. Geochem. Explor. 2014, 140, 64–76. [Google Scholar] [CrossRef]
- Hajsadeghi, S.; Asghari, O.; Mohammadi, M.; Meshkani, S. Indirect rock type modeling using geostatistical simulation of independent components in Nohkouhi volcanogenic massive sulfide deposit, Iran. J. Geochem. Explor. 2016, 168, 137–149. [Google Scholar] [CrossRef]
- Ghane, B.; Asghari, O. Modeling of mineralization using minimum/maximum autocorrelation factor: Case study Sury Gunay gold deposit NW of Iran. Geochem. Explor. Environ. Anal. 2017, 17, 186–193. [Google Scholar] [CrossRef]
- Madani, N.; Ortiz, J. Geostatistical simulation of crosscorrelated variables: A case study through Cerro Matoso Nickel-Laterite deposit. In Proceedings of the 26th International Symposium on Mine Planning and Equipment Selection, Luleå, Sweden, 29–31 August 2017. [Google Scholar]
- Hosseini, S.A.; Asghari, O. Multivariate geostatistical simulation on block-support in the presence of complex multivariate relationships: Iron ore deposit case study. Nat. Resour. Res. 2018, 28, 125–144. [Google Scholar] [CrossRef]
- Abildin, Y.; Madani, N.; Topal, E. A hybrid approach for joint simulation of geometallurgical variables with inequality constraint. Minerals 2019, 9, 24. [Google Scholar] [CrossRef] [Green Version]
- Hohn, M.E. An Introduction to Applied Geostatistics: By Edward H. Isaaks and R. Mohan Srivastava, 1989, Oxford University Press, New York, 561 p., ISBN 0-19-505012-6, ISBN 0-19-505013-4 (paperback), $55.00 cloth, $35.00 paper (US). Comput. Geosci. 1991, 17, 471–473. [Google Scholar] [CrossRef]
- Deutsch, C.; Journel, A. GSLIB: Geostatistical Software Library and User’s Guide; Oxford University Press: New York, NY, USA, 1992; 340p. [Google Scholar]
- Emery, X.; Lantuejoul, C. TBSIM: A computer program for conditional simulation of three-dimensional Gaussian random fields via the turning bands method. Comput. Geosci. 2006, 32, 1615–1628. [Google Scholar] [CrossRef]
- Luster, G. Raw Materials for Portland Cement: Applications of Conditional Simulation of Coregionalization. Ph.D. Thesis, Department of Applied Earth Sciences, Stanford University, Stanford, CA, USA, 1985. [Google Scholar]
- Soares, A. Direct Sequential Simulation and Cosimulation. Math. Geol. 2001, 33, 911–926. [Google Scholar] [CrossRef]
- Journel, A.; Huijbregts, C. Mining Geostatistics; Academic Press: London, UK, 1978. [Google Scholar]
- Froidevaux, R. Probability Field Simulation. In Geostatistics Tróia ’92; Quantitative Geology and Geostatistics Book Series (QGAG), 5; Springer: Dordrecht, Germany, 1993. [Google Scholar] [CrossRef]
- Matheron, G. The intrinsic random functions and their applications. Adv. Appl. Probab. 1973, 5, 439–468. [Google Scholar] [CrossRef] [Green Version]
- Journel, A. Geostatistics for conditional simulation of ore bodies. Econ. Geol. 1974, 69, 673–687. [Google Scholar] [CrossRef]
- Afzal, P.; Alhoseini, S.; Tokhmchi, B.; Ahangaran, D.K.; Yasrebi, A.; Madani, N.; Wetherelt, A. Outlining of high quality coking coal by concentration–volume fractal model and turning bands simulation in East-Parvadeh coal deposit, Central Iran. J. Coal Geol. 2014, 217, 88–99. [Google Scholar] [CrossRef]
- Paravarzar, S.; Emery, X.; Madani, N. Comparing sequential Gaussian simulation and turning bands algorithms for cosimulating grades in multi-element deposits. C. R. Geosci. 2015, 34, 84–93. [Google Scholar] [CrossRef]
- Eze, P.; Madani, N.; Adoko, A. Multivariate mapping of heavy metals spatial contamination in a Cu–Ni exploration field (Botswana) using turning bands co-simulation algorithm. Nat. Resour. Res. 2019, 28, 109–124. [Google Scholar] [CrossRef] [Green Version]
- Abulkhair, S.; Madani, N. Stochastic modeling of iron in coal seams using two-point and multiple-point geostatistics: A case study. Min. Metall. Explor. 2022, 39, 1313–1331. [Google Scholar] [CrossRef]
- Mandelbrot, B. The Fractal Geometry of Nature; Freeman: San Fransisco, CA, USA, 1983; 468p. [Google Scholar] [CrossRef]
- Afzal, P.; Alghalandis, Y.; Khakzad, A.; Moarefvand, P.; Omran, N. Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. J. Geochem. Explor. 2011, 108, 220–232. [Google Scholar] [CrossRef]
- Daneshvar Saein, L. Delineation of enriched zones of Mo, Cu and Re by concentration-volume fractal model in Nowchun Mo-Cu porphyry deposit, SE Iran. Iran. J. Earth Sci. 2017, 9, 64–72. [Google Scholar]
- Karaman, M.; Kumral, M.; Yildirim, M.; Doner, K.; Afzal, P.; Abdelnasser, A. Delineation of the porphyry-skarn mineralized zones (NW Turkey) using concentration–volume fractal model. Geochemistry 2021, 81, 125802. [Google Scholar] [CrossRef]
- Sadeghi, B.; Madani, N.; Carranza, E.J.M. Combination of geostatistical simulation and fractal modeling for mineral resource classification. J. Geochem. Explor. 2015, 149, 59–73. [Google Scholar] [CrossRef]
- Aghazadeh, M.; Hou, Z.; Badrzadeh, Z.; Zhou, L. Temporal spatial distribution and tectonic setting of porphyry copper deposits in Iran: Constraints from zircon U-Pb and molybdenite Re–Os geochronology. Ore Geol. Rev. 2015, 70, 385–406. [Google Scholar] [CrossRef]
- Imamalipour, A.; Mousavi, R. Vertical geochemical zonation in the Masjed Daghi porphyry copper-gold deposit, northwestern Iran: Implications for exploration of blind mineral deposits. Geochem. Explor. Environ. Anal. 2017, 18, 120–131. [Google Scholar] [CrossRef]
- Mohammadi; Fard, A.; Samaee, A. Geology and drilling report of Masjed Daghi area (scale 1:1000). Geol. Surv. Iran 2005, 340, 130. [Google Scholar]
- Aghanabati, A. Geology of Iran; Geological Survey of Iran: Tehran, Iran, 2006; 586p. (In Persian) [Google Scholar]
- Rossi, M. Optimizing grade control: A detailed case study. In Proceedings of the 101st Annual Meeting of the Canadian Institute of Mining, Metallurgy, and Petroleum (CIM), Calgary, AB, Canada, 2–5 May 1999. [Google Scholar]
- Davis, J.C. Statistics and Data Analysis in Geology; Wiley: New York, NY, USA, 2002; 638p. [Google Scholar]
- Chentsov, N.N. Levy-Brownian motion for several parameters and generalized white noise. Theor. Probab. Appl. 1957, 2, 265–266. [Google Scholar] [CrossRef]
- Emery, X. A turning bands program for conditional cosimulation of cross-correlated Gaussian random fields. Comput. Geosci. 2008, 34, 1850–1862. [Google Scholar] [CrossRef]
- Hassanpour, S.; Afzal, P. Application of concentration-number (C-N) multifractal modelling for geochemical anomaly separation in Haftcheshmeh porphyry system, NW Iran. Arab. J. Geosci. 2013, 6, 957–970. [Google Scholar] [CrossRef]
- Nazarpour, A. Application of C-A fractal model and exploratory data analysis (EDA) to delineate geochemical anomalies in the: Takab 1:25,000 geochemical sheet, NW Iran. J. Earth Sci. 2018, 10, 173–180. [Google Scholar]
- Ahmadi, N.; Afzal, P.; Yasrebi, A. Delineation of gas content zones using N-S fractal model in coking coal deposits. J. Min. Environ. 2021, 12, 181–189. [Google Scholar] [CrossRef]
- Malaekeh, A.; Ghasemi, M.; Afzal, P.; Solgi, A. Fractal modeling and relationship between thrust faults and carbonate-hosted Pb-Zn mineralization in Alborz Mountains, Northern Iran. Geochemistry 2021, 81, 125803. [Google Scholar] [CrossRef]
- Shahbazi, S.; Ghaderi, M.; Afzal, P. Prognosis of gold mineralization phases by multifractal modeling in the Zehabad epithermal deposit, NW Iran. Iran. J. Earth Sci. 2021, 13, 31–40. [Google Scholar] [CrossRef]
- Saadati, H.; Afzal, P.; Torshizian, H.; Solgi, A. Geochemical exploration for lithium in NE Iran using the geochemical mapping prospectivity index, staged factor analysis, and a fractal model. Geochem. Explor. Environ. Anal. 2020, 20, 461–472. [Google Scholar] [CrossRef]
- Zuo, R.; Cheng, Q.; Xia, Q. Application of fractal models to characterization of vertical distribution of geochemical element concentration. J. Geochem. Explor. 2009, 102, 37–43. [Google Scholar] [CrossRef]
- Saein, L.D.; Afzal, P.; Shahbazi, S.; Sadeghi, B. Application of an improved zonality index model integrated with multivariate fractal analysis: Epithermal gold deposits. Geopersia 2022, 12, 379–394. [Google Scholar] [CrossRef]
- Kianoush, P.; Mohammadi, G.; Hosseini, S.; Khah, N.K.F.; Afzal, P. Compressional and shear interval velocity modeling to determine formation pressures in an oilfield of SW Iran. J. Min. Environ. 2022, 13, 851–873. [Google Scholar] [CrossRef]
- Mahdizadeh, M.; Afzal, P.; Eftekhari, M.; Ahangari, K. Geomechanical zonation using multivariate fractal modeling in Chadormalu iron mine, Central Iran. Bull. Eng. Geol. Environ. 2022, 81, 1–11. [Google Scholar] [CrossRef]
- Hajsadeghi, S.; Asghari, O.; Mirmohammadi, M.; Afzal, P.; Meshkani, S.A. Uncertainty-Volume fractal model for delineating copper mineralization controllers using geostatistical simulation in Nohkouhi volcanogenic massive sulfide deposit, Central Iran. Bull. Miner. Res. Explor. 2020, 161, 1–11. [Google Scholar] [CrossRef]
Variable | Nugget | First Structure | Second Structure | ||
---|---|---|---|---|---|
Sill | Range (Meters) | Sill | Range (Meters) | ||
Cu | 0 | 0.3 | 60 | 0.7 | 495 |
Mo | 0.1 | 0.3 | 117 | 0.6 | 459 |
Resources Type | CCV Range for Cu | CCV Range for Mo |
---|---|---|
Measured | <0.18 | <0.84 |
Indicated | 0.18–0.35 | 0.84–0.96 |
Inferred | >0.35 | >0.96 |
Resources Type | CCV Range for Cu | CCV Range for Mo |
---|---|---|
Measured | <0.2 | <0.9 |
Indicated | 0.2–0.4 | 0.9–1 |
Inferred | >0.4 | >1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afzal, P.; Gholami, H.; Madani, N.; Yasrebi, A.B.; Sadeghi, B. Mineral Resource Classification Using Geostatistical and Fractal Simulation in the Masjed Daghi Cu–Mo Porphyry Deposit, NW Iran. Minerals 2023, 13, 370. https://doi.org/10.3390/min13030370
Afzal P, Gholami H, Madani N, Yasrebi AB, Sadeghi B. Mineral Resource Classification Using Geostatistical and Fractal Simulation in the Masjed Daghi Cu–Mo Porphyry Deposit, NW Iran. Minerals. 2023; 13(3):370. https://doi.org/10.3390/min13030370
Chicago/Turabian StyleAfzal, Peyman, Hamid Gholami, Nasser Madani, Amir Bijan Yasrebi, and Behnam Sadeghi. 2023. "Mineral Resource Classification Using Geostatistical and Fractal Simulation in the Masjed Daghi Cu–Mo Porphyry Deposit, NW Iran" Minerals 13, no. 3: 370. https://doi.org/10.3390/min13030370
APA StyleAfzal, P., Gholami, H., Madani, N., Yasrebi, A. B., & Sadeghi, B. (2023). Mineral Resource Classification Using Geostatistical and Fractal Simulation in the Masjed Daghi Cu–Mo Porphyry Deposit, NW Iran. Minerals, 13(3), 370. https://doi.org/10.3390/min13030370