Native Bacteria Isolated from Phosphate Deposits Reveal Efficient Metal Biosorption and Adhesion to Ore Particles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Raw Ore (before Mechanical Preparation)
2.2. Measurements of Metal Concentration in Phosphate Ore
2.3. Mineralogical Composition Assessment: X-ray Diffraction (XRD)
2.4. Mechanical Preparation of the Ore for Testing
2.5. Isolation and Identification of Microorganisms from Raw Ore
2.6. Biosorption Testing
2.7. Adhesion Tests
2.8. Statistical Analysis
3. Results
3.1. Cadmium Biosorption by Native Bacteria
3.2. Magnesium Biosorption by Native Bacteria
3.3. Adhesion of Native Bacteria to Ore Particles
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Escudero, L.B.; Quintas, P.Y.; Wuilloud, R.G.; Dotto, G.L. Recent advances on elemental biosorption. Environ. Chem. Lett. 2019, 17, 409–427. [Google Scholar] [CrossRef]
- Oosterhuis, F.H.; Brouwer, F.M.W.H. A Possible EU Wide Charge on Cadmium in Phosphate Fertilisers: Economic and Environmental Implications; Final Report to the European Commission, IVM, Institute for Environmental Studies; Vrije Universiteit: Amsterdam, The Netherlands, 2000; Report nr E-00/02. [Google Scholar]
- Mar, S.S.; Okazaki, M. Investigation of Cd contents in several phosphate rocks used for the production of fertilizer. Microchem. J. 2012, 104, 17–21. [Google Scholar] [CrossRef]
- Veglio’, F.; Beolchini, F. Removal of metals by biosorption: A review. Hydrometallurgy 1997, 44, 301–316. [Google Scholar] [CrossRef]
- Dwyer, R.; Bruckard, W.J.; Rea, S.; Holmes, R.J. Bioflotation and bioflocculation review: Microorganisms relevant for mineral beneficiation. Miner. Process. Extr. Met. 2012, 121, 65–71. [Google Scholar] [CrossRef]
- Behera, S.K.; Mulaba-Bafubiandi, A.F. Advances in microbial leaching processes for nickel extraction from lateritic minerals—A review. Korean J. Chem. Eng. 2015, 32, 1447–1454. [Google Scholar] [CrossRef]
- Behera, S.K.; Mulaba-Bafubiandi, A.F. Microbes Assisted Mineral Flotation a Future Prospective for Mineral Processing Industries: A Review. Miner. Process. Extr. Met. Rev. 2017, 38, 96–105. [Google Scholar] [CrossRef]
- Volesky, B. Biosorption and me. Water Res. 2007, 41, 4017–4029. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, C. Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 2009, 27, 195–226. [Google Scholar] [CrossRef] [PubMed]
- Abbas, H.S.; Ismail, M.I.; Mostafa, M.T.; Sulaymon, H.A. Biosorption of heavy metals: A review. J. Chem. Sci. Technol. 2014, 3, 74–102. [Google Scholar]
- Igiri, B.E.; Okoduwa, S.I.R.; Idoko, G.O.; Akabuogu, E.P.; Adeyi, A.O.; Ejiogu, I.K. Toxicity and Bioremediation of Heavy Metals Contaminated Ecosystem from Tannery Wastewater: A Review. J. Toxicol. 2018, 2018, 2568038. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P. Efficiency of bacteria and bacterial assisted phytoremediation of heavy metals: An update. Bioresour. Technol. 2021, 328, 124835. [Google Scholar] [CrossRef]
- Ayangbenro, A.S.; Babalola, O.O. A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. Int. J. Environ. Res. Public Health 2017, 14, 94. [Google Scholar] [CrossRef] [PubMed]
- Priya, A.K.; Gnanasekaran, L.; Dutta, K.; Rajendran, S.; Balakrishnan, D.; Soto-Moscoso, M. Biosorption of heavy metals by microorganisms: Evaluation of different underlying mechanisms. Chemosphere 2022, 307, 135957. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Dutta, D.; Udayan, A.; Nadda, A.K.; Lam, S.S.; Kumar, S. Role of microbes in bioaccumulation of heavy metals in municipal solid waste: Impacts on plant and human being. Environ. Pollut. 2022, 305, 119248. [Google Scholar] [CrossRef] [PubMed]
- Abdolali, A.; Guo, W.S.; Ngo, H.H.; Chen, S.S.; Nguyen, N.C.; Tung, K.L. Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: A critical review. Bioresour. Technol. 2014, 160, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Ajao, V.; Nam, K.; Chatzopoulos, P.; Spruijt, E.; Bruning, H.; Rijnaarts, H.; Temmink, H. Regeneration and reuse of microbial extracellular polymers immobilised on a bed column for heavy metal recovery. Water Res. 2020, 171, 115472. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, I.W. Biofilm exopolysaccharides: A strong and sticky network. Microbiology 2001, 147, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Bruins, M.R.; Kapil, S.; Oehme, F.W. Microbial Resistance to Metals in the Environment. Ecotoxicol. Environ. Saf. 2000, 45, 198–207. [Google Scholar] [CrossRef]
- Aguilera, A.; Souza-Egipsy, V.; Martín-Úriz, P.S.; Amils, R. Extracellular matrix assembly in extreme acidic eukaryotic biofilms and their possible implications in heavy metal adsorption. Aquat. Toxicol. 2008, 88, 257–266. [Google Scholar] [CrossRef]
- Huang, L.; Jin, Y.; Zhou, D.; Liu, L.; Huang, S.; Zhao, Y.; Chen, Y. A Review of the Role of Extracellular Polymeric Substances (EPS) in Wastewater Treatment Systems. Int. J. Environ. Res. Public Health 2022, 19, 12191. [Google Scholar] [CrossRef]
- Hiremath, P.; Bannigidad, P. Automated Gram-staining characterisation of bacterial cells using colour and cell wall properties. Int. J. Biomed. Eng. Technol. 2011, 7, 257. [Google Scholar] [CrossRef]
- Boyanov, M.I.; Kelly, S.D.; Kemner, K.M.; Bunker, B.A.; Fein, J.B.; Fowle, D.A. Adsorption of cadmium to Bacillus subtilis bacterial cell walls: A pH-dependent X-ray absorption fine structure spectroscopy study. Geochim. Cosmochim. Acta 2003, 67, 3299–3311. [Google Scholar] [CrossRef]
- Tsuruta, T. Biosorption and recycling of gold using various microorganisms. J. Gen. Appl. Microbiol. 2004, 50, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, E.I.; Ensari, N.Y. Cadmium biosorption by Bacillus circulans strain EB1. World J. Microbiol. Biotechnol. 2005, 21, 777–779. [Google Scholar] [CrossRef]
- Joo, J.-H.; Hassan, S.H.A.; Oh, S.-E. Comparative study of biosorption of Zn2+ by Pseudomonas aeruginosa and Bacillus cereus. Int. Biodeterior. Biodegrad. 2010, 64, 734–741. [Google Scholar] [CrossRef]
- Ahmad, M.F.; Haydar, S.; Bhatti, A.A.; Bari, A.J. Application of artificial neural network for the prediction of biosorption capacity of immobilized Bacillus subtilis for the removal of cadmium ions from aqueous solution. Biochem. Eng. J. 2014, 84, 83–90. [Google Scholar] [CrossRef]
- Zhang, W.-H.; He, L.-Y.; Wang, Q.; Sheng, X.-F. Inoculation with endophytic Bacillus megaterium 1Y31 increases Mn accumulation and induces the growth and energy metabolism-related differentially-expressed proteome in Mn hyperaccumulator hybrid pennisetum. J. Hazard. Mater. 2015, 300, 513–521. [Google Scholar] [CrossRef]
- García, R.; Campos, J.; Cruz, J.A.; Calderón, M.E.; Raynal, M.E.; Buitrón, G. Biosorption of Cd, Cr, Mn, and pb from aqueous solutions by Bacillus sp. strains isolated from industrial waste activate sludge. TIP 2016, 19, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.; Wu, W.; Lü, J.; Chen, Z.; Li, L.; Rao, W.; Guan, X. Biosorption and extraction of europium by Bacillus thuringiensis strain. Inorg. Chem. Commun. 2017, 75, 21–24. [Google Scholar] [CrossRef]
- Biswas, J.K.; Banerjee, A.; Rai, M.K.; Rinklebe, J.; Shaheen, S.M.; Sarkar, S.K.; Dash, M.C.; Kaviraj, A.; Langer, U.; Song, H.; et al. Exploring potential applications of a novel extracellular polymeric substance synthesizing bacterium (Bacillus licheniformis) isolated from gut contents of earthworm (Metaphire posthuma) in environmental remediation. Biodegradation 2018, 29, 323–337. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Motesharezadeh, B.; Hosseini, H.M.; Alikhani, H.; Zolfaghari, A.A. Root-induced changes of Zn and Pb dynamics in the rhizosphere of sunflower with different plant growth promoting treatments in a heavily contaminated soil. Ecotoxicol. Environ. Saf. 2018, 147, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Roşca, M.; Hlihor, R.-M.; Cozma, P.; Drăgoi, E.N.; Diaconu, M.; Silva, B.; Tavares, T.; Gavrilescu, M. Comparison of Rhodotorula sp. and Bacillus megaterium in the removal of cadmium ions from liquid effluents. Green Process. Synth. 2018, 7, 74–88. [Google Scholar] [CrossRef] [Green Version]
- Rabia, H.; Ould Hamou, M.; Kasperkiewicz, K.; Brożek, J.; Augustyniak, M. Adhesion abilities and biosorption of Cd and Mg by microorganisms—first step for eco-friendly beneficiation of phosphate ore. Sci. Rep. 2019, 9, 12929. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Zhao, Y.; Xu, Z.; Ding, Y.; Zhou, X.; Dong, M. A high Mn(II)-tolerance strain, Bacillus thuringiensis HM7, isolated from manganese ore and its biosorption characteristics. PeerJ 2020, 8, e8589. [Google Scholar] [CrossRef] [Green Version]
- El-Shall, H.; Zhang, P.; Abdel Khalek, N.; El-Mofty, S. Beneficiation technology of phosphates: Challenges and solutions. Min. Met. Explor. 2004, 21, 17–26. [Google Scholar] [CrossRef]
- Derhy, M.; Taha, Y.; Hakkou, R.; Benzaazoua, M. Review of the Main Factors Affecting the Flotation of Phosphate Ores. Minerals 2020, 10, 1109. [Google Scholar] [CrossRef]
- Ryszko, U.; Rusek, P.; Kołodyńska, D. Quality of Phosphate Rocks from Various Deposits Used in Wet Phosphoric Acid and P-Fertilizer Production. Materials 2023, 16, 793. [Google Scholar] [CrossRef]
- Cabala, J.; Smieja-Król, B.; Jablonska, M.; Chrost, L. Mineral components in a peat deposit: Looking for signs of early mining and smelting activities in Silesia–Cracow region (Southern Poland). Environ. Earth Sci. 2013, 69, 2559–2568. [Google Scholar] [CrossRef] [Green Version]
- Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. The HighScore suite. Powder Diffr. 2014, 29, S13–S18. [Google Scholar] [CrossRef] [Green Version]
- Hill, R.J.; Howard, C.J. Quantitative phase analysis from neutron powder diffraction data using the Rietveld method. J. Appl. Crystallogr. 1987, 20, 467–474. [Google Scholar] [CrossRef]
- Pacwa-Płociniczak, M.; Płaza, G.A.; Poliwoda, A.; Piotrowska-Seget, Z. Characterization of hydrocarbon-degrading and biosurfactant-producing Pseudomonas sp. P-1 strain as a potential tool for bioremediation of petroleum-contaminated soil. Environ. Sci. Pollut. Res. 2014, 21, 9385–9395. [Google Scholar] [CrossRef] [Green Version]
- Wright, E.S.; Yilmaz, L.S.; Noguera, D.R. DECIPHER, a Search-Based Approach to Chimera Identification for 16S rRNA Sequences. Appl. Environ. Microbiol. 2012, 78, 717–725. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.-Z.; Brusseau, M.L.; Aftiola, J.F. The use of calcium to facilitate desorption and removal of cadmium and nickel in subsurface soils. J. Contam. Hydrol. 1997, 25, 325–336. [Google Scholar] [CrossRef]
- Benredjem, Z.; Delimi, R.; Khelalfa, A. Phosphate ore washing by Na2EDTA for cadmium removal: Optimization of the operating conditions. Pol. J. Chem. Technol. 2012, 14, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Pacwa-Płociniczak, M.; Płociniczak, T.; Iwan, J.; Żarska, M.; Chorążewski, M.; Dzida, M.; Piotrowska-Seget, Z. Isolation of hydrocarbon-degrading and biosurfactant-producing bacteria and assessment their plant growth-promoting traits. J. Environ. Manag. 2016, 168, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Fathollahi, A.; Khasteganan, N.; Coupe, S.J.; Newman, A.P. A meta-analysis of metal biosorption by suspended bacteria from three phyla. Chemosphere 2021, 268, 129290. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Li, F.; Wu, C.; Yu, R.; Wu, X.; Shen, L.; Liu, Y.; Qiu, G.; Li, J. Role of extracellular polymeric substance (EPS) in toxicity response of soil bacteria Bacillus sp. S3 to multiple heavy metals. Bioprocess Biosyst. Eng. 2020, 43, 153–167. [Google Scholar] [CrossRef]
- Arce-Inga, M.; González-Pérez, A.R.; Hernandez-Diaz, E.; Chuquibala-Checan, B.; Chavez-Jalk, A.; Llanos-Gomez, K.J.; Leiva-Espinoza, S.T.; Oliva-Cruz, S.M.; Cumpa-Velasquez, L.M. Bioremediation Potential of Native Bacillus sp. Strains as a Sustainable Strategy for Cadmium Accumulation of Theobroma cacao in Amazonas Region. Microorganisms 2022, 10, 2108. [Google Scholar] [CrossRef]
- Feria-Cáceres, P.F.; Penagos-Velez, L.; Moreno-Herrera, C.X. Tolerance and Cadmium (Cd) Immobilization by Native Bacteria Isolated in Cocoa Soils with Increased Metal Content. Microbiol. Res. 2022, 13, 556–573. [Google Scholar] [CrossRef]
- Birken, I.; Bertucci, M.; Chappelin, J.; Jorda, E. Quantification of impurities, including 120 carbonates speciation for phosphates beneficiation by flotation. Procedia Eng. 2016, 138, 72–84. [Google Scholar] [CrossRef] [Green Version]
- Eoknin, H.; Esteinberg, D.; Eshemesh, M. Magnesium ions mitigate biofilm formation of Bacillus species via downregulation of matrix genes expression. Front. Microbiol. 2015, 6, 907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geesey, G.G.; Wigglesworth-Cooksey, B.; Cooksey, K.E. Influence of calcium and other cations on surface adhesion of bacteria and diatoms: A review. Biofouling 2000, 15, 195–205. [Google Scholar] [CrossRef]
- Rose, R.K. The role of calcium in oral streptococcal aggregation and the implications for biofilm formation and retention. Biochim. Biophys. Acta Gen. Subj. 2000, 1475, 76–82. [Google Scholar] [CrossRef]
- Körstgens, V.; Flemming, H.-C.; Wingender, J.; Borchard, W. Influence of calcium ions on the mechanical properties of a model biofilm of mucoid Pseudomonas aeruginosa. Water Sci. Technol. 2001, 43, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Mhatre, E.; Sundaram, A.; Hölscher, T.; Mühlstädt, M.; Bossert, J.; Kovács, Á.T. Presence of Calcium Lowers the Expansion of Bacillus subtilis Colony Biofilms. Microorganisms 2017, 5, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Fractions | R (g) | R (%) | CR (g) | CR (%) | CP (g) | CP (%) |
---|---|---|---|---|---|---|
≥8 mm | 34 | 1.7 | 34 | 1.7 | 1998 | 99.9 |
5–8 mm | 42 | 2.1 | 76 | 3.8 | 1924 | 96.2 |
4–5 mm | 17 | 0.9 | 93 | 4.7 | 1907 | 95.4 |
2.5–4 mm | 35 | 1.8 | 128 | 6.4 | 1872 | 93.6 |
2–2.5 mm | 20 | 1.0 | 148 | 7.4 | 1852 | 92.6 |
1.6–2 mm | 27 | 1.4 | 175 | 8.8 | 1825 | 91.3 |
1–1.6 mm | 55 | 2.8 | 230 | 11.5 | 1770 | 88.5 |
0.8–1 mm | 10 | 0.5 | 240 | 12.0 | 1760 | 88.0 |
500–800 μm | 105 | 5.3 | 345 | 17.3 | 1655 | 82.8 |
315–500 μm | 212 | 10.6 | 557 | 27.9 | 1443 | 72.2 |
250–315 μm | 264 | 13.2 | 821 | 41.1 | 1179 | 59.0 |
160–250 μm | 861 | 43.1 | 1682 | 84.1 | 318 | 15.9 |
125–160 μm | 162 | 8.1 | 1844 | 92.2 | 156 | 7.8 |
80–125 μm | 60 | 3.0 | 1904 | 95.2 | 96 | 4.8 |
63–80 μm | 47 | 2.4 | 1951 | 97.6 | 49 | 2.5 |
40–63 μm | 35 | 1.8 | 1986 | 99.3 | 14 | 0.7 |
≤40 μm | 9 | 0.5 | 1995 | 99.8 | ||
Total | 1995 | 99.8 |
Fractions | Metals | ||||||
---|---|---|---|---|---|---|---|
Cd | Cu | Mn | Fe | Mg | Ni | Zn | |
≥5 mm | 23.7 | 7.9 | 17.3 | 1210.0 | 3893.9 | 1.5 | 166.6 |
4–5 mm | 23.6 | 8.8 | 20.2 | 1577.2 | 4681.8 | 1.7 | 144.5 |
2.5–4 mm | 34.7 | 9.9 | 23.1 | 1527.3 | 4102.6 | 1.7 | 163.6 |
2–2.5 mm | 42.0 | 10.2 | 22.6 | 1626.0 | 4336.5 | 1.6 | 167.2 |
1.6–2 mm | 44.3 | 9.8 | 23.9 | 1692.3 | 4280.8 | 1.7 | 172.1 |
1–1.6 mm | 45.8 | 10.6 | 21.9 | 1627.4 | 5213.4 | 1.7 | 174.4 |
800 µm–1 mm | 42.7 | 9.1 | 20.6 | 1533.4 | 3635.7 | 1.8 | 164.1 |
500–800 µm | 30.2 | 10.7 | 14.8 | 1533.3 | 4395.9 | 1.5 | 161.8 |
315–500 µm | 19.9 | 11.5 | 12.6 | 1516.6 | 3350.0 | 1.5 | 146.0 |
250–315 µm | 19.8 | 10.5 | 10.8 | 1423.6 | 2747.0 | 1.5 | 147.7 |
160–250 µm | 25.3 | 9.9 | 14.5 | 1296.0 | 4172.2 | 1.7 | 179.8 |
125–160 µm | 32.4 | 13.4 | 18.5 | 1530.5 | 3969.6 | 2.0 | 206.3 |
80–125 µm | 36.8 | 13.1 | 23.4 | 1629.0 | 5369.1 | 1.8 | 217.5 |
63–80 µm | - | - | - | - | - | - | - |
40–63 µm | 49.1 | 9.5 | 30.5 | 2072.9 | 5217.8 | 17.4 | 234.3 |
≤40 µm | 49.6 | 10.9 | 29.3 | 2144.5 | 4391.0 | 6.4 | 256.6 |
Radiation | CuKα1 (λ = 1.540598 Å) |
Ni filter for Kβ elimination | |
Tension | 40 kV |
Current | 40 mA |
Range | 5°–70° 2Θ |
Step size | 0.02° 2Θ |
Time limit | 200 s |
Detector type | X’Celerator—strip detector |
Fractions | Mineralogical Composition (%) | ||||
---|---|---|---|---|---|
Calcite | CFA | Clinoptilolite | Dolomite | Quartz | |
≥5 mm | 5 | 64 | 2 | 29 | 1 |
4–5 mm | 5 | 66 | 1 | 27 | 1 |
2.5–4 mm | 7 | 58 | 1 | 33 | 1 |
2–2.5 mm | 4 | 69 | 2 | 23 | 2 |
1.6–2 mm | 9 | 69 | 1 | 18 | 2 |
1–1.6 mm | 4 | 69 | 1 | 25 | 2 |
800 µm–1 mm | 4 | 73 | 0 | 18 | 4 |
500–800 µm | 2 | 85 | 0 | 13 | 1 |
315–500 µm | 0 | 97 | 0 | 2 | 0 |
250–315 µm | 0 | 93 | 2 | 5 | 0 |
160–250 µm | 1 | 89 | 0 | 6 | 4 |
125–160 µm | 3 | 73 | 1 | 21 | 2 |
80–125 µm | 1 | 62 | 2 | 29 | 6 |
63–80 µm | 3 | 60 | 2 | 35 | 0 |
40–63 µm | 4 | 59 | 7 | 30 | 0 |
≤40 µm | 5 | 54 | 13 | 28 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabia, H.; Ould Hamou, M.; Kasperkiewicz, K.; Krzykawski, T.; Malicka, M.; Potocka, I.; Bodnaruk, I.; Merchichi, A.; Skowronek, M.; Augustyniak, M. Native Bacteria Isolated from Phosphate Deposits Reveal Efficient Metal Biosorption and Adhesion to Ore Particles. Minerals 2023, 13, 388. https://doi.org/10.3390/min13030388
Rabia H, Ould Hamou M, Kasperkiewicz K, Krzykawski T, Malicka M, Potocka I, Bodnaruk I, Merchichi A, Skowronek M, Augustyniak M. Native Bacteria Isolated from Phosphate Deposits Reveal Efficient Metal Biosorption and Adhesion to Ore Particles. Minerals. 2023; 13(3):388. https://doi.org/10.3390/min13030388
Chicago/Turabian StyleRabia, Hakim, Malek Ould Hamou, Katarzyna Kasperkiewicz, Tomasz Krzykawski, Monika Malicka, Izabela Potocka, Iryna Bodnaruk, Amira Merchichi, Magdalena Skowronek, and Maria Augustyniak. 2023. "Native Bacteria Isolated from Phosphate Deposits Reveal Efficient Metal Biosorption and Adhesion to Ore Particles" Minerals 13, no. 3: 388. https://doi.org/10.3390/min13030388
APA StyleRabia, H., Ould Hamou, M., Kasperkiewicz, K., Krzykawski, T., Malicka, M., Potocka, I., Bodnaruk, I., Merchichi, A., Skowronek, M., & Augustyniak, M. (2023). Native Bacteria Isolated from Phosphate Deposits Reveal Efficient Metal Biosorption and Adhesion to Ore Particles. Minerals, 13(3), 388. https://doi.org/10.3390/min13030388