Exploring the Development of Astrobiology Scientific Research through Bibliometric Network Analysis: A Focus on Biomining and Bioleaching
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. First String Analysis
3.2. Second String Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cockell, C. “Astrobiology” and the Ethics of New Science. Interdiscip. Sci. Rev. 2001, 26, 90–96. [Google Scholar] [CrossRef]
- Chyba, C.F.; Hand, K.P. Astrobiology: The Study of the Living Universe. Annu. Rev. Astron. Astrophys. 2005, 43, 31–74. [Google Scholar] [CrossRef] [Green Version]
- Gumulya, Y.; Zea, L.; Kaksonen, A.H. In situ resource utilisation: The potential for space biomining. Miner. Eng. 2022, 176, 107288. [Google Scholar] [CrossRef]
- Magliano, C.; Covone, G.; Ienco, R.M.; Cacciapuoti, L.; Inno, L.; Rotundi, A.; Fiscale, S.; Gallo, F.; Tonietti, L.; Muscari Tomajoli, M.T. The Efficiency of the Oxygenic Photosynthesis on Earth-like Planets in the Habitable Zone. In Proceedings of the 44th COSPAR Scientific Assembly, Online, 16–24 July 2022; Volume 44, p. 582. [Google Scholar]
- Rotundi, A.; Sierks, H.; Della Corte, V.; Fulle, M.; Gutierrez, P.J.; Lara, L.; Barbieri, C.; Lamy, P.L.; Rodrigo, R.; Koschny, D.; et al. Dust Measurements in the Coma of Comet 67P/Churyumov-Gerasimenko Inbound to the Sun. Science 2015, 347, aaa3905. [Google Scholar] [CrossRef] [Green Version]
- Piccirillo, A.M.; Della Corte, V.; Ferretti, S.; Musolino, A.; Zakharov, V.; di Paolo, F.; Rotundi, A.; Ammannito, E.; Amoroso, M.; Bertini, I.; et al. A Dedicated Simulation Chain for Hypervelocity Impacts Effects on DISC Sensor. In Proceedings of the 44th COSPAR Scientific Assembly, Online, 16–24 July 2022; Volume 44, p. 211. [Google Scholar]
- Magliano, C.; Covone, G.; Dobal, R.; Cacciapuoti, L.; Tonietti, L.; Giacalone, S.; Vines, J.I.; Inno, L.; Jenkins, J.S.; Lissauer, J.J.; et al. A systematic validation of hot Neptunes in TESS data. Mon. Not. R. Astron. Soc. 2022, 519, 1562–1577. [Google Scholar] [CrossRef]
- Lo Sapio, L. The Ethics of Astrobiology: Humanity’s Place in the Cosmos and the Extinction Problem. Front. Astron. Space Sci. 2022, 9, 1–5. [Google Scholar] [CrossRef]
- Montalenti, G. From Aristotle to Democritus via Darwin: A Short Survey of a Long Historical and Logical Journey. In Studies in the Philosophy of Biology: Reduction and Related Problems; Ayala, F.J., Dobzhansky, T., Eds.; Macmillan Education: London, UK, 1974; pp. 3–19. ISBN 978-1-349-01892-5. [Google Scholar]
- Milovanović, M. Geocentrism and Heliocentrism as Opposed Paradigmatic Conceptions. Eur. J. Sci. Theol. 2013, 9, 31–45. [Google Scholar]
- Martinez, A.A. Giordano Bruno and the Heresy of Many Worlds. Ann. Sci. 2016, 73, 345–374. [Google Scholar] [CrossRef] [PubMed]
- Goldilocks Zone—Exoplanet Exploration: Planets Beyond Our Solar System. Available online: https://exoplanets.nasa.gov/resources/323/goldilocks-zone/ (accessed on 25 May 2023).
- Nascimento-Dias, B.L.D.; Martinez-Frias, J. Brief review about history of astrobiology. Int. J. Astrobiol. 2022, 22, 67–78. [Google Scholar] [CrossRef]
- Lemmon, R.M. Chemical Evolution. Chem. Rev. 1970, 70, 95–109. [Google Scholar] [CrossRef]
- Hazen, R.M.; Papineau, D.; Bleeker, W.; Downs, R.T.; Ferry, J.M.; McCoy, T.J.; Sverjensky, D.A.; Yang, H. Mineral Evolution. Am. Mineral. 2008, 93, 1693–1720. [Google Scholar] [CrossRef]
- Russell, M.J.; Hall, A.J.; Martin, W. Serpentinization as a Source of Energy at the Origin of Life. Geobiology 2010, 8, 355–371. [Google Scholar] [CrossRef] [PubMed]
- Schröder, C.; Köhler, I.; Muller, F.L.L.; Chumakov, A.I.; Kupenko, I.; Rüffer, R.; Kappler, A. The Biogeochemical Iron Cycle and Astrobiology. Hyperfine Interact. 2016, 237, 85. [Google Scholar] [CrossRef] [Green Version]
- Sandford, S.A.; Nuevo, M.; Bera, P.P.; Lee, T.J. Prebiotic Astrochemistry and the Formation of Molecules of Astrobiological Interest in Interstellar Clouds and Protostellar Disks. Chem. Rev. 2020, 120, 4616–4659. [Google Scholar] [CrossRef]
- Shu, W.-S.; Huang, L.-N. Microbial Diversity in Extreme Environments. Nat. Rev. Microbiol. 2022, 20, 219–235. [Google Scholar] [CrossRef]
- Merino, N.; Aronson, H.S.; Bojanova, D.P.; Feyhl-Buska, J.; Wong, M.L.; Zhang, S.; Giovannelli, D. Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context. Front. Microbiol. 2019, 10, 780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bang, C.; Dagan, T.; Deines, P.; Dubilier, N.; Duschl, W.J.; Fraune, S.; Hentschel, U.; Hirt, H.; Hülter, N.; Lachnit, T.; et al. Metaorganisms in Extreme Environments: Do Microbes Play a Role in Organismal Adaptation? Zoology 2018, 127, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Santomartino, R.; Zea, L.; Cockell, C.S. The Smallest Space Miners: Principles of Space Biomining. Extremophiles 2022, 26, 7. [Google Scholar] [CrossRef]
- Mahajan, S.; Gupta, A.; Sharma, R. Bioleaching and Biomining. In Principles and Applications of Environmental Biotechnology for a Sustainable Future; Singh, R.L., Ed.; Applied Environmental Science and Engineering for a Sustainable Future; Springer: Singapore, 2017; pp. 393–423. ISBN 978-981-10-1866-4. [Google Scholar]
- Schippers, A.; Hedrich, S.; Vasters, J.; Drobe, M.; Sand, W.; Willscher, S. Biomining: Metal Recovery from Ores with Microorganisms. In Geobiotechnology I: Metal-related Issues; Schippers, A., Glombitza, F., Sand, W., Eds.; Advances in Biochemical Engineering/Biotechnology; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–47. ISBN 978-3-642-54710-2. [Google Scholar]
- Luís, A.T.; Córdoba, F.; Antunes, C.; Loayza-Muro, R.; Grande, J.A.; Silva, B.; Diaz-Curiel, J.; Ferreira da Silva, E. Extremely Acidic Eukaryotic (Micro) Organisms: Life in Acid Mine Drainage Polluted Environments—Mini-Review. Int. J. Environ. Res. Public. Health 2022, 19, 376. [Google Scholar] [CrossRef]
- Abe, Y.; Kokubo, T.; Yamamuro, T. Apatite Coating on Ceramics, Metals and Polymers Utilizing a Biological Process. J. Mater. Sci. Mater. Med. 1990, 1, 233–238. [Google Scholar] [CrossRef]
- Duda, T.; Raghavan, L.V. 3D Metal Printing Technology. IFAC-Pap. 2016, 49, 103–110. [Google Scholar] [CrossRef]
- Vidali, M. Bioremediation. An overview. Pure Appl. Chem. 2001, 73, 1163–1172. [Google Scholar] [CrossRef]
- Iwamoto, T.; Nasu, M. Current Bioremediation Practice and Perspective. J. Biosci. Bioeng. 2001, 92, 1–8. [Google Scholar] [CrossRef]
- Quatrini, R.; Johnson, D.B. Acidithiobacillus Ferrooxidans. Trends Microbiol. 2019, 27, 282–283. [Google Scholar] [CrossRef]
- Rawlings, D.E.; Johnson, D.B. The Microbiology of Biomining: Development and Optimization of Mineral-Oxidizing Microbial Consortia. Microbiology 2007, 153, 315–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cockell, C.S.; Santomartino, R.; Finster, K.; Waajen, A.C.; Eades, L.J.; Moeller, R.; Rettberg, P.; Fuchs, F.M.; Van Houdt, R.; Leys, N.; et al. Space Station Biomining Experiment Demonstrates Rare Earth Element Extraction in Microgravity and Mars Gravity. Nat. Commun. 2020, 11, 5523. [Google Scholar] [CrossRef]
- Orell, A.; Remonsellez, F.; Arancibia, R.; Jerez, C.A. Molecular Characterization of Copper and Cadmium Resistance Determinants in the Biomining Thermoacidophilic Archaeon Sulfolobus Metallicus. Archaea 2013, 2013, e289236. [Google Scholar] [CrossRef] [Green Version]
- Urbieta, M.S.; Rascovan, N.; Vázquez, M.P.; Donati, E. Genome Analysis of the Thermoacidophilic Archaeon Acidianus Copahuensis Focusing on the Metabolisms Associated to Biomining Activities. BMC Genom. 2017, 18, 445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zebec, Z.; Rittmann, S.; Schleper, C.; Milojevic, T. Meteorite-Associated Growth Physiology of the Iron Oxidising Extremophile Metallosphaera Sedula. In Proceedings of the EGU General Assembly, Vienna, Austria, 12–17 April 2015; p. 11431. [Google Scholar]
- Donati, C.C.; Edgardo, R. Innovative Biomining: Metal Recovery from Valuable Residues. In Heavy Metals in the Environment; CRC Press: Boca Raton, FL, USA, 2017; ISBN 978-1-315-23307-9. [Google Scholar]
- Valdés, J.; Pedroso, I.; Quatrini, R.; Dodson, R.J.; Tettelin, H.; Blake, R.; Eisen, J.A.; Holmes, D.S. Acidithiobacillus Ferrooxidans Metabolism: From Genome Sequence to Industrial Applications. BMC Genom. 2008, 9, 597. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.B. The Biogeochemistry of Biomining. In Geomicrobiology: Molecular and Environmental Perspective; Barton, L.L., Mandl, M., Loy, A., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 401–426. ISBN 978-90-481-9204-5. [Google Scholar]
- Rana, S.; Mishra, P.; Wahid, Z.A.; Thakur, S.; Pant, D.; Singh, L. Microbe-Mediated Sustainable Bio-Recovery of Gold from Low-Grade Precious Solid Waste: A Microbiological Overview. J. Environ. Sci. 2020, 89, 47–64. [Google Scholar] [CrossRef]
- Dushyantha, N.; Batapola, N.; Ilankoon, I.M.S.K.; Rohitha, S.; Premasiri, R.; Abeysinghe, B.; Ratnayake, N.; Dissanayake, K. The Story of Rare Earth Elements (REEs): Occurrences, Global Distribution, Genesis, Geology, Mineralogy and Global Production. Ore Geol. Rev. 2020, 122, 103521. [Google Scholar] [CrossRef]
- Omodara, L.; Pitkäaho, S.; Turpeinen, E.-M.; Saavalainen, P.; Oravisjärvi, K.; Keiski, R.L. Recycling and Substitution of Light Rare Earth Elements, Cerium, Lanthanum, Neodymium, and Praseodymium from End-of-Life Applications—A Review. J. Clean. Prod. 2019, 236, 117573. [Google Scholar] [CrossRef]
- Li, X.; Liang, X.; He, H.; Li, J.; Ma, L.; Tan, W.; Zhong, Y.; Zhu, J.; Zhou, M.-F.; Dong, H. Microorganisms Accelerate REE Mineralization in Supergene Environments. Appl. Environ. Microbiol. 2022, 88, e00632-22. [Google Scholar] [CrossRef]
- Mowafy, A.M. Biological Leaching of Rare Earth Elements. World J. Microbiol. Biotechnol. 2020, 36, 61. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, T.; Zhang, L.; Ke, Z.; Kovarik, L.; Dong, H. Resource Recovery: Adsorption and Biomineralization of Cerium by Bacillus Licheniformis. J. Hazard. Mater. 2022, 426, 127844. [Google Scholar] [CrossRef]
- Tichy, R.; Rulkens, W.H.; Grotenhuis, J.T.C.; Nydl, V.; Cuypers, C.; Fajtl, J. Bioleaching of Metals from Soils or Sediments. Water Sci. Technol. 1998, 37, 119–127. [Google Scholar] [CrossRef]
- Biomining—Journals of India. 2020. Available online: https://journalsofindia.com (accessed on 5 May 2023).
- Anand, M.; Crawford, I.A.; Balat-Pichelin, M.; Abanades, S.; van Westrenen, W.; Péraudeau, G.; Jaumann, R.; Seboldt, W. A Brief Review of Chemical and Mineralogical Resources on the Moon and Likely Initial in Situ Resource Utilization (ISRU) Applications. Planet. Space Sci. 2012, 74, 42–48. [Google Scholar] [CrossRef]
- Picone, F.; Buonocore, E.; Chemello, R.; Russo, G.F.; Franzese, P.P. Exploring the Development of Scientific Research on Marine Protected Areas: From Conservation to Global Ocean Sustainability. Ecol. Inform. 2021, 61, 101200. [Google Scholar] [CrossRef]
- Saggiomo, L.; Esattore, B.; Picone, F. What Are We Talking about? Sika Deer (Cervus Nippon): A Bibliometric Network Analysis. Ecol. Inform. 2020, 60, 101146. [Google Scholar] [CrossRef]
Term | Description |
---|---|
Items | Objects of interest (i.e., publications, researchers, keywords, authors). |
Link | Connection or relation between two items (e.g., co-occurrence of keyword). |
Number of links | The number of links, expressed by a positive numerical value. |
Link strength | Attribute of each link, expressed by a positive numerical value. In the case of co-occurrence of keywords, is based on the number of publications in which two keywords occur together in the title, abstract, or keyword list. The higher the value, the higher the number of occurrence of keywords in the global literature expressing their relationship quantitatively. |
Total link strength | The cumulative strength of the links of an item with other items. |
Network | Set of items connected by their links. |
Cluster | Set of items included in a network map. Closely related elements are grouped in clusters. Each cluster represents a different macro-area of the scientific research. |
Co-occurrence analysis | The number of co-occurrences of two keywords is the number of publications in which both keywords occur together in the title, abstract, or keyword list. |
Overlay visualization | Network analysis feature depicting network items based on their average publication year. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tonietti, L.; Barosa, B.; Pioltelli, E.; Giovannelli, D.; Covone, G.; Di Donato, P.; Cordone, A.; Inno, L.; Magliano, C.; Fiscale, S.; et al. Exploring the Development of Astrobiology Scientific Research through Bibliometric Network Analysis: A Focus on Biomining and Bioleaching. Minerals 2023, 13, 797. https://doi.org/10.3390/min13060797
Tonietti L, Barosa B, Pioltelli E, Giovannelli D, Covone G, Di Donato P, Cordone A, Inno L, Magliano C, Fiscale S, et al. Exploring the Development of Astrobiology Scientific Research through Bibliometric Network Analysis: A Focus on Biomining and Bioleaching. Minerals. 2023; 13(6):797. https://doi.org/10.3390/min13060797
Chicago/Turabian StyleTonietti, Luca, Bernardo Barosa, Emiliano Pioltelli, Donato Giovannelli, Giovanni Covone, Paola Di Donato, Angelina Cordone, Laura Inno, Christian Magliano, Stefano Fiscale, and et al. 2023. "Exploring the Development of Astrobiology Scientific Research through Bibliometric Network Analysis: A Focus on Biomining and Bioleaching" Minerals 13, no. 6: 797. https://doi.org/10.3390/min13060797
APA StyleTonietti, L., Barosa, B., Pioltelli, E., Giovannelli, D., Covone, G., Di Donato, P., Cordone, A., Inno, L., Magliano, C., Fiscale, S., Muscari Tomajoli, M. T., Napolitano, G., Piccirillo, A. M., Della Corte, V., Santomartino, R., & Rotundi, A. (2023). Exploring the Development of Astrobiology Scientific Research through Bibliometric Network Analysis: A Focus on Biomining and Bioleaching. Minerals, 13(6), 797. https://doi.org/10.3390/min13060797