Thermobarometry of the Rajmahal Continental Flood Basalts and Their Primary Magmas: Implications for the Magmatic Plumbing System
Abstract
:1. Introduction
2. Geological and Geochemical Background
3. Sample Locations and Bulk Compositions
4. Analytical Methods
5. Petrography and Mineral Chemistry
6. Thermobarometry
6.1. Clinopyroxene Thermobarometry
6.2. Clinopyroxene-Bulk Thermobarometry
6.3. Whole Rock Thermobarometry
7. Primary Magma Modeling
8. Discussion
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bryan, S.E.; Ukstins Peate, I.; Peate, D.W.; Self, S.; Jerram, D.A.; Mawby, M.R.; Marsh, J.S.; Miller, J.A. The largest volcanic eruptions on Earth. Earth Sci. Rev. 2010, 102, 207–229. [Google Scholar] [CrossRef] [Green Version]
- Burchardt, S. (Ed.) Introduction to volcanic and igneous plumbing systems—Developing a discipline and common concepts. In Volcanic and Igneous Plumbing Systems: Understanding Magma Transport, Storage, and Evolution in the Earth’s Crust; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–12. [Google Scholar]
- Ernst, R.E.; Liikane, D.A.; Jowitt, S.M.; Buchan, K.L.; Blanchard, J.A. A new plumbing system framework for mantle plume-related continental Large Igneous Provinces and their mafic-ultramafic intrusions. J. Volcanol. Geotherm. Res. 2019, 384, 75–84. [Google Scholar] [CrossRef]
- Tibaldi, A. Structure of volcano plumbing systems: A review of multi-parametric effects. J. Volcanol. Geotherm. Res. 2015, 298, 85–135. [Google Scholar] [CrossRef]
- Van Wyk de Vries, B.; van Wyk de Vries, M. Tectonics and volcanic and igneous plumbing systems. In Volcanic and Igneous Plumbing Systems: Understanding Magma Transport, Storage, and Evolution in the Earth’s Crust; Burchardt, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 167–189. [Google Scholar]
- Burchardt, S.; Walter, T.R.; Tuffen, H. Growth of a volcanic edifice through plumbing system processes—Volcanic rift zones, magmatic sheet-intrusion swarms and long lived conduits. In Volcanic and Igneous Plumbing Systems: Understanding Magma Transport, Storage, and Evolution in the Earth’s Crust; Burchardt, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 89–112. [Google Scholar]
- Galland, O.; Bertelsen, H.S.; Eide, C.H.; Guldstrand, F.; Haug, Ø.T.; Leanza, H.A.; Mair, K.; Palma, O.; Planke, S.; Rabbel, O.; et al. Storage and transport of magma in the layered crust—Formation of sills and related flat-lying intrusions. In Volcanic and Igneous Plumbing Systems: Understanding Magma Transport, Storage, and Evolution in the Earth’s Crust; Burchardt, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 113–138. [Google Scholar]
- Mittal, T.; Richards, M.A. The magmatic architecture of continental flood basalts: 2. A new conceptual model. J. Geophys. Res. Solid Earth 2021, 126, e2021JB021807. [Google Scholar] [CrossRef]
- Mittal, T.; Richards, M.A.; Fendley, I.M. The magmatic architecture of continental flood basalts 1: Observations from the Deccan Traps. J. Geophys. Res. Solid Earth 2021, 126, e2021JB021808. [Google Scholar] [CrossRef]
- Storey, M.; Kent, R.W.; Saunders, A.D.; Hergt, J.; Salters, V.J.M.; Whitechurch, H.; Sevigny, J.H.; Thirlwall, N.F.; Leat, P.; Ghose, N.C.; et al. Lower Cretaceous rocks on continental margins and their relationship to the Kerguelen plateau. Proc. Ocean Drill. Prog. Sci. Res. 1992, 120, 33–53. [Google Scholar]
- Mahoney, J.J.; Jones, W.B.; Frey, F.A.; Salters, V.J.M.; Pyle, D.G.; Davies, H.L. Geochemical characteristics of lavas from Broken Ridge, the Naturaliste Plateau and southernmost Kerguelen Plateau: Cretaceous plateau volcanism in the southeast Indian Ocean. Chem. Geol. 1995, 120, 315–345. [Google Scholar] [CrossRef]
- Frey, F.A.; Coffin, M.F.; Wallace, P.J.; Weis, D.; Zhao, X.; Wise, S.W. Origin and evolution of a submarine large igneous province: The Kerguelen Plateau and Broken Ridge, southern Indian Ocean. Earth Planet. Sci. Lett. 2000, 176, 73–89. [Google Scholar] [CrossRef] [Green Version]
- Frey, F.A.; McNaughton, N.J.; Nelson, D.R.; Delaeter, J.R.; Duncan, R.A. Petrogenesis of the Bunbury basalt, western Australia: Interaction between the Kerguelen plume and Gondwana lithosphere? Earth Planet. Sci. Lett. 1996, 144, 163–183. [Google Scholar] [CrossRef]
- Weis, D.; Frey, F.A. Isotope geochemistry of Ninetyeast Ridge basement basalts: Sr, Nd and Pb evidence for the involvement of the Kerguelen hotspot. Proc. Ocean Drill. Prog. Sci. Res. 1991, 121, 591–610. [Google Scholar]
- Coffin, M.F.; Pringle, M.S.; Duncan, R.A.; Gladczenko, T.P.; Storey, R.D.; Müller, R.D.; Gahagan, L.A. Kerguelen hotspot magma output since 130 Ma. J. Petrol. 2002, 43, 1121–1140. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, R.K. Early Cretaceous Greater Kerguelen large igneous province and its plumbing systems: A contemplation on concurrent magmatic records of the eastern Indian Shield and adjoining regions. Geol. J. 2022, 57, 681–693. [Google Scholar] [CrossRef]
- Talukdar, S.C.; Murthy, M.V.N. The Sylhet traps, their tectonic history and their bearing on problems of Indian flood basalt provinces. Bull. Volcanol. 1970, 35, 602–618. [Google Scholar] [CrossRef]
- Baksi, A.K. Petrogenesis and timing of volcanism in the Rajmahal flood basalt province, Northern India. Chem. Geol. 1995, 121, 73–90. [Google Scholar] [CrossRef]
- Baksi, A.K.; Barman, T.R.; Paul, D.K.; Ferar, E. Widespread early Cretaceous flood basal volcanism in eastern India: Geochemical data from the Rajmahal-Bengal-Sylhet traps. Chem. Geol. 1987, 63, 133–141. [Google Scholar] [CrossRef]
- Kent, R.W.; Saunders, A.D.; Storey, M.; Ghose, N.C. Petrology of the Early Cretaceous flood basalts and dykes along the rifted volcanic margin of eastern India. J. Southeast Asian Earth Sci. 1996, 13, 95–111. [Google Scholar] [CrossRef]
- Kent, R.W.; Saunders, A.D.; Kempton, P.D.; Ghose, N.C. Rajmahal basalts, Eastern India: Mantle sources and melt distribution at a volcanic rifted margin. In Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism; Mahoney, J.J., Coffin, M.F., Eds.; American Geophysical Union: Washington, DC, USA, 1997; Volume 100, pp. 145–182. [Google Scholar]
- Kent, R.W.; Pringle, M.S.; Muller, R.D.; Saunders, A.D.; Ghose, N.C. 40Ar/39Ar geochronology of the Rajmahal basalts, India and their relationship to the Kerguelen Plateau. J. Petrol. 2002, 43, 1141–1153. [Google Scholar] [CrossRef] [Green Version]
- Ghose, N.C.; Kent, R.W. The Rajmahal basalts: A review of their geology, composition and petrogenesis. Geol. Soc. India Mem. 2003, 53, 167–196. [Google Scholar]
- Ray, J.S.; Pattanayak, S.K.; Pande, K. Rapid emplacement of the Kerguelen plume-related Sylhet Traps, eastern India: Evidence from 40Ar-39Ar geochronology. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- Ghatak, A.; Basu, A.R. The Sylhet Traps: Vestiges of the Kerguelen plume in northeastern India. Earth Planet. Sci. Lett. 2011, 308, 52–64. [Google Scholar]
- Ghatak, A.; Basu, A.R. Isotopic and trace element geochemistry of alkalic–mafic–ultramafic–carbonatitic complexes and flood basalts in NE India: Origin in a heterogeneous Kerguelen plume. Geochim. Cosmochim. Acta 2013, 115, 46–72. [Google Scholar] [CrossRef]
- Sengupta, S. Geological and geophysical studies in western part of Bengal basin, India. Amer. Assoc. Petrol. Geol. Bull. 1966, 50, 1001–1017. [Google Scholar]
- Srivastava, R.K.; Wang, F.; Shi, W.; Ernst, R.E. Early Cretaceous mafic dykes from the Chhota Nagpur Gneissic Terrane, eastern India: Evidence of multiple magma pulses for the main stage of the Greater Kerguelen mantle plume. J. Asian Earth Sci. 2023, 241, 105464. [Google Scholar] [CrossRef]
- Agrawal, J.K.; Rama, F.A. Chronology of Mesozoic volcanic of India. Proc. Indian Acad. Sci. 1976, 84A, 157–179. [Google Scholar] [CrossRef]
- Acharya, S.K. Chemical Behavior of the Volcanic Rocks of South Rajmahal, Bihar. Ph.D. Thesis, Patna University, Patna, India, 1988. [Google Scholar]
- Mahoney, J.J.; Macdougall, J.D.; Lugmair, G.W.; Gopalan, K. Kerguelen hotspot source for Rajmahal and Ninetyeast Ridge? Nature 1983, 303, 385–389. [Google Scholar] [CrossRef]
- Ghose, N.C.; Chatterjee, N.; Windley, B.F. Subaqueous early eruptive phase of the late Aptian Rajmahal volcanism, India: Evidence from volcaniclastic rocks, bentonite, black shales, and oolite. Geosci. Front. 2017, 8, 809–822. [Google Scholar] [CrossRef] [Green Version]
- NGRI. Gravity Maps of India Scale 1:5,000,000. NGRI/GPH-1 to 5; National Geophysical Research Institute (NGRI): Hyderabad, India, 1978. [Google Scholar]
- Kaila, K.L.; Reddy, P.R.; Mall, D.M.; Venkateswarlu, N.; Krishna, V.G.; Prasad, A.S.S.S.R.S. Crustal structure of the West Bengal basin, India, from deep seismic sounding investigations. Geophys. J. Int. 1992, 111, 45–66. [Google Scholar] [CrossRef]
- Mukhopadhyay, M.; Verma, R.K.; Ashraf, M.H. Gravity field and structures of the Rajmahal Hills: Examples of the Paleo-Mesozoic continental margin in eastern India. Tectonophysics 1986, 131, 353–367. [Google Scholar] [CrossRef]
- Singh, A.P.; Kumar, N.; Singh, B. Magmatic underplating beneath the Rajmahal Trap: Gravity signature and derived 3D configuration. Proc. Indian Acad. Sci. 2004, 113, 759–769. [Google Scholar] [CrossRef]
- Ghose, N.C. Geology, tectonics and evolution of the Chhotanagpur granite gneiss complex, eastern India. In Recent Research in Geology 10; Hindustan Publish. Co.: Delhi, India, 1983; pp. 211–247. [Google Scholar]
- Chatterjee, N.; Ghose, N.C. Extensive Early Neoproterozoic high-grade metamorphism in north Chotanagpur Gneissic Complex of the Central Indian Tectonic Zone. Gond. Res. 2011, 20, 362–379. [Google Scholar] [CrossRef]
- Raja Rao, R.C.S.; Purushottam, A. Pitchstone flows in the Rajmahal Hills, Santhal Paraganas, Bihar. Geol. Surv. India Rec. 1963, 91, 341–348. [Google Scholar]
- Sarbadhikari, T.K. Petrology of the northeastern portion of the Rajmahal Traps. Quar. J. Geol. Min. Met. Soc. India 1968, 60, 151–171. [Google Scholar]
- Ghose, N.C.; Singh, S.P.; Singh, R.N.; Mukherjee, D. Flow stratigraphy of a selected sections of Rajmahal basalts, eastern India. J. Southeast Asian Earth Sci. 1996, 13, 83–93. [Google Scholar] [CrossRef]
- Deshmukh, S.S. Geology of the area around Taljhari and Berhait, Rajmahal hills, Santhal Paraganas, Bihar. Rep. 22nd Intern. Geol. Cong. 1964, 7, 61–84. [Google Scholar]
- Ghose, N.C. Pyroclastic rocks of India in space and time. In Proceedings of the Indian Geological Congress (IGC); Indian Geological Congress: Roorkee, India, 2000. [Google Scholar]
- Le Bas, M.J.; Le Maitre, R.W.; Streckeisen, A.; Zanettin, B. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol. 1986, 27, 745–750. [Google Scholar] [CrossRef] [Green Version]
- McDonough, W.F.; Sun, S.-S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Chatterjee, N. An assembly of the Indian Shield at c. 1.0 Ga and shearing at c. 876-784 Ma in Eastern India: Insights from contrasting P-T paths, and burial and exhumation rates of metapelitic granulites. Precamb. Res. 2018, 317, 117–136. [Google Scholar] [CrossRef]
- Chatterjee, N.; Nicolaysen, K. An intercontinental correlation of the mid-Neoproterozoic Eastern Indian Tectonic Zone: Evidence from the gneissic clasts in Elan Bank conglomerate, Kerguelen Plateau. Contrib. Mineral. Petrol. 2012, 163, 789–806. [Google Scholar] [CrossRef]
- Chatterjee, N.; Banerjee, M.; Bhattacharya, A.; Maji, A.K. Monazite chronology, metamorphism–anatexis and tectonic relevance of the mid-Neoproterozoic Eastern Indian Tectonic Zone. Precamb. Res. 2010, 179, 99–120. [Google Scholar] [CrossRef]
- Biswas, S.K. Mesozoic volcanism in the east coast basins of India. Ind. J. Geol. 1996, 68, 237–254. [Google Scholar]
- Desa, M.A.; Ramana, M.V.; Ramprasad, T.; Anuradha, M.; Lall, M.V.; Kumar, B.J.P. Geophysical signatures over and around the northern segment of the 85oE Ridge, Mahanadi offshore, eastern continental margin of India and their tectonic implications. J. Asian Earth Sci. 2013, 73, 460–472. [Google Scholar] [CrossRef]
- Ratheesh-Kumar, R.T.; Windley, B.F.; Sajeev, K. Tectonic inheritance of the Indian Shield: New insights from its elastic thickness structure. Tectonophysics 2014, 615–616, 40–52. [Google Scholar] [CrossRef]
- Armstrong, J.T. CITZAF—A package for correction programs for the quantitative electron microbeam X-ray analysis of thick polished materials, thin-films and particles. Microbeam Anal. 1995, 4, 177–200. [Google Scholar]
- Morimoto, N.; Fabries, J.; Ferguson, A.K.; Ginzburg, I.V.; Ross, M.; Seifert, F.A.; Zussman, L.; Aoki, K.; Gottardi, G. Nomenclature of pyroxenes. Mineral. Mag. 1988, 52, 535–550. [Google Scholar] [CrossRef]
- Putirka, K.D. Thermometers and barometers for volcanic systems. Rev. Mineral. Geochem. Mineral. Soc. Amer. 2008, 69, 61–120. [Google Scholar] [CrossRef]
- Higgins, O.; Sheldrake, T.; Caricchi, L. Machine learning thermobarometry and chemometry using amphibole and clinopyroxene: A window into the roots of an arc volcano (Mount Liamuiga, Saint Kitts). Contrib. Mineral. Petrol. 2022, 177, 10. [Google Scholar] [CrossRef]
- Jorgenson, C.; Higgins, O.; Petrelli, M.; Bégué, F.; Caricchi, L. A machine learning-based approach to clinopyroxene thermobarometry: Model optimization and distribution for use in Earth sciences. J. Geophys. Res. Solid Earth 2022, 127, e2021JB022904. [Google Scholar] [CrossRef] [PubMed]
- Putirka, K.D.; Johnson, M.; Kinzler, R.; Walker, D. Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0–30 kbar. Contrib. Mineral. Petrol. 1996, 123, 92–108. [Google Scholar] [CrossRef]
- Blundy, J.; Melekhova, E.; Ziberna, L.; Humphreys, M.C.S.; Cerantola, V.; Brooker, R.A.; McCammon, C.A.; Pichavant, M.; Ulmer, P. Effect of redox on Fe-Mg-Mn exchange between olivine and melt and an oxybarometer for basalts. Contrib. Mineral. Petrol. 2020, 175, 103. [Google Scholar] [CrossRef]
- Andersen, D.J.; Lindsley, D.H. Internally consistent solution models for Fe-Mg-Mn-Ti spinels: Fe-Ti oxides. Amer. Mineral. 1988, 73, 714–726. [Google Scholar]
- Putirka, K.D. Rates and styles of planetary cooling on Earth, Moon, Mars, and Vesta, using new models for oxygen fugacity, ferric-ferrous ratios, olivine-liquid Fe-Mg exchange, and mantle potential temperature. Amer. Mineral. 2016, 101, 819–840. [Google Scholar] [CrossRef]
- Kinzler, R.J.; Grove, T.L. Primary magmas of mid-ocean ridge basalts.1. Experiments and methods. J. Geophys. Res. 1992, 97, 6885–6906. [Google Scholar] [CrossRef]
- Yang, H.J.; Kinzler, R.J.; Grove, T.L. Experiments and models of anhydrous, basaltic olivine-plagioclase-augite saturated melts from 0.001 to 10 kbar. Contrib. Mineral. Petrol. 1996, 124, 1–18. [Google Scholar] [CrossRef]
- Tormey, D.R.; Grove, T.L.; Bryan, W.B. Experimental petrology of normal MORB near the Kane Fracture Zone: 22–25° N, mid-Atlantic Ridge. Contrib. Mineral. Petrol. 1987, 96, 121–139. [Google Scholar] [CrossRef]
- Grove, T.L. Corrections to expressions for calculating mineral components in “Origin of calc-alkaline series lavas at Medicine Lake volcano by fractionation, assimilation and mixing” and “Experimental petrology of normal MORB near the Kane Fracture Zone: 22°–25° N, mid-Atlantic ridge”. Contrib. Mineral. Petrol. 1993, 114, 422–424. [Google Scholar]
- Grove, T.L.; Kinzler, R.; Bryan, W. Fractionation of mid-ocean ridge basalt (MORB). In Mantle Flow and Melt Generation at Mid-Ocean Ridges; Phipps Morgan, J., Blackman, D., Sinton, J., Eds.; Geophysical Monograph 71; American Geophysical Union: Washington, DC, USA, 1992; pp. 281–310. [Google Scholar]
- Till, C.B.; Grove, T.L.; Krawczynski, M.J. A melting model for variably metasomatized plagioclase and spinel lherzolite. J. Geophys. Res. 2012, 117, B06206. [Google Scholar] [CrossRef]
- Chatterjee, N.; Sheth, H. Origin of the Powai ankaramite, and the composition, P-T conditions of equilibration and evolution of the primary magmas of the Deccan tholeiites. Contrib. Mineral. Petrol. 2015, 169, 32. [Google Scholar] [CrossRef]
- Till, C.B. A review and update of mantle thermobarometry for primitive arc magmas. Amer. Mineral. 2017, 102, 931–947. [Google Scholar]
- Krein, S.B.; Molitor, Z.J.; Grove, T.L. ReversePetrogen: A Multiphase dry reverse fractional crystallization-mantle melting thermobarometer applied to 13,589 mid-ocean ridge basalt glasses. J. Geophys. Res. Solid Earth 2021, 126, e2020JB021292. [Google Scholar]
- Roeder, P.L.; Emslie, R.F. Olivine liquid equilibrium. Contrib. Mineral. Petrol. 1970, 29, 275–289. [Google Scholar] [CrossRef]
- Thompson, R.N.; Gibson, S.A. Subcontinental mantle plumes, hotspots and preexisting thinspots. J. Geol. Soc. Lond. 1991, 148, 973–977. [Google Scholar] [CrossRef]
- Ebinger, C.J.; Sleep, N.H. Cenozoic magmatism throughout East Africa resulting from impact of a single plume. Nature 1998, 395, 788–791. [Google Scholar] [CrossRef]
- Duggen, S.; Hoernle, K.A.; Hauff, F.; Kluegel, A.; Bouabdellah, M.; Thirlwall, M.F. Flow of Canary mantle plume material through a subcontinental lithospheric corridor beneath Africa to the Mediterranean. Geology 2009, 37, 283–286. [Google Scholar] [CrossRef]
- Begg, G.C.; Hronsky, J.A.M.; Arndt, N.T.; Griffin, W.L.; O’Reilly, S.Y.; Hayward, N. Lithospheric, cratonic, and geodynamic setting of Ni–Cu–PGE sulfide deposits. Econ. Geol. 2010, 105, 1057–1070. [Google Scholar] [CrossRef]
- Begg, G.C.; Hronsky, J.M.A.; Griffin, W.L.; O’Reilly, S.Y. Global- to deposit-scale controls on orthomagmatic Ni-Cu(-PGE) and PGE reef ore formation. In Processes and Ore Deposits of Ultramafic-Mafic Magmas through Space and Time; Mondal, S., Griffin, W., Eds.; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Royer, J.-Y.; Coffin, M.F. Jurassic to Eocene plate tectonic reconstructions in the Kerguelen Plateau region. Proc. Ocean Drill. Prog. Sci. Res. 1992, 120, 917–928. [Google Scholar]
- Marshall, J.F.; Lee, C.S. Basin framework and resource potential of the Abrolhos sub-basin. In Geophysical Yearbook 1988–1989; Wolf, K.H., Paine, A.G.L., Eds.; Australian Bureau of Mineral Resources: Canberra, Australia, 1989; pp. 63–67. [Google Scholar]
Region | Location | Aug | Pgt | Pl | Hem | Ilm | Other | |
---|---|---|---|---|---|---|---|---|
Northeast | ||||||||
Sahebganj | RB88-12 | mph | mph | phen | gm | |||
Moti Jharna | RB88-19 | phen | phen | gm | ||||
Maharajpur | RB88-16 | phen | mph | phen | gm | gm | ||
RB88-17 | phen | phen | gm | gm | ||||
RB88-18 | phen | phen | gm | gm | ||||
Taljhari | EB89-154 | phen | phen | |||||
RB88-24 | phen | phen | gm | gm | ||||
Tinpahar | RB88-31 | phen | phen | gm | Mgh | |||
RB88-32 | phen | phen | gm | gm | ||||
RB88-39 | mph | phen | Ol | |||||
RB88-35 | mph | phen | gm | gm | Cumm | |||
Kherwa | EB89-112 | mph | mph | phen | gm | Zeol | ||
EB89-117 | mph | mph | phen | gm | gm | Zeol | ||
EB89-118 | mph | mph | phen | gm | ||||
Berhait | EB89-121 | phen | mph | phen | gm | gm | ||
EB89-123 | mph | phen | gm | |||||
EB89-127 | mph | mph | gm | |||||
EB89-128 | mph | mph | phen | gm | gm | |||
Northwest | ||||||||
Dariyachak | DAR-2GB | phen | phen | gm | Mgh | |||
DAR-5YL | phen | mph | phen | gm | gm | |||
DAR10-90 | phen | phen | gm | gm | ||||
Central | ||||||||
Litipara-Amrapara Rd. | LA1 | phen | phen | gm | gm | |||
LA2 | phen | phen | gm | gm | ||||
LA4 | phen | phen | gm | gm | ||||
LA5 | phen | phen | gm | gm | ||||
LA6 | phen | phen | gm | gm | ||||
Litipara-Simlong Rd. | TT1 | phen | phen | gm | gm | |||
TT2 | phen | phen | gm | |||||
TT3 | phen | mph | phen | gm | gm | |||
TT4 | phen | phen | gm | gm | ||||
Litipara-Hiranpur Rd. | LH1 | phen | phen | gm | gm | |||
Amrapara | BL1 | phen | phen | gm | gm | Kfs, Zeol | ||
BL3 | phen | phen | gm | gm | Kfs, Zeol | |||
Kundpahar | KP1 | phen | phen | gm | gm | |||
KP2 | mph | phen | gm | gm | Kfs, Zeol | |||
KP3 | mph | phen | gm | gm | ||||
KP4 | mph | phen | ||||||
KP5 | phen | phen | gm | gm | ||||
KP6 | phen | phen | gm | gm | ||||
KP7 | phen | phen | gm | gm |
A. Augite and Plagioclase | ||||||
Sector | Northeast | Northwest | Central | |||
core | rim | core | rim | core | rim | |
Augite | ||||||
En | 45–56 | 49–52 | 48–54 | 49–50 | 47–54 | 49–54 |
Fs | 8–21 | 10–15 | 9–12 | 11–15 | 7–15 | 7–19 |
Wo | 29–39 | 34–39 | 36–40 | 37–40 | 36–41 | 31–41 |
Mg# | 68–87 | 76–83 | 80–85 | 77–82 | 76–89 | 73–88 |
Plagioclase | ||||||
An | 57–82 | 58–75 | 61–71 | 45–66 | 60–81 | 51–77 |
Ab | 18–42 | 25–41 | 28–38 | 34–54 | 19–39 | 22–48 |
Or | 0–4 | 0–3 | 0–1 | 0–1 | 0–1 | 0–1 |
B. Other minerals | ||||||
All sectors | ||||||
Ilmenite | Hematite | Pigeonite | Olivine | |||
Hem | 0–7 | 43–92 | En | 42–74 | Fo | 71–76 |
Ilm | 85–97 | 6–53 | Fs | 18–46 | Fa | 24–30 |
Pph | 1–1 | 0–12 | Wo | 4–12 | ||
Gk | 1–9 | 0–6 | Mg# | 48–81 |
Location | Sample | P | T | P | T | P | T | P | T |
---|---|---|---|---|---|---|---|---|---|
kbar | °C | kbar | °C | kbar | °C | kbar | °C | ||
Avg | Avg | ||||||||
Equations (32a) and (32d) [54] | [55] | [56] | |||||||
Northeast sector | |||||||||
Sahibganj | RB88-12 | 0.3 | 1156 | 0.3 | 1156 | 2.0 ± 1.0 | 1138 ± 44 | 0.0 ± 0.0 | 1139 ± 21 |
Moti Jharna | RB88-19 | 3.2 | 1180 | 3.2 | 1180 | 4.6 ± 2.0 | 1151 ± 19 | 0.0 ± 2.3 | 1157 ± 25 |
Maharajpur | RB88-16 | 0.001 | 1119 | 1.6 | 1145 | 2.0 ± 0.7 | 1133 ± 46 | 0.0 ± 0.1 | 1125 ± 23 |
RB88-18 | 3.2 | 1172 | |||||||
Taljhari | EB89-154 | 0.001 | 1147 | 0.001 | 1147 | 2.0 ± 0.5 | 1137 ± 52 | 0.0 ± 0.2 | 1141 ± 23 |
RB88-24 | 0.001 | 1147 | |||||||
Tinpahar | RB88-31 | 4.6 | 1209 | 5.4 | 1195 | 4.5 ± 2.2 | 1127 ± 43 | 1.8 ± 4.5 | 1147 ± 33 |
RB88-32 | 4.4 | 1196 | |||||||
RB88-39 | 7.5 | 1218 | |||||||
RB88-35 | 5.0 | 1156 | |||||||
Kherwa | EB89-112 | 0.001 | 1111 | 1.3 | 1136 | 3.7 ± 2.1 | 1099 ± 62 | 0.0 ± 0.7 | 1119 ± 43 |
EB89-117 | 2.7 | 1160 | |||||||
Berhait | EB89-121 | 6.6 | 1213 | 1.8 | 1160 | 3.3 ± 2.6 | 1148 ± 32 | 0.4 ± 1.0 | 1134 ± 34 |
EB89-123 | 0.001 | 1127 | |||||||
EB89-127 | 0.1 | 1147 | |||||||
EB89-128 | 0.5 | 1152 | |||||||
Northwest sector | |||||||||
Dariachak | DAR-2GB | 2.0 | 1170 | 0.7 | 1134 | 2.0 ± 0.8 | 1093 ± 42 | 0.1 ± 0.3 | 1137 ± 28 |
DAR-5YL | 0.001 | 1100 | |||||||
DAR10-90 | 0.001 | 1131 | |||||||
Central sector | |||||||||
Litipara-Amrapara | LA1 | 2.2 | 1160 | 1.5 | 1160 | 2.0 ± 0.6 | 1137 ± 50 | 0.0 ± 0.6 | 1139 ± 29 |
LA2 | 3.0 | 1177 | |||||||
LA4 | 0.8 | 1155 | |||||||
LA5 | 0.6 | 1156 | |||||||
LA6 | 0.8 | 1154 | |||||||
Litipara-Simlong | TT1 | 2.8 | 1185 | 1.1 | 1163 | 3.1 ± 1.9 | 1141 ± 32 | 0.0 ± 0.5 | 1149 ± 25 |
TT2 | 0.04 | 1162 | |||||||
TT3 | 1.7 | 1166 | |||||||
TT4 | 0.001 | 1138 | |||||||
Litipara-Hiranpur | LH1 | 0.1 | 1155 | 0.1 | 1155 | 4.1 ± 2.6 | 1150 ± 27 | 0.0 ± 1.0 | 1149 ± 28 |
Amrapara | BL1 | 2.3 | 1188 | 1.9 | 1182 | 3.8 ± 2.4 | 1096 ± 51 | 0.0 ± 1.2 | 1152 ± 48 |
BL3 | 1.6 | 1175 | |||||||
Kundpahar | KP1 | 3.6 | 1192 | 1.9 | 1162 | 2.3 ± 1.1 | 1123 ± 52 | 0.0 ± 0.5 | 1136 ± 27 |
KP2 | 3.3 | 1190 | |||||||
KP3 | 2.0 | 1157 | |||||||
KP4 | 0.7 | 1156 | |||||||
KP5 | 2.5 | 1161 | |||||||
KP6 | 0.001 | 1125 | |||||||
KP7 | 1.3 | 1153 |
Location | Sample | P (kbar) | T (°C) | KD a | Pl (%) b |
---|---|---|---|---|---|
Equations (P1) and (T1) [57]: | |||||
Central sector | |||||
Litipara-Amrapara | LA2 | 4.6 | 1185 | 0.29 | |
Litipara-Simlong | TT3 | 1.6 | 1166 | 0.32 | |
Litipara-Hiranpur | LH1 | 0.001 | 1137 | 0.31 | |
[61], and Equation (16) [54]: | |||||
Northeast sector | |||||
Moti Jharna | 88-21 | 4 | 1188 | 4 | |
Tinpahar | 88-30 | 2 | 1168 | 7 | |
88-42 | 3.5 | 1183 | 4 | ||
Northwest sector | |||||
S of Dariachak c | RJ1-25-1 | 1 | 1168 | 6 | |
S of Dariachak d | RJ1-26-7 | 0.001 | 1147 | 4 | |
Central sector | |||||
Litipara-Simlong | TT3 | 2 | 1169 | 5 | |
Litipara-Hiranpur | LH1 | 0.001 | 1158 | 10.5 | |
W of Pakur e | RJ1-30-3 | 0.001 | 1158 | 3.5 | |
RJ1-30-4 | 0.001 | 1156 | 3.5 | ||
Kundpahar | KP6 | 0.001 | 1157 | 10 |
Crystallization | Stage 1 a | Stage 2 a | Primary Magma b | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
P (kbar) | T (°C) | F% | Ol | Pl | Cpx | F% | Ol | Pl | P (kbar) | T (°C) | |
Northeast sector | |||||||||||
88-21 | 4 | 1188 | 60.7 | 13.7 | 52.4 | 33.9 | 12.2 | 28.6 | 71.4 | 9 | 1286 |
88-30 | 2 | 1168 | 60.3 | 13.0 | 52.6 | 34.4 | 19.8 | 30.2 | 69.8 | 9 | 1284 |
88-42 | 3.5 | 1183 | 57.8 | 13.0 | 53.4 | 33.6 | 14.8 | 30.2 | 69.8 | 9 | 1284 |
Northwest sector | |||||||||||
RJ1-25-1 | 1 | 1168 | 46.8 | 12.2 | 53.1 | 34.7 | 22.9 | 30.2 | 69.8 | 9 | 1280 |
RJ1-26-7 | 0.001 | 1147 | 57.8 | 10.9 | 52.6 | 36.4 | 30.3 | 30.2 | 69.8 | 9 | 1280 |
Central sector | |||||||||||
TT3 | 2 | 1169 | 53.8 | 12.5 | 53.6 | 33.9 | 19.8 | 29.4 | 70.6 | 8 | 1268 |
LH1 | 0.001 | 1158 | 54.2 | 13.0 | 51.9 | 35.2 | 26.0 | 28.6 | 71.4 | 8.5 | 1275 |
RJ1-30-3 | 0.001 | 1158 | 55.6 | 12.1 | 50.2 | 37.7 | 29.6 | 30.2 | 69.8 | 9 | 1281 |
RJ1-30-4 | 0.001 | 1156 | 56.5 | 10.9 | 52.6 | 36.4 | 29.6 | 30.2 | 69.8 | 9 | 1281 |
KP6 | 0.001 | 1157 | 54.2 | 11.8 | 51.6 | 36.6 | 28.1 | 30.2 | 69.8 | 9 | 1282 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatterjee, N.; Ghose, N.C. Thermobarometry of the Rajmahal Continental Flood Basalts and Their Primary Magmas: Implications for the Magmatic Plumbing System. Minerals 2023, 13, 426. https://doi.org/10.3390/min13030426
Chatterjee N, Ghose NC. Thermobarometry of the Rajmahal Continental Flood Basalts and Their Primary Magmas: Implications for the Magmatic Plumbing System. Minerals. 2023; 13(3):426. https://doi.org/10.3390/min13030426
Chicago/Turabian StyleChatterjee, Nilanjan, and Naresh C. Ghose. 2023. "Thermobarometry of the Rajmahal Continental Flood Basalts and Their Primary Magmas: Implications for the Magmatic Plumbing System" Minerals 13, no. 3: 426. https://doi.org/10.3390/min13030426
APA StyleChatterjee, N., & Ghose, N. C. (2023). Thermobarometry of the Rajmahal Continental Flood Basalts and Their Primary Magmas: Implications for the Magmatic Plumbing System. Minerals, 13(3), 426. https://doi.org/10.3390/min13030426