Fe(III) Biomineralization in the Surface Microlayer of Acid Mine Waters Catalyzed by Neustonic Fe(II)-Oxidizing Microorganisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Work and Sampling
2.2. Chemical and Mineralogical Analyses
2.3. Microbial Community Analysis
3. Results
3.1. Configuration and Temporal Evolution of the FMFs
3.2. Field Parameters and Aqueous Composition of Underlying Waters
3.3. Mineralogical and Chemical Composition of the Floating Mineral Films
3.4. Microbiology of FMF-Forming Waters
4. Discussion
4.1. Role of Fe(II)-Oxidizing Microorganisms in the Formation of Floating Mineral Films
4.2. Unusual Mineralogy and Metal Enrichment in the FMFs Implying Singular Physico-Chemical Conditions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Norkrans, B. Surface microlayer in aquatic environments. Adv. Microb. Ecol. 1980, 4, 51. [Google Scholar]
- Hardy, T.J. The Sea Surface Microlayer: Biology, Chemistry and Anthropogenic Enrichment. Prog. Oceanog. 1982, 11, 307–328. [Google Scholar] [CrossRef]
- Wurl, O.; Ekau, W.; Landing, W.M.; Zappa, C.J. Sea surface microlayer in a changing ocean–A perspective. Elem. Sci. Anthr. 2017, 5, 31. [Google Scholar] [CrossRef] [Green Version]
- Tsyban, A.V. Marine bacterioneuston. J. Oceanogr. Soc. Japan 1971, 27, 2–56. [Google Scholar] [CrossRef]
- Donderski, W.; Walczak, M.; Mudryk, Z.; Kobylinski, M. Neustonic bacteria number, biomass and taxonomy. Pol. J. Environ. Stud. 1999, 8, 137–141. [Google Scholar]
- Panfilov, M.; Panfilova, I.; Toleukhanov, A.; Kaltayev, A. Bio-reactive two-phase transport and population dynamics in underground storage of hydrogen: Natural self-organisation. In Proceedings of the 13th European Conference on the Mathematics of Oil Recovery (ECMOR XIII), Biarritz, France, 10–13 September 2012. [Google Scholar]
- Stabnikova, O.; Stabnikov, V.; Marinin, A.; Klavins, M.; Klavins, L.; Vaseashta, A. Microbial Life on the Surface of Microplastics in Natural Waters. Appl. Sci. 2021, 11, 11692. [Google Scholar] [CrossRef]
- López-Archilla, A.I.; Gérard, E.; Moreira, D.; López-García, P. Macrofilamentous microbial communities in the metal-rich and acidic River Tinto, Spain. FEMS Microbiol. Lett. 2004, 235, 221–228. [Google Scholar] [CrossRef]
- Skórczewski, P.; Mudryk, Z.J.; Jankowska, M.; Perlinski, P.; Zdanowicz, M. Antibiotic resistance of neustonic and planktonic fecal coliform bacteria isolated from two water basins differing in the level of pollution. Hidrobiológica 2013, 23, 431–439. [Google Scholar]
- López-Archilla, A.I.; Marín, I.; Amils, R. Microbial community composition and ecology of an acidic aquatic environment: The Tinto Tiver, Spain. Microbiol. Ecol. 2001, 41, 20–35. [Google Scholar] [CrossRef]
- Johnson, D.B.; Dziurla, M.A.; Kolmert, A.E.; Hallberg, K.B. The Microbiology of Acid Mine Drainage: Genesis and Biotreatment. S. Afr. J. Sci. 2002, 98, 249–255. [Google Scholar]
- Johnson, D.B.; Hallberg, K.B. The microbiology of acidic mine waters. Res. Microbiol. 2003, 154, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Baker, B.J.; Banfield, J.F. Microbial communities in acid mine drainage. FEMS Microbiol. Ecol. 2003, 44, 139–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halberg, K.B. New perspectives in acid mine drainage microbiology. Hydrometallurgy 2010, 104, 448–453. [Google Scholar] [CrossRef]
- Méndez-García, C.; Peláez, A.I.; Mesa, V.; Sánchez, J.; Golyshina, O.V.; Ferrer, M. Microbial diversity and metabolic networks in acid mine drainage habitats. Front. Microbiol. 2015, 6, 475. [Google Scholar] [CrossRef] [Green Version]
- Falagán, C.; Sánchez-España, J.; Johnson, D.B. New insights into the biogeochemistry of extremely acidic environments revealed by a combined cultivation-based and culture-independent study of two stratified pit lakes. FEMS Microbiol. Ecol. 2014, 87, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Sánchez España, J.; González Toril, E.; López Pamo, E.; Amils, R.; Diez Ercilla, M.; Santofimia Pastor, E.; San Martín-Úriz, P. Biogeochemistry of a Hyperacidic and Ultraconcentrated Pyrite Leachate in San Telmo mine (Iberian Pyrite Belt, Spain). Water Air Soil Pollut 2008, 194, 243–257. [Google Scholar] [CrossRef]
- Sánchez-España, J.; Diez, M.; Santofimia, E. Mine pit lakes of the Iberian Pyrite Belt: Some basic limnological, hydrogeochemical and microbiological considerations. In “Acidic Pit Lakes: The Legacy of Coal and Metal Surface Mines”; Geller, W., Schultze, M., Kelinmann, R., Wolkerdorfer, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 315–342. [Google Scholar] [CrossRef]
- Ayala-Muñoz, D.; Macalady, J.L.; Sánchez-España, J.; Falagán, C.; Couradeau, E.; Burgos, W.D. Microbial carbon, sulfur, iron, and nitrogen cycling linked to the potential remediation of a meromictic acidic pit lake. ISME J. 2022, 16, 2666–2679. [Google Scholar] [CrossRef] [PubMed]
- Valdez-Nuñez, L.F.; Ayala-Muñoz, D.; Sánchez-España, J.; Sánchez-Andrea, I. Microbial communities in peruvian acid mine drainages: Low-abundance sulfate-reducing bacteria with high metabolic activity. Geomicrobiol. J. 2022, 39, 867–883. [Google Scholar] [CrossRef]
- van der Graaf, C.M.; Sánchez-España, J.; Yusta, I.; Ilin, A.; Shetty, S.A.; Bale, N.J.; Villanueva, L.; Stams, A.J.M.; Sánchez-Andrea, I. Biosulfidogenesis Mediates Natural Attenuation in Acidic Mine Pit Lakes. Microorganisms 2020, 8, 1275. [Google Scholar] [CrossRef]
- Sánchez-España, J.; Yusta, I.; Ilin, A.; van der Graaf, C.; Sánchez-Andrea, I. Microbial Geochemistry of the Acidic Saline Pit Lake of Brunita Mine (La Unión, SE Spain). Mine Water Environ. 2020, 39, 535–555. [Google Scholar] [CrossRef]
- Sánchez-España, J.; Santofimia, E.; López-Pamo, E. Iron terraces in acid mine drainage systems: A discussion about the organic and inorganic factors involved in their formation through observations from the Tintillo acidic river (Riotinto mine, Huelva, Spain). Geosphere 2007, 3, 133–151. [Google Scholar] [CrossRef] [Green Version]
- Valente, T.M.; Gomes, C.L. Occurrence, properties and pollution potential of environmental minerals in acid mine drainage. Sci. Total Environ. 2009, 407, 1135–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Toril, E.; Aguilera, M.A.; Souza-Egipsy, V.; López-Pamo, E.; Sánchez-España, J.; Amils, R. Geomicrobiology of La Zarza-Perrunal Acid Mine Effluent (Iberian Pyritic Belt, Spain). Appl. Environ. Microbiol. 2011, 77, 2685–2694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poncheewin, W.; Hermes, G.D.A.; van Dam, J.C.J.; Koehorst, J.J.; Smidt, H.; Schaap, P.J. NG-Tax 2.0: A semantic framework for high-throughput amplicon analysis. Front. Genet. 2020, 10, 1366. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 17 April 2020).
- Posit Team. RStudio: Integrated Development Environment for R; Rstudio, PBC: Boston, MA, USA, 2022; Available online: http://www.posit.co/ (accessed on 17 April 2020).
- Lahti, L.; Shetty, S. Microbiome R Package. Available online: http://microbiome.github.io (accessed on 17 April 2020).
- McMurdie, P.J.; Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [Green Version]
- Han, P.; Bartels, D.M. Temperature Dependence of Oxygen Diffusion in H2O and D2O. Phys. Chem. 1996, 100, 5597–5602. [Google Scholar] [CrossRef]
- Liss, P.S. Processes of gas exchange across an air-water interface. Deep. Sea Res. Oceanogr. Abstr. 1973, 20, 221–238. [Google Scholar] [CrossRef]
- Diez-Ercilla, M.; López-Pamo, E.; Sánchez-España, J. Photoreduction of Fe(III) in the Acidic Mine Pit Lake of San Telmo (Iberian Pyrite Belt): Field and Experimental Work. Aquat. Geochem. 2009, 15, 391–419. [Google Scholar] [CrossRef]
- Sánchez-España, J.; López-Pamo, E.; Santofimia, E.; Reyes, J.; Martín Rubí, J.A. The natural attenuation of two acidic effluents in Tharsis and La Zarza-Perrunal mines (Iberian Pyrite Belt, Huelva, Spain). Environ. Geol. 2005, 49, 253–266. [Google Scholar] [CrossRef]
- Sánchez-España, J.; López-Pamo, E.; Santofimia, E.; Diez-Ercilla, M. The acidic mine pit lakes of the Iberian Pyrite Belt: An approach to their physical limnology and hydrogeochemistry. Appl. Geochem. 2008, 23, 1260–1287. [Google Scholar] [CrossRef]
- Sánchez-España, J.; López-Pamo, E.; Santofimia, E.; Aduvire, O.; Reyes, J.; Barettino, D. Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): Geochemistry, mineralogy and environmental implications. Appl. Geochem. 2005, 20, 1320–1356. [Google Scholar] [CrossRef]
- Nordstrom, D.K.; Alpers, C.N. Geochemistry of acid mine waters. In The Environmental Geochemistry of Mineral Deposits, Reviews in Economic Geology; Plumlee, G.S., Logsdon, M.J., Eds.; Society of Economic Geologists: Littleton, CO, USA, 1999; Volume 6A, pp. 133–160. [Google Scholar]
- Bigham, J.M.; Schwertmann, U.; Traina, S.J.; Winland, R.L.M.; Wolf, M. Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochim. Et Cosmochim. Acta 1996, 60, 2111–2121. [Google Scholar] [CrossRef]
- Bigham, J.M.; Kirk Nordstrom, D. Iron and Aluminum Hydroxysulfates from Acid Sulfate Waters. Rev. Mineral. Geochem. 2000, 40, 351–403. [Google Scholar] [CrossRef]
- Sánchez-España, J.; Yusta, I.; López, G.A. Schwertmannite to jarosite conversion in the water column of an acidic mine pit lake. Mineral. Mag. 2012, 76, 2659–2682. [Google Scholar] [CrossRef]
- Janney, D.E.; Cowley, J.M.; Buseck, P.R. Transmission Electron Microscopy of Synthetic 2- and 6-Line Ferrihydrite. Clays Clay Miner. 2000, 48, 111–119. [Google Scholar] [CrossRef]
- Kawano, M.; Tomita, K. Geochemical modeling of bacterially induced mineralization of schwertmannite and jarosite in sulfuric acid spring water. Am. Mineral. 2001, 86, 1156–1165. [Google Scholar] [CrossRef]
- Dakos, S.; Kupka, D.; Kovarik, M.; Briancin, J. Ochreous Precipitates from Smolník Abandoned Mine. J. Pol. Miner. Eng. Soc. 2015, 16, 19–25. [Google Scholar]
- Ziegler, S.; Waidner, B.; Itoh, T.; Schumann, P.; Spring, S.; Gescher, J. Metallibacterium scheffleri gen. nov., sp. nov., an alkalinizing gammaproteobacterium isolated from an acidic biofilm. Int. J. Syst. Evol. Microbiol. 2013, 63 Pt 4, 1499–1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falagán, C.; Johnson, D.B. Acidibacter ferrireducens gen. nov., sp. nov.: An acidophilic ferric iron-reducing gammaproteobacterium. Extremophiles 2014, 18, 1067–1073. [Google Scholar] [CrossRef]
- Okamura, K.; Kawai, A.; Wakao, N.; Yamada, T.; Hiraishi, A. Acidiphilium iwatense sp. nov., isolated from an acid mine drainage treatment plant, and emendation of the genus Acidiphilium. Int. J. Syst. Evol. Microbiol. 2015, 65 Pt 1, 42–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunliffe, M.; Engel, A.; Frka, S.; Gašparović, B.; Guitart, C.; Murrell, J.C.; Salter, M.; Stolle, C.; Upstill-Goddard, R.; Wurl, O. Sea surface microlayers: A unified physicochemical and biological perspective of the air–ocean interface. Prog. Oceanogr. 2013, 109, 104–116. [Google Scholar] [CrossRef]
- Agogué, H.; Casamayor, E.O.; Bourrain, M.; Obernosterer, I.; Joux, F.; Herndl, G.J.; Lebaron, P. A survey on bacteria inhabiting the sea surface microlayer of coastal ecosystems. FEMS Microbiol. Ecol. 2005, 54, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Obernosterer, I.; Catala, P.; Lami, R.; Caparros, J.; Ras, J.; Bricaud, A.; Dupuy, C.; van Wambeke, F.; Lebaron, P. Biochemical characteristics and bacterial community structure of the sea surface microlayer in the South Pacific Ocean. Biogeosciences 2008, 5, 693–705. [Google Scholar] [CrossRef] [Green Version]
- Montgomery Parks, Park Planning & Stewardship Division–Resource Analysis Section. Orange slime, Oily Sheen and What They Mean: Iron-Oxidizing Bacteria in Montgomery Parks. Available online: www.montgomeryparks.org (accessed on 17 April 2020).
- US Geological Survey: What’s the Red in the Water? What’s the Black on the Rocks? What’s the Oil on the Surface? Available online: https://pubs.usgs.gov/gip/microbes/intro.html (accessed on 17 April 2020).
- Emerson, D.; Fleming, E.J.; McBeth, J.M. Iron-Oxidizing Bacteria: An Environmental and Genomic Perspective. Annu. Rev. Microbiol. 2010, 64, 561–583. [Google Scholar] [CrossRef]
- Kleja, D.B.; van Schaik, J.W.J.; Persson, I.; Gustafsson, J.P. Characterization of iron in floating surface films of some natural waters using EXAFS. Chem. Geol. 2012, 326-327, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Brake, S.S.; Arango, I.; Hasiotis, S.T.; Burch, K.R. Spatial and temporal distribution and characteristics of eukaryote-dominated microbial biofilms in an acid mine drainage environment: Implications for development of iron-rich stromatolites. Environ. Earth Sci. 2014, 72, 2779–2796. [Google Scholar] [CrossRef]
- Phoenix, V.R.; Konhauser, K.O.; Adams, D.G.; Bottrell, S.H. Role of biomineralization as an ultraviolet shield: Implications for Archean life. Geology 2001, 29, 823–826. [Google Scholar] [CrossRef]
- Bariand, P.; Berthelon, J.P.; Cesbron, F.; Sadrzadeh, M. New aluminum sulfate hydrate, khademite of Saghand (Iran). Comptes Rendus Seances L’académie Sci. 1973, 277, 1585–1588. [Google Scholar]
- Schumann, R.R.; Zielinski, R.A.; Otton, J.K.; Pantea, M.P.; Orem, W.H. Uranium delivery and uptake in a montane wetland, north-central Colorado, USA. Appl. Geochem. 2017, 78, 363–379. [Google Scholar] [CrossRef] [Green Version]
- Santofimia, E.; González, J.; Rincón-Tomás, B.; López-Pamo, E.; Marino, E.; Reyes, J.; Bellido, E. The mobility of thorium, uranium and rare earth elements from Mid Ordovician black shales to acid waters and its removal by goethite and schwertmannite. Chemosphere 2022, 307, 135907. [Google Scholar] [CrossRef] [PubMed]
Sample | T | DO | pH | Eh | Fe(II) | Fe(III) | SO42− | Al | Cu | Zn | As |
---|---|---|---|---|---|---|---|---|---|---|---|
°C | mg/L | mV | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | µg/L | ||
Tintillo | 24.5 | 1.6 | 2.7 | 541 | 1205 | 495 | 24,700 | 1810 | 184 | 557 | 525 |
Perrunal | 25.6 | 1.0 | 3.1 | 533 | 2323 | 300 | 9060 | 357 | 20 | 56 | 2254 |
Poderosa | 22.1 | 0.1 | 1.6 | 595 | 2100 | 560 | 10,400 | 431 | 302 | 149 | 17,300 |
AT | 25.0 | 0.5 | 6.6 | 70 | 0.92 | b.d. | 370 | 5 | 0.05 | 4.1 | 2 |
Exp. film | 24.2 | 0.7 | 2.7 | 572 | 1230 | 450 | 24,760 | 2046 | 132 | 447 | 53 |
AMD IPB 1 | 19.0 | 4.6 | 2.7 | 624 | 801 | 476 | 7440 | 386 | 64 | 169 | 2123 |
Sample | SiO2 | Al2O3 | Fe2O3 | CaO | K2O | MgO | Na2O | P2O5 | SO3 | LOI |
---|---|---|---|---|---|---|---|---|---|---|
Tintillo | 1.78 | 1.35 | 58.40 | 0.11 | 0.10 | 0.41 | 0.24 | 0.20 | n.a. | 37.40 |
Perrunal | 0.33 | 0.40 | 60.01 | 0.40 | 0.30 | 0.32 | <0.10 | 0.20 | 15.70 | 38.40 |
Poderosa | 10.65 | 6.66 | 10.81 | 2.00 | 5.00 | 1.90 | 1.35 | 14.60 | 46.28 | n.a. |
AT | 4.99 | 1.49 | 59.10 | 1.10 | 0.14 | 0.58 | 0.22 | 0.05 | n.a. | 32.40 |
Exp. film | 0.70 | 1.83 | 52.05 | 0.92 | 0.10 | 0.57 | 0.03 | 0.80 | 15.62 | 41.74 |
Sample | As | Cd | Cr | Cu | Pb | Zn | U | Th |
---|---|---|---|---|---|---|---|---|
Tintillo | 709 | 3 | 14 | 421 | 297 | 383 | 650 | 325 |
Perrunal | 6166 | 1267 | 231 | 55 | 26 | 211 | 180 | 77 |
AT | 8179 | 64 | 1 | 5381 | 200 | 14,172 | n.a. | n.a. |
Exp. film | 88 | 24 | 155 | 348 | 12 | 507 | 1 | 3 |
Sed. IPB 1 | 943 | n.a. | 17 | 1150 | 321 | 911 | n.a. | n.a. |
MDM IPB 2 | 1664 | 5 | 18 | 813 | 222 | 751 | n.a. | n.a. |
Mine Site (Creek) | Description | Fe(II)-Oxidizing Genera and/or Species Identified | Minerals Identified | Enriched Trace Elements (EF) | Ref. Microb. |
---|---|---|---|---|---|
Riotinto mine (Tintillo creek) | Seepage from waste-rock pile | Ferrovum Acidithiobacillus Leptospirillum | Schw | U (×650) Th (×600) | This study |
La Zarza–Perrunal (Perrunal creek) | Effluent from mine portal | At. Ferrooxidans Leptospirillum spp. Ferrovum sp. Xanthomonas Ferritriphicum sp. Ferrimicrobium sp. Thermoplasmata | Schw | As (×434) Cr (×103) V (×443) U (×103) Th (×104) Cd (×103) Cu (×103) Zn (×103) | 25 |
Poderosa mine | Effluent from mine portal | n.a. | Jar, Kd | P (×105) | |
Aguas Teñidas | Stagnant water in mine tunnel | n.a. | Fh, Br, Na-Jar | As (×106) Cu (×102) Zn (×3.5) Pb (×105) | |
Experimental biofilm | Tintillo water stored in glass flask | Water from Tintillo creek analyzed above | Schw, Jar | P (×103) Zn (×1) V (×170) Cr (×30) As (×200) Sb (×170) | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-España, J.; Ilin, A.M.; Yusta, I.; van der Graaf, C.M.; Sánchez-Andrea, I. Fe(III) Biomineralization in the Surface Microlayer of Acid Mine Waters Catalyzed by Neustonic Fe(II)-Oxidizing Microorganisms. Minerals 2023, 13, 508. https://doi.org/10.3390/min13040508
Sánchez-España J, Ilin AM, Yusta I, van der Graaf CM, Sánchez-Andrea I. Fe(III) Biomineralization in the Surface Microlayer of Acid Mine Waters Catalyzed by Neustonic Fe(II)-Oxidizing Microorganisms. Minerals. 2023; 13(4):508. https://doi.org/10.3390/min13040508
Chicago/Turabian StyleSánchez-España, Javier, Andrey M. Ilin, Iñaki Yusta, Charlotte M. van der Graaf, and Irene Sánchez-Andrea. 2023. "Fe(III) Biomineralization in the Surface Microlayer of Acid Mine Waters Catalyzed by Neustonic Fe(II)-Oxidizing Microorganisms" Minerals 13, no. 4: 508. https://doi.org/10.3390/min13040508
APA StyleSánchez-España, J., Ilin, A. M., Yusta, I., van der Graaf, C. M., & Sánchez-Andrea, I. (2023). Fe(III) Biomineralization in the Surface Microlayer of Acid Mine Waters Catalyzed by Neustonic Fe(II)-Oxidizing Microorganisms. Minerals, 13(4), 508. https://doi.org/10.3390/min13040508