Potential Use of Microbially Induced Calcite Precipitation for the Biocementation of Mine Tailings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism and Cultivation Conditions
2.2. Biocementation Assays
2.3. Analytic Methods
2.3.1. Biocementation Effect
2.3.2. Ureolytic Activity
2.3.3. CaCO3 Content of the Biocemented Sample
2.3.4. Micrographical and Mineralogical Analysis
3. Results and Discussion
3.1. Assays to Characterize the MICP Precipitation Process
3.2. Micrographical and Mineralogical Analysis of Synthetic Tailing Samples Treated by MICP
4. Conclusions
- Tailings offer a promising environment for the application of MICP. Biocemented tailings showed a relevant improvement in their mechanical surface strength, which may imply a potential use to control wind-blown dust emissions from tailing deposits.
- CaCl2 dosage represents an important factor governing the ability of MICP to induce a bearing capacity on tailings. Therefore, an increase in calcium dosage should induce increments in surface strength. However, a maximum was detected, over which further increases in CaCl2 dosage produce no improvements in the treatment.
- The method for reagent supplementation is also a key factor in determining the biocementation of tailings. The use of mechanical mixing of biocementation reagents and tailings induces a more homogeneous treatment that substantially improves the surface strength of the biocemented material.
- Micrographical and mineralogical analysis showed how MICP treatment increases the bonding patterns between tailings particles through the formation of bridges by calcium precipitates present in the form of an anorthite-calcite-vaterite crystalline form. In addition, chemical interaction between tailings and calcium ions in the crystalline form of anorthite was observed, a phenomenon that has not been reported before.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carvalho, F.P. Mining Industry and Sustainable Development: Time for Change. Food Energy Secur. 2017, 6, 61–77. [Google Scholar] [CrossRef]
- Pedro, A.; Ayuk, E.T.; Bodouroglou, C.; Milligan, B.; Ekins, P.; Oberle, B. Towards a Sustainable Development Licence to Operate for the Extractive Sector. Miner. Econ. 2017, 30, 153–165. [Google Scholar] [CrossRef] [Green Version]
- Kossoff, D.; Dubbin, W.E.; Alfredsson, M.; Edwards, S.J.; Macklin, M.G.; Hudson-Edwards, K.A. Mine Tailings Dams: Characteristics, Failure, Environmental Impacts, and Remediation. Appl. Geochem. 2014, 51, 229–245. [Google Scholar] [CrossRef] [Green Version]
- Buikema, N.D.; Zwissler, B.E.; Seagren, E.A.; Oommen, T.; Vitton, S. Stabilisation of Iron Mine Tailings through Biocalcification. Environ. Geotech. 2017, 5, 94–106. [Google Scholar] [CrossRef]
- Meng, H.; Shu, S.; Gao, Y.; He, J.; Wan, Y. Kitchen Waste for Sporosarcina Pasteurii Cultivation and Its Application in Wind Erosion Control of Desert Soil via Microbially Induced Carbonate Precipitation. Acta Geotech. 2021, 16, 4045–4059. [Google Scholar] [CrossRef]
- Csavina, J.; Field, J.; Taylor, M.P.; Gao, S.; Landázuri, A.; Betterton, E.A.; Sáez, A.E. A Review on the Importance of Metals and Metalloids in Atmospheric Dust and Aerosol from Mining Operations. Sci. Total Environ. 2012, 433, 58–73. [Google Scholar] [CrossRef] [Green Version]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, Mechanism and Health Effects of Some Heavy Metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Gil-Loaiza, J.; White, S.A.; Root, R.A.; Solís-Dominguez, F.A.; Hammond, C.M.; Chorover, J.; Maier, R.M. Phytostabilization of Mine Tailings Using Compost-Assisted Direct Planting: Translating Greenhouse Results to the Field. Sci. Total Environ. 2016, 565, 451–461. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Kim, K.; Lee, T.; Kim, M. Tailings Storage Facilities (TSFs) Dust Control Using Biocompatible Polymers. Min. Metall. Explor. 2019, 36, 785–795. [Google Scholar] [CrossRef]
- Solís-Dominguez, F.A.; White, S.A.; Hutter, T.B.; Amistadi, M.K.; Root, R.A.; Chorover, J.; Maier, R.M. Response of Key Soil Parameters during Compost-Assisted Phytostabilization in Extremely Acidic Tailings: Effect of Plant Species. Environ. Sci. Technol. 2012, 46, 1019–1027. [Google Scholar] [CrossRef] [Green Version]
- Almajed, A.; Lateef, M.A.; Moghal, A.A.B.; Lemboye, K. State-Fo-the-ART Review of the Applicability and Challenges of MIcrobial-Induced Calcite Precipitation (MICP) and Enzyme-Induced Calcite Precipitation (EICP) Techniques for Geotechnical and Geoenvironmental Applications. Crystals 2021, 11, 370. [Google Scholar] [CrossRef]
- Chen, R.; Lee, I.; Zhang, L. Biopolymer Stabilization of Mine Tailings for Dust Control. J. Geotech. Geoenviron. Eng. 2015, 141, 04014100. [Google Scholar] [CrossRef]
- Yuge, K.; Anan, M. Evaluation of the Effect of Wind Velocity and Soil Moisture Condition on Soil Erosion in Andosol Agricultural Fields (Model Experiment). Water 2019, 11, 98. [Google Scholar] [CrossRef] [Green Version]
- Dejong, J.T.; Soga, K.; Kavazanjian, E.; Burns, S.; Van Paassen, L.A.; Al Qabany, A.; Aydilek, A.; Bang, S.S.; Burbank, M.; Caslake, L.F.; et al. Biogeochemical Processes and Geotechnical Applications: Progress, Opportunities and Challenges. Geotechnique 2013, 63, 287–301. [Google Scholar] [CrossRef] [Green Version]
- DeJong, J.T.; Mortensen, B.M.; Martinez, B.C.; Nelson, D.C. Bio-Mediated Soil Improvement. Ecol. Eng. 2010, 36, 197–210. [Google Scholar] [CrossRef]
- Rahman, M.M.; Hora, R.N.; Ahenkorah, I.; Beecham, S.; Karim, M.R.; Iqbal, A. State-of-the-Art Review of Microbial-Induced Calcite Precipitation and Its Sustainability in Engineering Applications. Sustain 2020, 12, 6281. [Google Scholar] [CrossRef]
- Song, M.; Ju, T.; Meng, Y.; Han, S.; Lin, L.; Jiang, J. A Review on the Applications of Microbially Induced Calcium Carbonate Precipitation in Solid Waste Treatment and Soil Remediation. Chemosphere 2022, 290, 133229. [Google Scholar] [CrossRef]
- Zúñiga-Barra, H.; Toledo-Alarcón, J.; Torres-Aravena, Á.; Jorquera, L.; Rivas, M.; Gutiérrez, L.; Jeison, D. Improving the Sustainable Management of Mining Tailings through Microbially Induced Calcite Precipitation: A Review. Miner. Eng. 2022, 189, 107855. [Google Scholar] [CrossRef]
- Achal, V.; Mukherjee, A.; Kumari, D.; Zhang, Q. Biomineralization for Sustainable Construction–A Review of Processes and Applications. Earth Sci. Rev. 2015, 148, 1–17. [Google Scholar] [CrossRef]
- Meng, H.; Gao, Y.; He, J.; Qi, Y.; Hang, L. Microbially Induced Carbonate Precipitation for Wind Erosion Control of Desert Soil: Field-Scale Tests. Geoderma 2021, 383, 114723. [Google Scholar] [CrossRef]
- Omoregie, A.I.; Palombo, E.A.; Ong, D.E.L.; Nissom, P.M. Biocementation of Sand by Sporosarcina Pasteurii Strain and Technical-Grade Cementation Reagents through Surface Percolation Treatment Method. Constr. Build. Mater. 2019, 228, 116828. [Google Scholar] [CrossRef]
- Whiffin, V.S.; van Paassen, L.A.; Harkes, M.P. Microbial Carbonate Precipitation as a Soil Improvement Technique. Geomicrobiol. J. 2007, 24, 417–423. [Google Scholar] [CrossRef]
- Lai, Y.; Yu, J.; Liu, S.; Liu, J.; Wang, R.; Dong, B. Experimental Study to Improve the Mechanical Properties of Iron Tailings Sand by Using MICP at Low PH. Constr. Build. Mater. 2021, 273, 121729. [Google Scholar] [CrossRef]
- Tian, K.; Wu, Y.; Zhang, H.; Li, D.; Nie, K.; Zhang, S. Increasing Wind Erosion Resistance of Aeolian Sandy Soil by Microbially Induced Calcium Carbonate Precipitation. Land Degrad. Dev. 2018, 29, 4271–4281. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Li, B.; Hu, L.; Zheng, H.M.; He, G.C.; Yu, Q.; Wu, L.L. Experimental Study on MICP Technology for Strengthening Tail Sand under a Seepage Field. Geofluids 2020, 2020, 8819326. [Google Scholar] [CrossRef]
- Chae, S.H.; Chung, H.; Nam, K. Evaluation of Microbially Induced Calcite Precipitation (MICP) Methods on Different Soil Types for Wind Erosion Control. Environ. Eng. Res. 2021, 26, 190507. [Google Scholar] [CrossRef]
- Ehsasi, F.; van Paassen, L.; Wang, L. Stabilization of Mine Tailings Using Microbiological Induced Carbonate Precipitation for Dust Mitigation: Treatment Optimization and Durability Assessment. Geo Congr. 2022, 2022, 326–334. [Google Scholar]
- Meyer, F.D.; Bang, S.; Min, S.; Stetler, L.D.; Bang, S.S. Microbiologically-Induced Soil Stabilization: Application of Sporosarcina Pasteurii for Fugitive Dust Control. Geotech. Spec. Publ. 2011, 211, 4002–4011. [Google Scholar] [CrossRef] [Green Version]
- Duo, L.; Kan-liang, T.; Hui-li, Z.; Yu-yao, W.; Kang-yi, N.; Shi-can, Z. Experimental Investigation of Solidifying Desert Aeolian Sand Using Microbially Induced Calcite Precipitation. Constr. Build. Mater. 2018, 172, 251–262. [Google Scholar] [CrossRef]
- Nasir, S.S.; Torkashvand, A.M.; Khakipour, N. An Experimental Investigation of Bacteria-Producing Calcareous Cement in Wind Erosion Prevention. Int. J. Environ. Sci. Technol. 2021, 19, 2107–2118. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, N.; Ding, J.; Lu, C.; Jin, Y. Experimental Study on Wind Erosion Resistance and Strength of Sands Treated with Microbial-Induced Calcium Carbonate Precipitation. Adv. Mater. Sci. Eng. 2018, 2018, 3463298. [Google Scholar] [CrossRef] [Green Version]
- Shi, G.; Qi, J.; Wang, Y.; Liu, S. Experimental Study on the Prevention of Coal Mine Dust with Biological Dust Suppressant. Powder Technol. 2021, 391, 162–172. [Google Scholar] [CrossRef]
- Song, W.; Yang, Y.; Qi, R.; Li, J.; Pan, X. Suppression of Coal Dust by Microbially Induced Carbonate Precipitation Using Staphylococcus Succinus. Environ. Sci. Pollut. Res. 2019, 26, 35968–35977. [Google Scholar] [CrossRef]
- Zhu, S.; Hu, X.; Zhao, Y.; Fan, Y.; Wu, M.; Cheng, W.; Wang, P.; Wang, S. Coal Dust Consolidation Using Calcium Carbonate Precipitation Induced by Treatment with Mixed Cultures of Urease-Producing Bacteria. Water Air Soil Pollut. 2020, 231, 442. [Google Scholar] [CrossRef]
- Rodin, S.; Champagne, P.; Mann, V. Pilot-Scale Feasibility Study for the Stabilization of Coal Tailings via Microbially Induced Calcite Precipitation. Environ. Sci. Pollut. Res. 2022, 30, 8868–8882. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Harbottle, D.; Liu, Q.; Xu, Z. Current State of Fine Mineral Tailings Treatment: A Critical Review on Theory and Practice. Miner. Eng. 2014, 58, 113–131. [Google Scholar] [CrossRef]
- Achal, V.; Pan, X. Influence of Calcium Sources on Microbially Induced Calcium Carbonate Precipitation by Bacillus Sp. CR2. Appl. Biochem. Biotechnol. 2014, 173, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Gorakhki, M.H.; Bareither, C.A. Unconfined Compressive Strength of Synthetic and Natural Mine Tailings Amended with Fly Ash and Cement. J. Geotech. Geoenviron. Eng. 2017, 143, 04017017. [Google Scholar] [CrossRef]
- Gorakhki, M.H.; Bareither, C.A. Compressibility Behavior of Synthetic Mine Tailings Amended with Fly Ash. Geo-Chicago 2016, 270, 255–266. [Google Scholar]
- Hamdan, N.; Zhao, Z.; Mujica, M.; Kavazanjian, E.; He, X. Hydrogel-Assisted Enzyme-Induced Carbonate Mineral Precipitation. J. Mater. Civ. Eng. 2016, 28, 04016089. [Google Scholar] [CrossRef]
- D422-63; Standard Test Method for Particle-Size Analysis of Soils. ASTM International: West Conshohocken, PA, USA, 2007.
- D4972-19; Standard Test Methods for PH of Soils. ASTM International: West Conshohocken, PA, USA, 2019.
- D854-14; Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM International: West Conshohocken, PA, USA, 2016.
- D2434-22; Standard Test Methods for Measurement of Hydraulic Conductivity of Coarse-Grained Soils. ASTM international: West Conshohocken, PA, USA, 2022.
- Eltarahony, M.; Zaki, S.; Abd-El-Haleem, D. Aerobic and Anaerobic Removal of Lead and Mercury via Calcium Carbonate Precipitation Mediated by Statistically Optimized Nitrate Reductases. Sci. Rep. 2020, 10, 4029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, L.; Cord-ruwisch, R. In Situ Soil Cementation with Ureolytic Bacteria by Surface Percolation. Ecol. Eng. 2012, 42, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Gomez, M.G.; Anderson, C.M.; Graddy, C.M.R.; DeJong, J.T.; Nelson, D.C.; Ginn, T.R. Large-Scale Comparison of Bioaugmentation and Biostimulation Approaches for Biocementation of Sands. J. Geotech. Geoenviron. Eng. 2017, 143, 04016124. [Google Scholar] [CrossRef]
- Venuleo, S.; Laloui, L.; Terzis, D.; Hueckel, T.; Hassan, M. Microbially Induced Calcite Precipitation Effect on Soil Thermal Conductivity. Geotech. Lett. 2016, 6, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhang, N.; Ding, J.; Li, Q.; Xu, J. Thermal Conductivity of Sands Treated with Microbially Induced Calcite Precipitation (MICP) and Model Prediction. Int. J. Heat Mass Transf. 2020, 147, 118899. [Google Scholar] [CrossRef]
- Achal, V.; Mukherjee, A.; Basu, P.C.; Reddy, M.S. Strain Improvement of Sporosarcina Pasteurii for Enhanced Urease and Calcite Production. J. Ind. Microbiol. Biotechnol. 2009, 36, 981–988. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater; Bridgewater, B.R., Eaton, A.D., Ricé, E.W., Eds.; APHA: Washington, DC, USA, 2017. [Google Scholar]
- Khanjani, M.; Westenberg, D.J.; Kumar, A.; Ma, H. Tuning Polymorphs and Morphology of Microbially Induced Calcium Carbonate: Controlling Factors and Underlying Mechanisms. ACS Omega 2021, 6, 11988–12003. [Google Scholar] [CrossRef]
- Katebi, H.; Fahmi, A.; Ouria, A.; Amini, A.B.; Kafil, H.S. Microbial Surface Treatment of Sand with Sporosarcina Pasteurii to Improve the Wind Erosion Resistance in Urmia Lake. Appl. Environ. Soil Sci. 2021, 2021, 8893115. [Google Scholar] [CrossRef]
- Burbank, M.B.; Weaver, T.J.; Green, T.L.; Williams, B.; Crawford, R.L. Precipitation of Calcite by Indigenous Microorganisms to Strengthen Liquefiable Soils. Geomicrobiol. J. 2011, 28, 301–312. [Google Scholar] [CrossRef]
- Bu, C.; Wen, K.; Liu, S.; Ogbonnaya, U.; Li, L. Development of Bio-Cemented Constructional Materials through Microbial Induced Calcite Precipitation. Mater. Struct. 2018, 51, 30. [Google Scholar] [CrossRef]
- Phillips, A.J.; Gerlach, R.; Lauchnor, E.; Mitchell, A.C.; Cunningham, A.B.; Spangler, L. Engineered Applications of Ureolytic Biomineralization: A Review. Biofouling 2013, 29, 715–733. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, P.J.V.; Neves, J.P.G. Effect of Organic Matter Content on Enzymatic Biocementation Process Applied to Coarse-Grained Soils. J. Mater. Civ. Eng. 2019, 31, 04019121. [Google Scholar] [CrossRef]
- Coates, J. Interpretation of Infrared Spectra, A Practical Approach. Encycl. Anal. Chem. 2006, 12, 10815–10837. [Google Scholar] [CrossRef]
- Oliver, K.V.; Maréchal, A.; Rich, P.R. Effects of the Hydration State on the Mid-Infrared Spectra of Urea and Creatinine in Relation to Urine Analyses. Appl. Sprectroscopy 2016, 70, 983–994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timón, V.; Maté, B.; Herrero, V.J.; Tanarro, I. Infrared Spectra of Amorphous and Crystalline Urea Ices. Phys. Chem. Chem. Phys. 2021, 23, 22344–22351. [Google Scholar] [CrossRef]
- Chaurasia, L.; Bisht, V.; Singh, L.P.; Gupta, S. A Novel Approach of Biomineralization for Improving Micro and Macro-Properties of Concrete. Constr. Build. Mater. 2019, 195, 340–351. [Google Scholar] [CrossRef]
- Firdous, R.; Hirsch, T.; Klimm, D.; Lothenbach, B.; Stephan, D. Reaction of Calcium Carbonate Minerals in Sodium Silicate Solution and Its Role in Alkali-Activated Systems. Miner. Eng. 2021, 165, 106849. [Google Scholar] [CrossRef]
- Gebauer, D.; Gunawidjaja, P.N.; Ko, J.Y.P.; Bacsik, Z.; Aziz, B.; Liu, L.; Hu, Y.; Bergström, L.; Tai, C.W.; Sham, T.K.; et al. Proto-Calcite and Proto-Vaterite in Amorphous Calcium Carbonates. Angew. Chem. Int. Ed. 2010, 49, 8889–8891. [Google Scholar] [CrossRef]
- Khouzani, M.F.; Chevrier, D.M.; Güttlein, P.; Hauser, K.; Zhang, P.; Hedin, N.; Gebauer, D. Disordered Amorphous Calcium Carbonate from Direct Precipitation. CrystEngComm 2015, 17, 4842–4849. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Blanco, J.D.; Shaw, S.; Benning, L.G. The Kinetics and Mechanisms of Amorphous Calcium Carbonate (ACC) Crystallization to Calcite, Via Vaterite. Nanoscale 2011, 3, 265–271. [Google Scholar] [CrossRef]
- Krzmanc, M.M.; Valant, M.; Jancar, B.; Suvorov, D. Sub-Solidus Synthesis and Microwave Dielectric Characterization of Plagioclase Feldspars. J. Am. Ceram. Soc. 2005, 88, 2472–2479. [Google Scholar] [CrossRef]
Parameter | Sample | ||
---|---|---|---|
Type of soil | Particle size (μm) | Synthetic tailing | Sand |
Medium sand | >250 | 67.4% | 85.6% |
Fine sand | 250–106 | 30.2% | 12% |
Loamy fine sand | 106–75 | 1.5% | 1.7% |
Silt | <75 | 0.9% | 0.7% |
pH | 7.8 | 8.5 | |
Specific gravity | 2.5 (g mL−1) | 1.9 (g mL−1) | |
Minimum dry density | 1.9 (g mL−1) | 1.5 (g mL−1) | |
Hydraulic conductivity | 7.21 × 10−5 (cm s−1) | 10−4 (cm s−1) |
Assay | Soil Sample | Addition of Biocementation Media | Biomass (g L−1) | CaCl2 (M) | Biomass Dose (g kg−1drysoil) | CaCl2 Dose (mol kg−1drysoil) |
---|---|---|---|---|---|---|
1 | Sand | Irrigation | 0.90 | 0, 0.3, 1.1 | 0.06 | 0, 0.2, 0.7 |
2 | Synthetic tailing | Irrigation | 0.90 | 0, 0.3, 1.1 | 0.06 | 0, 0.2, 0.7 |
3 | Synthetic tailing | Mixing | 0.90 | 0, 0.3, 1.1 | 0.06 | 0, 0.2, 0.7 |
4 | Synthetic tailing | Mixing | 0.90 | 0–2.5 | 0.06 | 0–1.5 |
Type of Treatment | CaCl2 (M) | Composition (%) | ||||||
---|---|---|---|---|---|---|---|---|
Albite | Quartz | Sanidine | Kaolinite | Anorthite | Vaterite | Calcite | ||
Untreated | - | 67.2 | 23.9 | 6.9 | 2 | 0 | 0 | 0 |
MICP | 0.3 | 30.3 | 13.9 | 24.6 | 0 | 31.1 | 0.2 | 0 |
1.1 | 5.4 | 24.4 | 6.5 | 0 | 51.4 | 8 | 4.2 | |
2.5 | 30.1 | 16.9 | 17.7 | 0 | 33 | 1.3 | 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zúñiga-Barra, H.; Ortega-Martínez, E.; Toledo-Alarcón, J.; Torres-Aravena, Á.; Jorquera, L.; Rivas, M.; Jeison, D. Potential Use of Microbially Induced Calcite Precipitation for the Biocementation of Mine Tailings. Minerals 2023, 13, 506. https://doi.org/10.3390/min13040506
Zúñiga-Barra H, Ortega-Martínez E, Toledo-Alarcón J, Torres-Aravena Á, Jorquera L, Rivas M, Jeison D. Potential Use of Microbially Induced Calcite Precipitation for the Biocementation of Mine Tailings. Minerals. 2023; 13(4):506. https://doi.org/10.3390/min13040506
Chicago/Turabian StyleZúñiga-Barra, Héctor, Eduardo Ortega-Martínez, Javiera Toledo-Alarcón, Álvaro Torres-Aravena, Lorena Jorquera, Mariella Rivas, and David Jeison. 2023. "Potential Use of Microbially Induced Calcite Precipitation for the Biocementation of Mine Tailings" Minerals 13, no. 4: 506. https://doi.org/10.3390/min13040506
APA StyleZúñiga-Barra, H., Ortega-Martínez, E., Toledo-Alarcón, J., Torres-Aravena, Á., Jorquera, L., Rivas, M., & Jeison, D. (2023). Potential Use of Microbially Induced Calcite Precipitation for the Biocementation of Mine Tailings. Minerals, 13(4), 506. https://doi.org/10.3390/min13040506