Preparation and Properties of Phosphoric Acid-Based Porous Geopolymer with High Magnesium Nickel Slag and Fly Ash
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Sample Preparation
2.2.1. Preparation Process When H2O2 Is Used as a Blowing Agent
2.2.2. Preparation Process When Al Powder Is Used as a Blowing Agent
2.3. Analytical Method
3. Results and Discussion
3.1. Physical Properties
3.1.1. Dry Density
3.1.2. Pore Structure
3.1.3. Compressive Strength
3.1.4. Thermal Conductivity DSC Analysis
3.1.5. Water Absorption Performance
3.2. XRD Analysis
3.3. FTIR Analysis
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Davidovits, J. Geopolymers and Geopolymeric Materials. J. Therm. Anal. 1989, 35, 429–441. [Google Scholar] [CrossRef]
- Li, C.; Gong, X.; Cui, S.; Wang, Z.; Zheng, Y.; Chi, B. CO2 Emissions due to Cement Manufacture. Mater. Sci. Forum 2011, 685, 181–187. [Google Scholar] [CrossRef]
- Abbas, I.S.; Abed, M.H.; Canakci, H. Development and Characterization of Eco- And User-Friendly Grout Production via Mechanochemical Activation of Geopolymer. J. Build. Eng. 2022, 63, 105336. [Google Scholar] [CrossRef]
- Freire, A.L.; José, H.J.; Moreira, R.D.F.P.M. Potential Applications For Geopolymers in Carbon Capture and Storage. Int. J. Greenh. Gas Control 2022, 118, 103687. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Ke, X.; Jiao, X.; Li, R.; Shi, C. Geopolymer Synthesized from Electrolytic Manganese Residue and Lead-Zinc Smelting Slag: Compressive Strength and Heavy Metal Immobilization. Cem. Concr. Compos. 2022, 134, 104806. [Google Scholar] [CrossRef]
- Raza, M.H.; Zhong, R.Y. A Sustainable Roadmap for Additive Manufacturing Using Geopolymers in Construction Industry. Resour. Conserv. Recycl. 2022, 186, 106592. [Google Scholar] [CrossRef]
- Abdulkareem, O.A.; Mustafa Al Bakri, A.M.; Kamarudin, H.; Khairul Nizar, I.; Saif, A.A. Effects of Elevated Temperatures on the Thermal Behavior and Mechanical Performance of Fly Ash Geopolymer Paste, Mortar And Lightweight Concrete. Constr. Build. Mater. 2014, 50, 377–387. [Google Scholar] [CrossRef]
- Heah, C.Y.; Kamarudin, H.; Mustafa Al Bakri, A.M.; Bnhussain, M.; Luqman, M.; Khairul Nizar, I.; Ruzaidi, C.M.; Liew, Y.M. Study on Solids-To-Liquid and Alkaline Activator Ratios on Kaolin-Based Geopolymers. Constr. Build. Mater. 2012, 35, 912–922. [Google Scholar] [CrossRef]
- Tzanakos, K.; Mimilidou, A.; Anastasiadou, K.; Stratakis, A.; Gidarakos, E. Solidification/Stabilization of Ash from Medical Waste Incineration into Geopolymers. Waste Manag. 2014, 34, 1823–1828. [Google Scholar] [CrossRef]
- Ul Haq, E.; Kunjalukkal Padmanabhan, S.; Licciulli, A. Synthesis and Characteristics of Fly Ash and Bottom Ash Based Geopolymers–a Comparative Study. Ceram. Int. 2014, 40, 2965–2971. [Google Scholar] [CrossRef]
- Vickers, L.; Rickard, W.D.A.; Van Riessen, A. Strategies to Control the High Temperature Shrinkage of Fly Ash Based Geopolymers. Thermochim. Acta 2014, 580, 20–27. [Google Scholar] [CrossRef]
- Ascensão, G.; Seabra, M.P.; Aguiar, J.B.; Labrincha, J.A. Red Mud-Based Geopolymers with Tailored Alkali Diffusion Properties and pH Buffering Ability. J. Clean. Prod. 2017, 148, 23–30. [Google Scholar] [CrossRef]
- Ngouloure, Z.N.M.; Nait-Ali, B.; Zekeng, S.; Kamseu, E.; Melo, U.C.; Smith, D.; Leonelli, C. Recycled Natural Wastes in Metakaolin Based Porous Geopolymers for Insulating Applications. J. Build. Eng. 2015, 3, 58–69. [Google Scholar] [CrossRef]
- Novais, R.M.; Ascensão, G.; Seabra, M.P.; Labrincha, J.A. Waste Glass from End-Of-Life Fluorescent Lamps as Raw Material in Geopolymers. Waste Manag. 2016, 52, 245–255. [Google Scholar] [CrossRef]
- Novais, R.M.; Buruberri, L.H.; Ascensão, G.; Seabra, M.P.; Labrincha, J.A. Porous Biomass Fly Ash-Based Geopolymers with Tailored Thermal Conductivity. J. Clean. Prod. 2016, 119, 99–107. [Google Scholar] [CrossRef]
- Novais, R.M.; Seabra, M.P.; Labrincha, J.A. Porous Geopolymer Spheres as Novel pH Buffering Materials. J. Clean. Prod. 2017, 143, 1114–1122. [Google Scholar] [CrossRef]
- Alzeer, M.I.M.; Mackenzie, K.J.D.; Keyzers, R.A. Porous Aluminosilicate Inorganic Polymers (Geopolymers): A New Class of Environmentally Benign Heterogeneous Solid Acid Catalysts. Appl. Catal. A Gen. 2016, 524, 173–181. [Google Scholar] [CrossRef]
- Duan, P.; Yan, C.; Zhou, W.; Ren, D. Development of Fly Ash and Iron Ore Tailing Based Porous Geopolymer for Removal of CU(II) From Wastewater. Ceram. Int. 2016, 42, 13507–13518. [Google Scholar] [CrossRef]
- Feng, J.-J.; Zhang, R.-F.; Gong, L.-L.; Li, Y.; Cao, W.; Cheng, X.-D. Development of Porous Fly Ash-Based Geopolymer with Low Thermal Conductivity. Mater. Des. 2015, 65, 529–533. [Google Scholar] [CrossRef]
- Minelli, M.; Medri, V.; Papa, E.; Miccio, F.; Landi, E.; Doghieri, F. Geopolymers as Solid Adsorbent for co2 Capture. Chem. Eng. Sci. 2016, 148, 267–274. [Google Scholar] [CrossRef]
- Novais, R.M.; Buruberri, L.H.; Seabra, M.P.; Bajare, D.; Labrincha, J.A. Novel Porous Fly Ash-Containing Geopolymers for pH Buffering Applications. J. Clean. Prod. 2016, 124, 395–404. [Google Scholar] [CrossRef]
- Novais, R.M.; Buruberri, L.H.; Seabra, M.P.; Labrincha, J.A. Novel Porous Fly-Ash Containing Geopolymer Monoliths for Lead Adsorption from Wastewaters. J. Hazard. Mater. 2016, 318, 631–640. [Google Scholar] [CrossRef] [PubMed]
- Rouyer, J.; Benavent, V.; Frizon, F.; Poulesquen, A. Influence of Geopolymer Formulation Parameters on the Elastic and Porous Properties over a One-Year Monitoring. Mater. Lett. 2017, 207, 121–124. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Bai, C.; Zheng, T.; Yang, K.; Zhang, X.; Qiao, Y.; Colombo, P. Preparation of Porous Slag-Based Geopolymer Spheres by Direct Template Route for pH Buffering Applications. Mater. Lett. 2022, 328, 133100. [Google Scholar] [CrossRef]
- Ma, S.; Liu, X.; Fu, S.; Zhao, S.; He, P.; Duan, X.; Yang, Z.; Jia, D.; Colombo, P.; Zhou, Y. Direct Ink Writing of Porous Sic Ceramics with Geopolymer as Binder. J. Eur. Ceram. Soc. 2022, 42, 6815–6826. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Bai, C.; Qiao, Y.; Li, H.; Zhang, L.; Zhang, X.; Zheng, T.; Colombo, P. Facile Synthesis of Porous Geopolymers via the Addition of a Water-Soluble Pore Forming Agent. Ceram. Int. 2022, 48, 2853–2864. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, D.; Zhao, J.; Li, D.; Serina, N.; Yafeng, R. Effect of Calcium Stearate Based Foam Stabilizer on Pore Characteristics and Thermal Conductivity of Geopolymer Foam Material. J. Build. Eng. 2018, 20, 21–29. [Google Scholar] [CrossRef]
- Shao, N.; Zhang, Y.; Liu, Z.; Wang, D.; Zhang, Z. Fabrication of Hollow Microspheres Filled Fly Ash Based Foam Geopolymers with Ultra-Low Thermal Conductivity and Relative High Strength. Constr. Build. Mater. 2018, 185, 567–573. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Z.; Zhang, Y.; Li, D. Preparation and Characterization of Ultra-Lightweight Foamed Geopolymer (ufg) Based on Fly Ash-Metakaolin Blends. Constr. Build. Mater. 2018, 168, 771–779. [Google Scholar] [CrossRef]
- Hajimohammadi, A.; Ngo, T.; Priyan, M. Enhancing the Strength of Pre-made Foams for Foam Concrete Applications. Cem. Concr. Compos. 2018, 87, 164–171. [Google Scholar] [CrossRef]
- Degefu, D.M.; Liao, Z.; Berardi, U.; Labbé, G. The Dependence of Thermophysical and Hygroscopic Properties of Macro-Porous Geopolymers on Si/Al. J. Non-Cryst. Solids 2022, 582, 121432. [Google Scholar] [CrossRef]
- Ettahiri, Y.; Bouna, L.; Hanna, J.V.; Benlhachemi, A.; Pilsworth, H.L.; Bouddouch, A.; Bakiz, B. Pyrophyllite Clay-Derived Porous Geopolymers for Removal of Methylene Blue from Aqueous Solutions. Mater. Chem. Phys. 2023, 296, 127281. [Google Scholar] [CrossRef]
- Gu, G.; Xu, F.; Ruan, S.; Huang, X.; Zhu, J.; Peng, C. Influence of Precast Foam on the Pore Structure and Properties of Fly Ash-Based Geopolymer Foams. Constr. Build. Mater. 2020, 256, 119410. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, Y.; Li, S.; Pan, J.; Deqing, Z.; Congcong, Y.; Liaoting, P.; Hongyu, T.; Wang, D. Reductive Roasting Mechanism of Copper Slag and Nickel Laterite for Fe-Ni-Cu Alloy Production. J. Mater. Res. Technol. 2020, 9, 7602–7614. [Google Scholar] [CrossRef]
- Xi, B.; Li, R.; Zhao, X.; Dang, Q.; Zhang, D.; Tan, W. Constraints and Opportunities for the Recycling of Growing Ferronickel Slag in China. Resour. Conserv. Recycl. 2018, 139, 15–16. [Google Scholar] [CrossRef]
- Dhasindrakrishna, K.; Pasupathy, K.; Ramakrishnan, S.; Sanjayan, J. Progress, Current Thinking and Challenges in Geopolymer Foam Concrete Technology. Cem. Concr. Compos. 2021, 116, 103886. [Google Scholar] [CrossRef]
- Gopalakrishna, B.; Dinakar, P. Mix Design Development of Fly Ash-Ggbs Based Recycled Aggregate Geopolymer Concrete. J. Build. Eng. 2022, 63, 105551. [Google Scholar] [CrossRef]
- Luna-Galiano, Y.; Leiva, C.; Arroyo, F.; Villegas, R.; Vilches, L.; Fernández-Pereira, C. Development of Fly Ash-Based Geopolymers Using Powder Sodium Silicate Activator. Mater. Lett. 2022, 320, 132346. [Google Scholar] [CrossRef]
- Somna, R.; Saowapun, T.; Somna, K.; Chindaprasirt, P. Rice Husk Ash and Fly Ash Geopolymer Hollow Block Based on Naoh Activated. Case Stud. Constr. Mater. 2022, 16, e01092. [Google Scholar] [CrossRef]
- Trincal, V.; Multon, S.; Benavent, V.; Lahalle, H.; Balsamo, B.; Caron, A.; Bucher, R.; Diaz Caselles, L.; Cyr, M. Shrinkage Mitigation of Metakaolin-Based Geopolymer Activated by Sodium Silicate Solution. Cem. Concr. Res. 2022, 162, 106993. [Google Scholar] [CrossRef]
- Zhang, B.; Yu, T.; Deng, L.; Li, Y.; Guo, H.; Zhou, J.; Li, L.; Peng, Y. Ion-Adsorption Type Rare Earth Tailings for Preparation of Alkali-Based Geopolymer with Capacity for Heavy Metals Immobilization. Cem. Concr. Compos. 2022, 134, 104768. [Google Scholar] [CrossRef]
- Verma, C.; Madan, S.; Hussain, A.; Dubey, S. Heavy Metal Contamination of Groundwater Due to Fly Ash Disposal of Coal-Fired Thermal Power Plant, Parichha, Jhansi, India. Cogent Eng. 2016, 3, 1179243. [Google Scholar] [CrossRef]
- Derouiche, R.; Baklouti, S. Phosphoric Acid Based Geopolymerization: Effect of the Mechanochemical and the Thermal Activation of the Kaolin. Ceram. Int. 2021, 47, 13446–13456. [Google Scholar] [CrossRef]
- Qoku, E.; Scheibel, M.; Bier, T.; Gerz, A. Phase Development of Different Magnesium Phosphate Cements at Room Temperature and Elevated Temperatures. Constr. Build. Mater. 2021, 272, 121654. [Google Scholar] [CrossRef]
- Ji, Z.; Li, M.; Su, L.; Pei, Y. Porosity, Mechanical Strength and Structure of Waste-Based Geopolymer Foams by Different Stabilizing Agents. Constr. Build. Mater. 2020, 258, 119555. [Google Scholar] [CrossRef]
- Li, J.; Sun, Z.; Wang, L.; Yang, X.; Zhang, D.; Zhang, X.; Wang, M. Properties and Mechanism of High-Magnesium Nickel Slag-Fly Ash Based Geopolymer Activated by Phosphoric Acid. Constr. Build. Mater. 2022, 345, 128256. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, Y.; Yang, T.; Li, L.; Zhu, H.; Wang, H. Conversion of Local Industrial Wastes into Greener Cement through Geopolymer Technology: A Case Study of High-Magnesium Nickel Slag. J. Clean. Prod. 2017, 141, 463–471. [Google Scholar] [CrossRef]
- Pu, S.; Zhu, Z.; Wang, W.; Duan, W.; Wu, Z.; Li, N.; Jiang, P. Water Resistance of Fly Ash Phosphoric Acid-Based Geopolymer. Dev. Built Environ. 2022, 12, 100093. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, Y.; Qiu, X.; Zhou, F.; Wang, H.; Zhou, S.; Yan, C. Novel Porous Phosphoric Acid-Based Geopolymer Foams for Adsorption of Pb(II), CD(II) And NI(II) Mixtures: Behavior and Mechanism. Ceram. Int. 2022, 49, 7030–7039. [Google Scholar] [CrossRef]
- Tchakouté, H.K.; Bewa, C.N.; Fotio, D.; Dieuhou, C.M.; Kamseu, E.; Rüscher, C.H. Influence of Alumina on the Compressive Strengths and Microstructural Properties of the Acid-Based Geopolymers from Calcined Indurated Laterite and Metakaolin. Appl. Clay Sci. 2021, 209, 106148. [Google Scholar] [CrossRef]
- Leping, L.; Xuemin, C.; Shuheng, Q.; Junli, Y.; Lin, Z. Preparation of Phosphoric Acid-Based Porous Geopolymers. Appl. Clay Sci. 2010, 50, 600–603. [Google Scholar] [CrossRef]
- Karakaş, H.; İlkentapar, S.; Durak, U.; Örklemez, E.; Özuzun, S.; Karahan, O.; Atiş, C.D. Properties of Fly Ash-Based Lightweight-Geopolymer Mortars Containing Perlite Aggregates: Mechanical, Microstructure, and Thermal Conductivity Coefficient. Constr. Build. Mater. 2023, 362, 129717. [Google Scholar] [CrossRef]
- Kamseu, E.; Ngouloure, Z.N.M.; Tiogning-Djiogue, L.K.; Andreola, F.; Nait-Ali, B.; Rossignol, S.; Leonelli, C. Enhancing Hygroscopic Capacities of Metakaolin Based Porous Insulating Geopolymers: Comparative Effects of Calcium Silicate and Sodium Polyacrylate. J. Build. Eng. 2023, 67, 106020. [Google Scholar] [CrossRef]
- Yu, Y.; Perumal, P.; Corfe, I.J.; Paul, T.; Illikainen, M.; Luukkonen, T. Combined Granulation–Alkali Activation–Direct Foaming Process: A Novel Route to Porous Geopolymer Granules with Enhanced Adsorption Properties. Mater. Des. 2023, 227, 111781. [Google Scholar] [CrossRef]
- He, M.; Yang, Z.; Li, N.; Zhu, X.; Fu, B.; Ou, Z. Strength, Microstructure, CO2 Emission and Economic Analyses of Low Concentration Phosphoric Acid-Activated Fly Ash Geopolymer. Constr. Build. Mater. 2023, 374, 130920. [Google Scholar] [CrossRef]
Oxide | SiO2 | MgO | Fe2O3 | Al2O3 | Cao | MnO | K2O | Na2O | Cr2O3 |
---|---|---|---|---|---|---|---|---|---|
HMNS | 46.66 | 26.53 | 14.01 | 8.44 | 0.92 | 0.69 | 0.13 | n.d. | 1.93 |
FA | 53.33 | 1.97 | 8.43 | 19.64 | 11.72 | 0.09 | 1.17 | 0.829 | - |
Sample | H2O2 | Al | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
HMNS/FA | 7/3 | |||||||||
SDS | 0.1% | |||||||||
H3PO4 | 20% | |||||||||
Content(H2O2/Al) | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 0 | 0.02 | 0.04 | 0.06 | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Wu, Y.; Sun, Z.; Li, Y.; Jia, D.; Zhang, D.; Xiong, D.; Wang, M. Preparation and Properties of Phosphoric Acid-Based Porous Geopolymer with High Magnesium Nickel Slag and Fly Ash. Minerals 2023, 13, 564. https://doi.org/10.3390/min13040564
Yang X, Wu Y, Sun Z, Li Y, Jia D, Zhang D, Xiong D, Wang M. Preparation and Properties of Phosphoric Acid-Based Porous Geopolymer with High Magnesium Nickel Slag and Fly Ash. Minerals. 2023; 13(4):564. https://doi.org/10.3390/min13040564
Chicago/Turabian StyleYang, Xingchun, Yuan Wu, Zhigao Sun, Yufeng Li, Dongsheng Jia, Dongliang Zhang, Dehua Xiong, and Mitang Wang. 2023. "Preparation and Properties of Phosphoric Acid-Based Porous Geopolymer with High Magnesium Nickel Slag and Fly Ash" Minerals 13, no. 4: 564. https://doi.org/10.3390/min13040564
APA StyleYang, X., Wu, Y., Sun, Z., Li, Y., Jia, D., Zhang, D., Xiong, D., & Wang, M. (2023). Preparation and Properties of Phosphoric Acid-Based Porous Geopolymer with High Magnesium Nickel Slag and Fly Ash. Minerals, 13(4), 564. https://doi.org/10.3390/min13040564