The Potential of the Horizontal Component TEM Data in the Detection of Polarizable Mineral: Synthetic Cases
Abstract
:1. Introduction
2. Methods
2.1. The tTEM System and Noise Level
2.2. Forward Modeling Process
2.3. 1D Laterally Constrained Inversion Scheme
2.4. The Synthetic Models and Sounding Layout
3. Results and Discussion
3.1. Comparison of between Horizontal and Vertical Components of Forward Modeling
3.1.1. Synthetic Model 1: Strong Chargeable Medium
3.1.2. Synthetic Model 2: Moderate Chargeable Medium
3.1.3. Synthetic Model 3: Subtle Chargeable Medium
3.2. Resolution of x-Only, z-Only, and Joint Inversion
3.2.1. Synthetic Model 1: Strong Chargeable Medium
3.2.2. Synthetic Model 2: Moderate Chargeable Medium
3.2.3. Synthetic Model 3: Subtle Chargeable Medium
3.3. Discussion on the Recovering Capability of the Joint Inversion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhdanov, M.; Alfouzan, F.; Cox, L.; Alotaibi, A.; Alyousif, M.; Sunwall, D.; Endo, M. Large-Scale 3D Modeling and Inversion of Multiphysics Airborne Geophysical Data: A Case Study from the Arabian Shield, Saudi Arabia. Minerals 2018, 8, 271. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Zhang, J.; Xue, G.; Huang, H.; Chen, W.; Hao, J.; Yue, Y. Feasibility of Monitoring Hydraulic Connections between Aquifers Using Time-lapse TEM: A Case History in Inner Mongolia, China. J. Environ. Eng. Geophys. 2019, 24, 361–372. [Google Scholar] [CrossRef]
- Xie, W.; Yang, J.; Yao, R.; Wang, X. Spatial and Temporal Variability of Soil Salinity in the Yangtze River Estuary Using Electromagnetic Induction. Remote Sens. 2021, 13, 1875. [Google Scholar] [CrossRef]
- Auken, E.; Pedersen, J.B.; Maurya, P.K. Environmental geophysics: A new towed geophysical transient electromagnetic system for near-surface mapping. Preview 2018, 2018, 33–35. [Google Scholar]
- Sumi, F. The induced polarization method in ore investigation. Geophys. Prospect. 1961, 9, 459–477. [Google Scholar] [CrossRef]
- Flis, M.F.; Newman, G.A.; Hohmann, G.W. Induced-polarization effects in time-domain electromagnetic measurements. Geophysics 1989, 54, 514–523. [Google Scholar] [CrossRef] [Green Version]
- Spies, B.R. A field occurrence of sign reversals with the transient electromagnetic method. Geophys. Prospect. 1980, 28, 620–632. [Google Scholar] [CrossRef]
- Smith, R.S.; West, G.F. Inductive interaction between polarizable conductors: An explanation of a negative coincident-loop transient electromagnetic response. Geophysics 1988, 53, 677–690. [Google Scholar] [CrossRef]
- Macnae, J. Quantifying airborne Induced Polarization effects in helicopter time domain electromagnetics. J. Appl. Geophys. 2016, 135, 495–502. [Google Scholar] [CrossRef]
- Smith, R.S.; West, G.F. Field examples of negative coincident-loop transient electromagnetic responses modeled with polarizable half-planes. Geophysics 1989, 54, 1491–1498. [Google Scholar] [CrossRef]
- Zhdanov, M.S.; Endo, M.; Cox, L.; Sunwall, D. Effective-Medium Inversion of Induced Polarization Data for Mineral Exploration and Mineral Discrimination: Case Study for the Copper Deposit in Mongolia. Minerals 2018, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- Viezzoli, A.; Kaminski, V. Airborne IP: Examples from the Mount Milligan deposit, Canada, and the Amakinskaya kimberlite pipe, Russia. Explor. Geophys. 2016, 47, 269–278. [Google Scholar] [CrossRef]
- Kumar, I.; Kumar, B.; Birua, S.; Dash, J.K. Inductive Induced Polarization effect in Transient Electromagnetic Surveys for Mapping Sulphide Rich Zone-A Case Study from Gurulpada Area, Singhbhum Shear Zone, Jharkhand. J. Geophys. 2017, 38, 91–100. [Google Scholar]
- Descloitres, M.; Guérin, R.; Albouy, Y.; Tabbagh, A.; Ritz, M. Improvement in TDEM sounding interpretation in presence of induced polarization. A case study in resistive rocks of the Fogo volcano, Cape Verde Islands. J. Appl. Geophys. 2000, 45, 1–18. [Google Scholar] [CrossRef]
- Kozhevnikov, N.O.; Antonov, E.Y. Fast-decaying IP in frozen uncorisolidated rocks and potentialities for its use in permafrost-related TEM studies. Geophys. Prospect. 2010, 54, 383–397. [Google Scholar] [CrossRef]
- Zadorozhnaya, V.; Stettler, E. Electroosmosis IP Effect as an Indicator of Compounds’ Contamination: A few Case Studies. ASEG Ext. Abstr. 2007, 2007, 1–4. [Google Scholar] [CrossRef]
- Viezzoli, A.; Manca, G.; Wjins, C. Causes and effects of the AIP trap in AEM data, J. Appl. Geophys. 2020, 175, 103970. [Google Scholar] [CrossRef]
- Dias, C.A. Analytical model for a polarizable medium at radio and lower frequencies. J. Geophys. Res. Atmos. 1972, 77, 4945–4956. [Google Scholar] [CrossRef]
- Debye, P.; Falkenhagen, H. Dispersion of the conductivity and dielectric constants of strong electrolytes. Phys. Z. 1928, 29, 401–426. [Google Scholar]
- Pelton, W.H.; Ward, S.H.; Hallof, P.G.; Sill, W.R.; Nelson, P.H. Mineral discrimination and removal of inductive coupling with multi-frequency IP. Geophysics 1978, 43, 588–609. [Google Scholar] [CrossRef]
- Zhdanov, M.S. Generalized effective medium theory of induced polarization. Geophysics 2008, 73, F197–F211. [Google Scholar] [CrossRef]
- Marchant, D.; Haber, E.; Oldenburg, D.W. Three-dimensional modeling of IP effects in time-domain electromagnetic data. Geophysics 2014, 79, E303–E314. [Google Scholar] [CrossRef]
- Kang, S.; Oldenburg, D.W. On recovering distributed IP information from inductive source time domain electromagnetic data. Geophys. J. Int. 2016, 207, 174–196. [Google Scholar] [CrossRef] [Green Version]
- Commer, M.; Petrov, P.V.; Newman, G.A. FDTD modeling of induced polarization phenomena in transient electromagnetic. Geophys. J. Int. 2017, 209, 387–405. [Google Scholar] [CrossRef] [Green Version]
- Seidel, M.; Tezkan, B. 1D Cole-Cole inversion of TEM transients influenced by induced polarization. J. Appl. Geophys. 2017, 138, 220–232. [Google Scholar] [CrossRef]
- Ji, Y.J.; Wu, Y.Q.; Guan, S.S.; Zhao, X.J. 3D numerical modeling of induced-polarization electromagnetic response based on the finite-difference time-domain method. Geophysics 2018, 83, E385–E398. [Google Scholar] [CrossRef]
- Nabighian, M.N. Quasi-static transient response of a conducting half-space-An approximate representation. Geophysics 1979, 44, 1700–1705. [Google Scholar] [CrossRef]
- Steklova, K.; Lawrie, K.; Auken, E.; Christiansen, A.V.; Fiandaca, G. Overly steep decays in airborne TEM data and their link to chargeability: Example from the Howards East District, NT, Australia. ASEG Ext. Abstr. 2019, 2019, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.; Fiandaca, G.; Auken, E.; Couto, M.A.; Christiansen, A.V. A discussion of 2D induced polarization effects in airborne electromagnetic and inversion with a robust 1D laterally constrained inversion scheme. Geophysics 2018, 84, E75–E88. [Google Scholar] [CrossRef]
- Chen, T.; Hodges, G.; Smiarowski, A. Extracting subtle IP responses from airborne time domain electromagnetic data. SEG Tech. Program Expand. Abstr. 2015, 2061–2066. [Google Scholar] [CrossRef]
- Fiandaca, G.; Madsen, L.M.; Maurya, P.K. Re-parameterization of the Cole-Cole model for improved spectral inversion of induced polarization data. Near Surf. Geophys. 2018, 16, 385–399. [Google Scholar] [CrossRef]
- Du, S.Y.; Zhang, Y.; Pei, Y.F.; Jiang, K.; Rong, L.; Yin, C.; Ji, Y.; Xie, X. Study of transient electromagnetic method measurements using a superconducting quantum interference device as B sensor receiver in polarizable survey area. Geophysics 2018, 83, 111–116. [Google Scholar] [CrossRef]
- Ji, Y.J.; Wu, Y.Q.; Wu, Y.H.; Zhang, Y. Excitation process under the ramp-step waveform of inductive source-induced polarization method. Geophysics 2019, 85, E57–E65. [Google Scholar] [CrossRef]
- Kirkegaard, C.; Foged, N.; Auken, E.; Christiansen, A.V.; Sørensen, K. On the value of including x-component data in 1D modeling of electromagnetic data from helicopter borne time domain systems in horizontally layered environments. J. Appl. Geophys. 2012, 84, 61–69. [Google Scholar] [CrossRef]
- Wang, X.; Zhi, Q.; Wu, J.; Deng, X.; Huang, Y.; Yang, Q.; Wang, J. Multicomponent Transient Electromagnetic Exploration Technology and Its Application. Minerals 2022, 12, 681. [Google Scholar] [CrossRef]
- Jang, H.; Kim, H.J.; Nam, M.J. In-loop transient electromagnetic responses with induced polarization effects of deep-sea hydrothermal deposits. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7272–7278. [Google Scholar] [CrossRef]
- Auken, E.; Foged, N.; Larsen, J.J.; Lassen, K.V.T.; Maurya, P.K.; Dath, S.M.; Eiskjær, T.T. tTEM—A towed TEM-system for detailed 3D imaging of the top 70 meters of the subsurface. Geophysics 2018, 84, E13–E22. [Google Scholar] [CrossRef]
- Auken, E.; Christiansen, A.V.; Jacobsen, L.H.; Sørensen, K.I. A resolution study of buried valleys using laterally constrained inversion of TEM data. J. Appl. Geophys. 2008, 65, 10–20. [Google Scholar] [CrossRef]
- Spies, B.R. Local noise prediction filtering for central induction transient electromagnetic sounding. Geophysics 1988, 53, 1068–1079. [Google Scholar] [CrossRef]
- McCracken, K.G.; Orstaglio, M.L.; Hohmann, G.W. Mininization of noise in electromagnetic exploration systems. Geophysics 1986, 51, 819–832. [Google Scholar] [CrossRef]
- Auken, E.; Christiansen, A.V.; Kirkegaard, C.; Fiandaca, G.; Schamper, C.; Behroozmand, A.A.; Binley, A.; Nielsen, E.; Effersø, F.; Christensen, N.B.; et al. An overview of a highly versatile forward and stable inverse algorithm for airborne, ground-based and borehole electromagnetic and electric data. Explor. Geophys. 2014, 46, 223–235. [Google Scholar] [CrossRef] [Green Version]
- Ward, S.H.; Hohmann, G.W. Electromagnetic theory for geophysical applications. In Electromagnetic Methods in Applied Geophysics; Nabighian, M.N., Corbett, J.D., Eds.; Society of Exploration Geophysicists: Tulsa, OK, USA, 1987; Volume 1, pp. 131–312. [Google Scholar]
- Auken, E.; Christiansen, A.V.; Jacobsen, B.H.; Foged, N.; Sorensen, K.I. Piecewise 1D Laterally Constrained Inversion of resistivity data. Geophys. Prospect. 2005, 53, 497–506. [Google Scholar] [CrossRef]
- Kaminski, V.; Viezzoli, A. Modeling induced polarization effects in helicopter time-domain electromagnetic data: Field case studies. Geophysics 2017, 82, B49–B61. [Google Scholar] [CrossRef]
- Fiandaca, G.; Auken, E.; Christiansen, A.V.; Gazoty, A. Time-domain-induced polarization: Full-decay forward modeling and 1D laterally constrained inversion of Cole-Cole parameters. Geophysics 2012, 77, 213–225. [Google Scholar] [CrossRef]
- Christiansen, A.V.; Auken, E. A global measure for depth of investigation. ASEG Ext. Abstr. 2010, 2010, 1–4. [Google Scholar]
MPA Parameters | Layer | ρ0 (Ωm) | φmax(mrad) | τφ (ms) | c |
---|---|---|---|---|---|
Strong chargeable medium | 1 | 100 | 100 | 0.1 | 0.5 |
2 | 300 | 50 | 0.1 | 0.5 | |
3 | 50 | 300 | 0.1 | 0.5 | |
Moderate chargeable medium | 1 | 150 | 80 | 0.1 | 0.5 |
2 | 300 | 50 | 0.1 | 0.5 | |
3 | 10 | 100 | 0.1 | 0.5 | |
Subtle chargeable medium | 1 | 100 | 10 | 100 | 0.5 |
2 | 30 | 30 | 100 | 0.5 | |
3 | 100 | 10 | 100 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Xie, H.; Ji, Y.; Zhao, P.; Wang, Y. The Potential of the Horizontal Component TEM Data in the Detection of Polarizable Mineral: Synthetic Cases. Minerals 2023, 13, 523. https://doi.org/10.3390/min13040523
Wu Y, Xie H, Ji Y, Zhao P, Wang Y. The Potential of the Horizontal Component TEM Data in the Detection of Polarizable Mineral: Synthetic Cases. Minerals. 2023; 13(4):523. https://doi.org/10.3390/min13040523
Chicago/Turabian StyleWu, Yanqi, Huilin Xie, Yanju Ji, Peng Zhao, and Yuebing Wang. 2023. "The Potential of the Horizontal Component TEM Data in the Detection of Polarizable Mineral: Synthetic Cases" Minerals 13, no. 4: 523. https://doi.org/10.3390/min13040523
APA StyleWu, Y., Xie, H., Ji, Y., Zhao, P., & Wang, Y. (2023). The Potential of the Horizontal Component TEM Data in the Detection of Polarizable Mineral: Synthetic Cases. Minerals, 13(4), 523. https://doi.org/10.3390/min13040523