Different Quartz Varieties Characterized by Proximal Sensing and Their Relation to Soil Attributes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Laboratory Analyses
2.2. Statistical Analysis
3. Results and Discussion
3.1. General Characterization of Varieties of Quartz via pXRF
3.2. Elemental Characterization Per Varietiy of Quartz through pXRF Spectrometry
3.3. Importance of pXRF Variables for Quartz Variety Discrimination
4. Discussions
4.1. Chemical Variability of Quartz Varieties Detected by pXRF and Relations to Color
4.2. Relations between Quartz Varieties and Soils
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wicander, R.; Monroe, J.S. Essentials of Geology, 4th ed.; Brooks Cole: Pacific Grove, CA, USA, 2005. [Google Scholar]
- White, R.E. Principles and Practice of Soil Science: The Soil as a Natural Resource, 4th ed.; Blackwell Publishing: Oxford, UK, 2006. [Google Scholar]
- Schaetzl, R.J.; Anderson, S. Soils: Genesis and Geomorphology, 2nd ed.; Cambridge University Press: New York, NY, USA, 2015. [Google Scholar]
- Buol, S.W.; Southard, R.J.; Graham, R.C.; McDaniel, P.A. Soil Genesis and Classification, 6th ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Brady, N.C.; Weil, R.R. Elements of the Nature and Properties of Soils, 2nd ed.; Pearson Education Ltd.: New York, NY, USA, 2002. [Google Scholar]
- Alexander, E.B. Soils in Natural Landscapes; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Bern, C.R. Soil Chemistry in Lithologically Diverse Datasets: The Quartz Dilution Effect. Appl. Geochem. 2009, 24, 1429–1437. [Google Scholar] [CrossRef]
- Brinatti, A.M.; Mascarenhas, Y.P.; Pereira, V.P.; Partiti, C.S.D.M.; Macedo, Á. Mineralogical Characterization of a Highly-Weathered Soil by the Rietveld Method. Sci. Agric. 2010, 67, 454–464. [Google Scholar] [CrossRef]
- Uehara, G.; Gillman, G. The Mineralogy, Chemistry, and Physiscs of Tropical Soils with Variable Charge Clays; Westview Press: Boulder, CO, USA, 1981. [Google Scholar]
- USDA. Soil Survey Staff Keys to Soil Taxonomy, 12th ed.; USDA: Washington, DC, USA, 2014.
- Dennen, W.H. Stoichiometric Substitution in Natural Quartz. Geochim. Cosmochim. Acta 1966, 30, 1235–1241. [Google Scholar] [CrossRef]
- Correa, M. Variedades Gemológicas de Quartzo na Bahia, Geologia, Mineralogia, Causas de Cor, e Técnicas de Tratamento. Master’s Thesis, Universidade de São Paulo, São Paulo, Brazil, 2010. [Google Scholar]
- Weindorf, D.C.; Bakr, N.; Zhu, Y. Advances in Portable X-ray Fluorescence (PXRF) for Environmental, Pedological, and Agronomic Applications. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2014; Volume 128, pp. 1–45. ISBN 978-0-12-802139-2. [Google Scholar]
- Horta, A.; Malone, B.; Stockmann, U.; Minasny, B.; Bishop, T.F.A.; McBratney, A.B.; Pallasser, R.; Pozza, L. Potential of Integrated Field Spectroscopy and Spatial Analysis for Enhanced Assessment of Soil Contamination: A Prospective Review. Geoderma 2015, 241–242, 180–209. [Google Scholar] [CrossRef] [Green Version]
- Stockmann, U.; Cattle, S.R.; Minasny, B.; McBratney, A.B. Utilizing Portable X-Ray Fluorescence Spectrometry for in-Field Investigation of Pedogenesis. Catena 2016, 139, 220–231. [Google Scholar] [CrossRef]
- Silva, S.H.G.; Ribeiro, B.T.; Guerra, M.B.B.; de Carvalho, H.W.P.; Lopes, G.; Carvalho, G.S.; Guilherme, L.R.G.; Resende, M.; Mancini, M.; Curi, N.; et al. PXRF in Tropical Soils: Methodology, Applications, Achievements and Challenges. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2021; Volume 167, pp. 1–62. ISBN 978-0-12-824588-0. [Google Scholar]
- Ferreira, D.F. Sisvar: A Guide for Its Bootstrap Procedures in Multiple Comparisons. Ciênc. Agrotec. 2014, 38, 109–112. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environmental for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Kuhn, M. Building Predictive Models in R Using the Caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Congalton, R.G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Rossman, G.R. Colored Varieties of the Silica Minerals. Rev. Mineral. Geochem. 1994, 29, 433–467. [Google Scholar]
- Nunes, E.H.M.; Lameiras, F.S.; Houmard, M.; Vasconcelos, W.L. Spectroscopic Study of Natural Quartz Samples. Radiat. Phys. Chem. 2013, 90, 79–86. [Google Scholar] [CrossRef]
- Klemme, S.; Berndt, J.; Mavrogonatos, C.; Flemetakis, S.; Baziotis, I.; Voudouris, P.; Xydous, S. On the Color and Genesis of Prase (Green Quartz) and Amethyst from the Island of Serifos, Cyclades, Greece. Minerals 2018, 8, 487. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, G.; Bambauer, H.U. Quartz Crystals and Their Colors. Angew. Chem. Int. Ed. Engl. 1973, 12, 283–291. [Google Scholar] [CrossRef]
- Klein, C.; Hurlbut, C.S. Manual of Mineralogy, 21st ed.; John Wiley and Sons, Inc.: New York, NY, USA, 1993. [Google Scholar]
- Schmetzer, K. Methods for the Distinction of Natural and Synthetic Citrine and Prasiolite. J. Gemmol. 1989, 23, 288–293. [Google Scholar] [CrossRef]
- Lehmann, G.; Moore, W.J. Optical and Paramagnetic Properties of Iron Centers in Quartz. J. Chem. Phys. 1966, 44, 1741–1745. [Google Scholar] [CrossRef]
- Cassedanne, J.P.; Roditi, M. Crystallized and Massive Rose Quartz Deposits in Brazil. J. Gemmol. 1991, 22, 273–286. [Google Scholar] [CrossRef]
- Dana, J.D. Manual de Mineralogia; Legare Street Press: Charleston, SC, USA, 1970. [Google Scholar]
- White, K.L. Sand Grain Micromorphology and Soil Age. Soil Sci. Soc. Am. J. 1981, 45, 975–978. [Google Scholar] [CrossRef]
- Korkut, T.; Korkut, H.; Karabulut, A.; Budak, G. A New Radiation Shielding Material: Amethyst Ore. Ann. Nucl. Energy 2011, 38, 56–59. [Google Scholar] [CrossRef]
- Cortezão, S.U.; Pontuschka, W.M.; Da Rocha, M.S.F.; Blak, A.R. Depolarisation Currents (TSDC) and Paramagnetic Resonance (EPR) of Iron in Amethyst. J. Phys. Chem. Solids 2003, 64, 1151–1155. [Google Scholar] [CrossRef]
- Marcelino, V.; Mussche, G.; Stoops, G. Surface Morphology of Quartz Grains from Tropical Soils and Its Significance for Assessing Soil Weathering. Eur. J. Soil Sci. 1999, 50, 1–8. [Google Scholar] [CrossRef]
- Curi, N.; Franzmeier, D.P. Toposequence of Oxisols from the Central Plateau of Brazil. Soil Sci. Soc. Am. J. 1984, 48, 341–346. [Google Scholar] [CrossRef]
- Mackenzie, F.T.; Gees, R. Quartz: Synthesis at Earth-Surface Conditions. Science 1971, 173, 533–535. [Google Scholar] [CrossRef] [PubMed]
- Drees, L.R.; Wilding, L.P.; Smeck, N.E.; Senkai, A.L. Silica in Soils: Quartz and Disordered Silica Polymorphs. In Minerals in Soil Environments; Soil Science Society of America: Madison, WI, USA, 1989; Volume 1, pp. 913–974. [Google Scholar]
- Plotnikov, E.N.; Lopatin, S.I.; Stolyarova, V.L. Application of the Sanderson Method to the Calculation of Bonding Energies in Oxide Glass-Forming Systems. Glass Phys. Chem. 2003, 29, 517–521. [Google Scholar] [CrossRef]
- Resende, M.; Curi, N.; Poggere, G.C.; Barbosa, J.Z.; Pozza, A.A.A.; Teixeira, A.D.S. Pedologia, Fertilidade, Água e Planta: Inter-Relações e Aplicações, 2nd ed.; Editora UFLA: Lavras, Brazil, 2020. [Google Scholar]
Element/Oxide | Min | Max | Mean | SD 1 | CV 2 |
---|---|---|---|---|---|
Al2O3 (mg kg−1) | 6887 | 46,679 | 12,468 | 9544 | 77 |
CaO (mg kg−1) | 140 | 7830 | 1815 | 1982 | 109 |
Cl (mg kg−1) | 573 | 3368 | 1408 | 788 | 56 |
Cr (mg kg−1) | <LOD * | 448 | 160 | 152 | 95 |
Fe (mg kg−1) | 124 | 1908 | 388 | 469 | 121 |
K2O (mg kg−1) | 493 | 4581 | 1493 | 1053 | 70 |
Mn (mg kg−1) | <LOD * | 50 | 3 | 12 | 400 |
P2O5 (mg kg−1) | 1029 | 1883 | 1332 | 216 | 16 |
Rb (mg kg−1) | <LOD * | 3 | 0.31 | 1 | 279 |
S (mg kg−1) | <LOD * | 9139 | 1939 | 2561 | 132 |
SiO2 (mg kg−1) | 692,237 | 1000,000 | 885,444 | 110,886 | 13 |
Ti (mg kg−1) | 73 | 547 | 219 | 112 | 51 |
V (mg kg−1) | <LOD * | 366 | 35 | 93 | 264 |
Quartz Variety | Hyaline | Amethyst | Rose | Milky | Smoky | Ferriferous |
---|---|---|---|---|---|---|
Al2O3 (mg kg−1) | 10,162 b | 8127 b | 10,624 b | 10,758 b | 21,547 a | 17,474 a |
CaO (mg kg−1) | 1127 c | 730 c | 3043 b | 1680 c | 1027 c | 7830 a |
K2O (mg kg−1) | 662 b | 1051 b | 1992 b | 1664 b | 1293 b | 4581 a |
P2O5 (mg kg−1) | 1469 a | 1209 b | 1400 a | 1096 b | 1532 a | 1320 a |
SiO2 (mg kg−1) | 995,382 a | 876,832 b | 823,506 b | 835,828 b | 890,423 b | 960,181 a |
Cl (mg kg−1) | 891 c | 881 c | 1671 b | 1879 b | 1228 c | 3368 a |
Cr (mg kg−1) | 250 a | 152 a | 51 a | 109 a | 172 a | 356 a |
Fe (mg kg−1) | 148 c | 222 c | 286 c | 272 c | 522 b | 1908 a |
Mn (mg kg−1) | 0 b | 0 b | 22 a | 0 b | 0 b | 0 b |
Rb (mg kg−1) | 0 a | 1 a | 0 a | 0 a | 0 a | 0 a |
S (mg kg−1) | 46 b | 650 b | 4978 a | 3041 a | 551 b | 6032 a |
Ti (mg kg−1) | 158 a | 192 a | 239 a | 349 a | 179 a | 226 a |
V (mg kg−1) | 0 a | 13 a | 12 a | 124 a | 39 a | 0 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, S.H.G.; Ribeiro, D.; Dijair, T.S.B.; Silva, F.M.; Teixeira, A.F.d.S.; Andrade, R.; Mancini, M.; Guilherme, L.R.G.; Curi, N. Different Quartz Varieties Characterized by Proximal Sensing and Their Relation to Soil Attributes. Minerals 2023, 13, 529. https://doi.org/10.3390/min13040529
Silva SHG, Ribeiro D, Dijair TSB, Silva FM, Teixeira AFdS, Andrade R, Mancini M, Guilherme LRG, Curi N. Different Quartz Varieties Characterized by Proximal Sensing and Their Relation to Soil Attributes. Minerals. 2023; 13(4):529. https://doi.org/10.3390/min13040529
Chicago/Turabian StyleSilva, Sérgio Henrique Godinho, Diego Ribeiro, Thaís Santos Branco Dijair, Fernanda Magno Silva, Anita Fernanda dos Santos Teixeira, Renata Andrade, Marcelo Mancini, Luiz Roberto Guimarães Guilherme, and Nilton Curi. 2023. "Different Quartz Varieties Characterized by Proximal Sensing and Their Relation to Soil Attributes" Minerals 13, no. 4: 529. https://doi.org/10.3390/min13040529
APA StyleSilva, S. H. G., Ribeiro, D., Dijair, T. S. B., Silva, F. M., Teixeira, A. F. d. S., Andrade, R., Mancini, M., Guilherme, L. R. G., & Curi, N. (2023). Different Quartz Varieties Characterized by Proximal Sensing and Their Relation to Soil Attributes. Minerals, 13(4), 529. https://doi.org/10.3390/min13040529