Normative Mineralogy of 1170 Soil Profiles across Canada
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Study Sites
2.2. Sampling and Analysis
2.3. Soil Major Oxide Content
2.4. Analysis to Mineralogy
2.5. Evaluation of A2M Mineralogy
3. Results and Discussion
3.1. Distribution of Observed Soil Oxides, Soil Depth, Loss on Ignition, and Bulk Density
3.2. Evaluation of A2M Predicted Quantitative Soil Mineralogy
3.3. Canada-Wide Predicted Soil Mineralogy
3.4. Evaluation of Canada-Wide Predicted Soil Mineralogy
3.5. Previous Studies That Evaluated Predicted A2M Mineralogy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whitfield, C.; Watmough, S.; Aherne, J.; Dillon, P. A comparison of weathering rates for acid-sensitive catchments in Nova Scotia, Canada and their impact on critical load calculations. Geoderma 2006, 136, 899–911. [Google Scholar] [CrossRef]
- Phelan, J.; Belyazid, S.; Kurz, D.; Guthrie, S.; Cajka, J.; Sverdrup, H.; Waite, R. Estimation of Soil Base Cation Weathering Rates with the PROFILE Model to Determine Critical Loads of Acidity for Forested Ecosystems in Pennsylvania, USA: Pilot Application of a Potential National Methodology. Water Air Soil Pollut. 2014, 225, 2109. [Google Scholar] [CrossRef]
- Casetou-Gustafson, S.; Hillier, S.; Akselsson, C.; Simonsson, M.; Stendahl, J.; Olsson, B.A. Comparison of measured (XRPD) and modeled (A2M) soil mineralogies: A study of some Swedish forest soils in the context of weathering rate predictions. Geoderma 2018, 310, 77–88. [Google Scholar] [CrossRef]
- Casetou-Gustafson, S.; Akselsson, C.; Hillier, S.; Olsson, B.A. The importance of mineral determinations to PROFILE base cation weathering release rates: A case study. Biogeosciences 2019, 16, 1903–1920. [Google Scholar] [CrossRef] [Green Version]
- Ouimet, R.; Duchesne, L. Base cation mineral weathering and total release rates from soils in three calibrated forest watersheds on the Canadian Boreal Shield. Can. J. Soil Sci. 2005, 85, 245–260. [Google Scholar] [CrossRef] [Green Version]
- Whitfield, C.J.; Watmough, S.A.; Aherne, J. Evaluation of elemental depletion weathering rate estimation methods on acid-sensitive soils of north-eastern Alberta, Canada. Geoderma 2011, 166, 189–197. [Google Scholar] [CrossRef]
- Watmough, S.A.; Aherne, J.; Alewell, C.; Arp, P.; Bailey, S.; Clair, T.; Dillon, P.; Duchesne, L.; Eimers, C.; Fernandez, I.; et al. Sulphate, Nitrogen and Base Cation Budgets at 21 Forested Catchments in Canada, the United States and Europe. Environ. Monit. Assess. 2005, 109, 1–36. [Google Scholar] [CrossRef]
- Warfvinge, P.; Sverdrup, H. Calculating critical loads of acid deposition with PROFILE ? A steady-state soil chemistry model. Water Air Soil Pollut. 1992, 63, 119–143. [Google Scholar] [CrossRef]
- Sverdrup, H.; Warfvinge, P. Calculating field weathering rates using a mechanistic geochemical model PROFILE. Appl. Geochem. 1993, 8, 273–283. [Google Scholar] [CrossRef]
- Koseva, I.S.; Watmough, S.A.; Aherne, J. Estimating base cation weathering rates in Canadian forest soils using a simple texture-based model. Biogeochemistry 2010, 101, 183–196. [Google Scholar] [CrossRef]
- Bish, D.L.; Post, J.E. Quantitative mineralogical analysis using the Rietveld full-pattern fitting method. Am. Mineral. 1993, 78, 932–940. [Google Scholar]
- Wagner, H.W.; Jung, D.; Wagner, J.-F.; Wagner, M.P. Slatecalculation—A Practical Tool for Deriving Norm Minerals in the Lowest-Grade Metamorphic Pelites and Roof Slates. Minerals 2020, 10, 395. [Google Scholar] [CrossRef]
- Grunsky, E.C. The interpretation of geochemical survey data. Geochem. Explor. Environ. Anal. 2010, 10, 27–74. [Google Scholar] [CrossRef]
- Cross, W.; Iddings, J.P.; Pirsson, L.V.; Washington, H.S. A Quantitative Chemico-Mineralogical Classification and Nomenclature of Igneous Rocks. J. Geol. 1902, 10, 555–690. [Google Scholar] [CrossRef]
- Cohen, D.; Ward, C. SEDNORM—A program to calculate a normative mineralogy for sedimentary rocks based on chemical analyses. Comput. Geosci. 1991, 17, 1235–1253. [Google Scholar] [CrossRef]
- Rosen, O.M.; Abbyasov, A.; Tipper, J.C. MINLITH—An experience-based algorithm for estimating the likely mineralogical compositions of sedimentary rocks from bulk chemical analyses. Comput. Geosci. 2004, 30, 647–661. [Google Scholar] [CrossRef]
- Herrmann, W.; Berry, R.F. MINSQ—A least squares spreadsheet method for calculating mineral proportions from whole rock major element analyses. Geochem. Explor. Environ. Anal. 2002, 2, 361–368. [Google Scholar] [CrossRef]
- Paktunc, A. MODAN: An interactive computer program for estimating mineral quantities based on bulk composition. Comput. Geosci. 1998, 24, 425–431. [Google Scholar] [CrossRef]
- Paktunc, A.D. MODAN—A computer program for estimating mineral quantities based on bulk composition: Windows version. Comput. Geosci. 2001, 27, 883–886. [Google Scholar] [CrossRef]
- Posch, M.; Kurz, D. A2M—A program to compute all possible mineral modes from geochemical analyses. Comput. Geosci. 2007, 33, 563–572. [Google Scholar] [CrossRef]
- Phillips, T.; Watmough, S.A. A nutrient budget for a selection harvest: Implications for long-term sustainability. Can. J. For. Res. 2012, 42, 2064–2077. [Google Scholar] [CrossRef]
- Stendahl, J.; Akselsson, C.; Melkerud, P.-A.; Belyazid, S. Pedon-scale silicate weathering: Comparison of the PROFILE model and the depletion method at 16 forest sites in Sweden. Geoderma 2013, 211–212, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Belyazid, S.; Akselsson, C.; van der Heijden, G.; Zanchi, G. Storm disturbances in a Swedish forest—A case study comparing monitoring and modelling. Ecol. Model. 2016, 320, 102–113. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.; Aherne, J.; Cummins, T. Base cation budgets under residue removal in temperate maritime plantation forests. For. Ecol. Manag. 2015, 343, 144–156. [Google Scholar] [CrossRef]
- Woodruff, L.G.; Cannon, W.F.; Eberl, D.D.; Smith, D.B.; Kilburn, J.E.; Horton, J.D.; Garrett, R.G.; Klassen, R.A. Continental-scale patterns in soil geochemistry and mineralogy: Results from two transects across the United States and Canada. Appl. Geochem. 2009, 24, 1369–1381. [Google Scholar] [CrossRef]
- Smith, D.B.; Cannon, W.F.; Woodruff, L.G.; Garrett, R.G.; Klassen, R.; Kilburn, J.E.; Horton, J.D.; King, H.D.; Goldhaber, M.B.; Morrison, J.M. Major- and Trace-Element Concentrations in Soils from Two Continental-Scale Transects of the United States and Canada; Open File 2005-1253; U.S Geological Survey: Reston, VA, USA, 2005. [CrossRef] [Green Version]
- Friske, P.W.B.; Ford, K.L.; McNeil, R.J.; Pronk, A.G.; Parkhill, M.A.; Goodwin, T.A. Soil Geochemical, Mineralogical, Radon and Gamma Ray Spectrometric Data from the 2007 North American Soil Geochemical Landscapes Project in New Brunswick, Nova Scotia and Prince Edward Island; Geological Survey of Canada, Open File 6433; Natural Resources Canada: Ottawa, ON, Canada, 2014. [CrossRef]
- Grunsky, E.C.; Drew, L.J.; Woodruff, L.G.; Friske, P.W.B.; Sutphin, D.M. Statistical variability of the geochemistry and mineralogy of soils in the Maritime Provinces of Canada and part of the Northeast United States. Geochem. Explor. Environ. Anal. 2013, 13, 249–266. [Google Scholar] [CrossRef]
- Whitfield, C.J.; Watmough, S.A. A regional approach for mineral soil weathering estimation and critical load assessment in boreal Saskatchewan, Canada. Sci. Total Environ. 2012, 437, 165–172. [Google Scholar] [CrossRef]
- Stott, G. A Regional Assessment of Soil Calcium Weathering Rates and the Factors that Influence Lake Calcium in the Muskoka River Catchment, Central Ontario. Master’s Thesis, Trent University, Peterborough, ON, Canada, 2015. [Google Scholar]
- ESSA Technologies Ltd. Sulphur Dioxide Technical Assessment Report in Support of the 2013 Application to Amend the P2-00001 Multimedia Permit for the Kitimat Modernization Project; Final Technical Report; Rio Tinto Alcan: Kitimat, BC, Canada, 2013; 450p. [Google Scholar]
- Houle, D.; Lamoureux, P.; Bélanger, N.; Bouchard, M.; Gagnon, C.; Couture, S.; Bouffard, A. Soil weathering rates in 21 catchments of the Canadian Shield. Hydrol. Earth Syst. Sci. 2012, 16, 685–697. [Google Scholar] [CrossRef] [Green Version]
- Friske, P.W.B.; Ford, K.L.; McNeil, R.J. Soil Geochemical, Radon and Gamma Ray Spectrometric Data from the 2008 and 2009 North American Soil Geochemical Landscapes Project Field Surveys; Geological Survey of Canada, Open File 7334; Natural Resources Canada: Ottawa, ON, Canada, 2013. [CrossRef]
- Garrett, R.; Kettles, I. North American Soil Geochemical Landscapes Project: Database of GRTS Sample Sites with Notes on the Sampling Design and Site Selection Procedure; Geological Survey of Canada, Open File 6300; Natural Resources Canada: Ottawa, ON, Canada, 2009. [CrossRef]
- De Vos, B.; Van Meirvenne, M.; Quataert, P.; Deckers, J.; Muys, B. Predictive Quality of Pedotransfer Functions for Estimating Bulk Density of Forest Soils. Soil Sci. Soc. Am. J. 2005, 69, 500–510. [Google Scholar] [CrossRef]
- Nievergelt, Y. Total Least Squares: State-of-the-Art Regression in Numerical Analysis. SIAM Rev. 1994, 36, 258–264. [Google Scholar] [CrossRef]
- Wright, D.M.; Potter, E.G. Regional Surface Rock Geochemistry, Athabasca Basin, Saskatchewan; Geological Survey of Canada, Open File 2014, 7614; Natural Resources Canada: Ottawa, ON, Canada, 2014; 33p. [CrossRef]
- Jeffrey, D.W. A Note on the use of Ignition Loss as a Means for the Approximate Estimation of Soil Bulk Density. J. Ecol. 1970, 58, 297. [Google Scholar] [CrossRef]
- Adams, W.A. The effect of organic matter on the bulk and true densities of some uncultivated podzolic soils. J. Soil Sci. 1973, 24, 10–17. [Google Scholar] [CrossRef]
- Harrison, A.F.; Bocock, K.L. Estimation of Soil Bulk-Density from Loss-on-Ignition Values. J. Appl. Ecol. 1981, 18, 919. [Google Scholar] [CrossRef]
- Warren, J.; Spiers, G. Soil Mineralogy. In Digging into Canadian Soils: An Introduction to Soil Science; Krzic, M., Walley, F.L., Diochon, A., Paré, M.C., Farrell, R.E., Eds.; Canadian Society of Soil Science: Pinawa, MB, Canada, 2021; pp. 463–517. Available online: https://openpress.usask.ca/soilscience/chapter/soil-health-and-management (accessed on 11 April 2023).
- Aldis, M.; Aherne, J. Exploratory Analysis of Geochemical Data and Inference of Soil Minerals at Sites Across Canada. Math. Geosci. 2021, 53, 1201–1221. [Google Scholar] [CrossRef]
Mineral Group | Mineral Endmember | Mineral Stoichiometry |
---|---|---|
Quartz | Quartz | SiO2 |
Plagioclase | Albite | NaAlSi3O8 |
Plagioclase | Anorthite | CaAl2Si2O8 |
K-feldspar | K-feldspar | KAlSi3O8 |
Chlorite | Chamosite | (Fe5Al)(AlSi3)O10(OH)8 |
Chlorite | Clinochlore | (Mg5Al)(AlSi3)O10(OH)8 |
Chlorite | Pennantite | (Mn5Al)(AlSi3)O10(OH)8 |
Muscovite | Muscovite | KAl2(AlSi3O10)(F,OH)2 |
Muscovite | Illite | (K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)] |
Hornblende * | Hornblende | Ca2(Mg,Fe,Al)5 (Al, Si)8O22(OH)2 |
Kaolinite * | Kaolinite | Al2Si2O5(OH)4 |
Calcite * | Calcite | CaCO3 |
Biotite * | Biotite | K(Mg,Fe)3AlSi3O10(F,OH)2 |
Province | n | SiO2 | Al2O3 | Fe2O3 | MnO | CaO | MgO | Na2O | K2O | LOI |
---|---|---|---|---|---|---|---|---|---|---|
AB | 173 | 83.06 | 6.46 | 2.41 | 0.04 | 1.01 | 0.69 | 0.66 | 1.25 | 3.96 |
BC | 90 | 56.10 | 13.17 | 5.50 | 0.08 | 2.31 | 1.59 | 2.31 | 1.56 | 16.52 |
MB | 49 | 64.85 | 9.96 | 3.20 | 0.06 | 7.61 | 4.43 | 1.55 | 1.92 | 5.97 |
NB | 115 | 66.78 | 11.95 | 5.19 | 0.07 | 0.43 | 1.30 | 1.26 | 1.85 | 10.40 |
NL | 72 | 60.31 | 10.97 | 5.46 | 0.10 | 1.32 | 1.55 | 1.95 | 1.84 | 15.60 |
NS | 74 | 71.03 | 12.36 | 4.68 | 0.12 | 0.38 | 0.92 | 1.31 | 2.26 | 6.17 |
NT | 22 | 68.84 | 8.13 | 3.05 | 0.04 | 5.48 | 2.18 | 1.16 | 1.79 | 8.84 |
ON | 249 | 63.66 | 12.09 | 5.00 | 0.09 | 3.80 | 1.65 | 2.18 | 2.30 | 8.43 |
PE | 9 | 76.64 | 9.65 | 3.41 | 0.09 | 0.12 | 0.90 | 0.88 | 2.78 | 4.83 |
QC | 60 | 67.19 | 12.68 | 5.68 | 0.09 | 1.86 | 1.71 | 2.10 | 2.64 | 5.06 |
SK | 257 | 85.49 | 5.55 | 1.69 | 0.03 | 1.38 | 0.79 | 0.96 | 1.17 | 2.64 |
Mean | – | 71.7 | 9.69 | 3.86 | 0.07 | 2.10 | 1.35 | 1.48 | 1.76 | 0.12 |
Median | – | 70.1 | 10.79 | 3.90 | 0.06 | 1.02 | 1.04 | 1.30 | 1.82 | 0.11 |
p05 | – | 52.1 | 1.11 | 0.49 | 0.01 | 0.04 | 0.20 | 0.10 | 0.22 | 0.03 |
p95 | – | 96.9 | 15.17 | 7.31 | 0.13 | 8.70 | 3.37 | 3.17 | 3.10 | 0.27 |
RSD | – | 19.7 | 44.7 | 57.6 | 91.7 | 144 | 108 | 65.0 | 47.3 | 101 |
Skewness | 0.14 | −0.68 | 0.34 | 5.08 | 3.09 | 4.71 | 0.54 | −0.02 | 3.08 |
Mineral | Quartz | Plagioclase | K-Feldspar | Chlorite | Muscovite | |||||
---|---|---|---|---|---|---|---|---|---|---|
Source | A2M | XRD | A2M | XRD | A2M | XRD | A2M | XRD | A2M | XRD |
Mean | 50.19 | 57.18 | 15.48 | 15.12 | 5.00 | 3.80 | 12.68 | 8.12 | 16.39 | 14.05 |
Median | 49.52 | 57.00 | 14.50 | 14.44 | 3.64 | 2.52 | 12.19 | 7.00 | 16.42 | 14.33 |
p05 | 36.27 | 39.91 | 5.54 | 4.53 | 0.53 | 0.00 | 6.03 | 2.19 | 5.25 | 5.12 |
p95 | 64.92 | 78.71 | 29.88 | 29.96 | 13.79 | 12.21 | 20.88 | 16.15 | 27.17 | 22.39 |
RSD | 18 | 21 | 48 | 47 | 84 | 103 | 39 | 63 | 41 | 41 |
R2 | 0.80 | 0.83 | 0.41 | 0.63 | 0.44 | |||||
RPD | 14 | 15 | 84 | 56 | 33 | |||||
p-value | <0.05 | 0.28 | <0.05 | <0.05 | <0.05 |
Province | Quartz | Plagioclase | K-feldspar | Chlorite | Muscovite | Hornblende | Calcite | Kaolinite |
---|---|---|---|---|---|---|---|---|
AB | 72.76 | 9.35 | 3.65 | 6.05 | 7.15 | 5.05 | 5.05 | 4.71 |
BC | 30.54 | 31.74 | 5.73 | 13.42 | 9.00 | 9.38 | 1.50 | 13.24 |
MB | 44.62 | 17.36 | 5.76 | 8.84 | 10.31 | 13.18 | 12.34 | 2.85 |
NB | 49.21 | 14.15 | 2.73 | 14.03 | 17.10 | 1.66 | 0.08 | 9.63 |
NL | 40.08 | 24.82 | 7.61 | 14.50 | 9.19 | 14.87 | 3.72 | 9.89 |
NS | 50.80 | 13.80 | 3.94 | 11.55 | 18.17 | 1.07 | 0.06 | 10.51 |
NT | 50.11 | 15.76 | 7.38 | 5.74 | 7.05 | 11.54 | 7.32 | -- |
ON | 36.54 | 27.34 | 9.58 | 10.28 | 8.78 | 13.85 | 7.91 | 1.65 |
PE | 59.82 | 8.56 | 9.04 | 8.92 | 13.67 | -- | -- | -- |
QC | 37.71 | 24.88 | 10.94 | 11.53 | 9.17 | 15.07 | -- | -- |
SK | 73.05 | 11.80 | 5.04 | 3.64 | 3.51 | 7.89 | 4.48 | 0.78 |
n | 1170 | 1170 | 1170 | 1170 | 1170 | 347 | 242 | 91 |
Mean | 52.65 | 18.39 | 6.12 | 9.06 | 8.92 | 9.88 | 6.07 | 8.58 |
Median | 48.72 | 15.91 | 5.05 | 8.33 | 8.11 | 9.93 | 4.39 | 9.82 |
p05 | 23.55 | 1.05 | 0.31 | 1.30 | 0.61 | 0.36 | 0.03 | 0.53 |
p95 | 95.84 | 39.53 | 14.96 | 19.06 | 21.93 | 20.91 | 17.68 | 15.60 |
RSD | 42 | 65 | 78 | 67 | 79 | 70 | 120 | 59 |
Skewness | 0.55 | 0.46 | 0.93 | 0.93 | 0.84 | 0.89 | 2.66 | −0.39 |
Mineral | Quartz | Plagioclase | K-feldspar | Chlorite | Muscovite | |||||
---|---|---|---|---|---|---|---|---|---|---|
Source | A2M | XRD | A2M | XRD | A2M | XRD | A2M | XRD | A2M | XRD |
Mean | 71.51 | 68.46 | 14.60 | 14.18 | 6.45 | 4.77 | 0.65 | 4.40 | 2.32 | 4.78 |
Median | 81.67 | 80.07 | 8.98 | 7.80 | 4.91 | 3.14 | 0.00 | 3.27 | 1.32 | 3.19 |
p05 | 34.33 | 26.54 | 0.73 | 0.07 | 0.20 | 0.04 | 0.00 | 1.17 | 0.00 | 0.66 |
p95 | 98.37 | 97.66 | 35.90 | 38.39 | 17.30 | 13.69 | 3.02 | 11.94 | 8.99 | 15.25 |
RSD | 34 | 39 | 90 | 96 | 86 | 98 | 155 | 79 | 125 | 96 |
R2 | 0.98 | 0.96 | 0.71 | 0.27 | 0.23 | |||||
RPD | 8 | 39 | 70 | 157 | 120 | |||||
p-value | <0.05 | 0.19 | <0.05 | <0.05 | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldis, M.; Posch, M.; Aherne, J. Normative Mineralogy of 1170 Soil Profiles across Canada. Minerals 2023, 13, 544. https://doi.org/10.3390/min13040544
Aldis M, Posch M, Aherne J. Normative Mineralogy of 1170 Soil Profiles across Canada. Minerals. 2023; 13(4):544. https://doi.org/10.3390/min13040544
Chicago/Turabian StyleAldis, Margot, Maximilian Posch, and Julian Aherne. 2023. "Normative Mineralogy of 1170 Soil Profiles across Canada" Minerals 13, no. 4: 544. https://doi.org/10.3390/min13040544
APA StyleAldis, M., Posch, M., & Aherne, J. (2023). Normative Mineralogy of 1170 Soil Profiles across Canada. Minerals, 13(4), 544. https://doi.org/10.3390/min13040544