Ore Mineralogy and Typomorphism of Native Gold of the Spokoininsky Cluster of the Aldan–Stanovoy Gold Province
Abstract
:1. Introduction
2. Materials and Methods
3. Geology of the Spokoininsky Cluster
4. Results
4.1. Mineralogy of Ores
4.2. Typomorphic Features of Gold
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sokolov, E.P.; Babkina, T.G.; Makogonov, I.V.; Linnik, I.A.; Khalgaev, E.U.; Shmatkova, L.E.; Anisimova, G.S.; Kondrat’eva, L.A.; Kardashevskaia, V.N. A new type of gold mineralization in the basement of the Aldan-Stanovoi gold-bearing province. Ores Met. 2022, 2, 122–140. [Google Scholar] [CrossRef]
- Burakov, L.F.; Verevkin, N.I.; Vinichuk, L.Y.; Gomzikov, B.A.; Plotnikov, O.I.; Dik, I.P.; Kalinin, Y.A.; Kolosov, N.P.; Komogortsev, G.P.; Korol’kov, A.P. Report on Geological Survey Field Works on a Scale of 1:50.000 in the Tyrkandinsky Ore District for 1971–1973; 1974; Unpublished work. [Google Scholar]
- Folomkina, V.A. Report on the Results of the Detailed Exploration of the a Placer Gold Deposit in the Upper Reaches of the River Bolshaya Tyrkanda for 1991–1996 with Inventory Count; 1996; Unpublished work. [Google Scholar]
- Vetluzhskikh, V.G.; Kim, A.A. Geological and commercial types of gold deposits in Southern Yakutia. Otechestvennaya Geol. 1997, 1, 16–24. [Google Scholar]
- Ugriumov, A.N.; Dvornik, G.P. Altered Formations and Gold Mineralization in the Ore Region of the Mesozoic Tectonic-Magmatic Activation (Aldan Shield). Izvestiya of the Ural State Mining and Geological Academy. Geol. Geophys. Ser. 2000, 10, 119–128. [Google Scholar]
- Vetluzhskikh, V.G.; Kazansky, V.I.; Kochetkov, A.Y.; Yanovskiy, V.M. Central Aldan gold deposits. Geol. Ore Depos. 2002, 44, 467–499. [Google Scholar]
- Kazansky, V.I. The unique Central Aldan gold-uranium ore district (Russia). Geol. Ore Depos. 2004, 46, 195–211. [Google Scholar]
- Kochetkov, A.Y. Mesozoic gold-bearing ore-magmatic systems of the Central Aldan. Russ. Geol. Geophys. 2006, 47, 850–864. [Google Scholar]
- Boitsov, V.E.; Pilipenko, G.N.; Dorozhkina, L.A. Gold and gold-uranium deposits of Central Aldan. In Proceedings of the Large and Superlarge Deposits of Ore Minerals; Strategic Types of Ore Raw Materials; IGEM RAS: Moscow, Russia, 2006; Volume 2, pp. 215–240. [Google Scholar]
- Maksimov, E.P.; Uyutov, V.I.; Nikitin, V.M. The Central Aldan gold-uranium ore magmatogenic system, Aldan-Stanovoy shield, Russia. Russ. J. Pac. Geol. 2010, 4, 95–115. [Google Scholar]
- Dvornik, G.P. Gold-ore metasomatic formations of the Central Aldan region. Lithosphere 2012, 2, 90–105. [Google Scholar]
- Kravchenko, A.A.; Smelov, A.P.; Berezkin, V.I.; Popov, N.V. Geology and Genesis of Precambrian Gold-Bearing Metabasites of the Central Part of the Aldano-Stanovoy Shield (on the Example of the P. Pinigin Deposit); Ofset: Yakutsk, Russia, 2010; 147p. [Google Scholar]
- Anisimova, G.S.; Sokolov, E.P. Altan-Chaidakh—Promising object of the Southern Yakutia. Otechestvennaya Geol. 2015, 5, 3–10. [Google Scholar]
- Anisimova, G.S.; Sokolov, E.P. The Bodorono deposit—New gold ore object of the Southern Yakutia. Ores Met. 2014, 5, 49–57. [Google Scholar]
- Anisimova, G.S.; Sokolov, E.P.; Kardashevskaya, V.N. Gold-rare-metal (Au-Mo-Te-Bi) mineralization of the Upper-Algominsky gold-bearing region (Southern Yakutia). Otechestvennaya Geol. 2017, 5, 12–22. [Google Scholar]
- Kardashevskaya, V.N. Gold Mineralization of the Algominsky Ore Node of the South Aldan Metallogenic Zone: Mineralogy and Conditions of Ore Formation//ABSTRACT of Thesis for the Degree of PhD in Geological Sciences; Ofset: Novosibirsk, Russia, 2022; 25p. [Google Scholar]
- Mountain, E.D. Two new bismuth minerals from South Africa. Mineral. Mag. 1935, 24, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Kondratieva, L.; Anisimova, G. Minerals of Hg, Tl and As of Khokhoy Deposit (Aldan Shield). In Proceedings of the Geology and Mineral Resources of the North-East of Russia: Materials of the XII All-Russian Scientific and Practical Conference Dedicated to the 65th Anniversary of the Institute of Geology of Diamond and Precious Metals, Siberian Branch of the Russian Academy of Sciences, Yakutsk, Russia, 23–25 March 2022; pp. 184–188. [Google Scholar]
- Testa, F.J.; Cooke, D.R.; Zhang, L.; Mas, G.R. Bismoclite (BiOCl) in the San Francisco de los Andes Bi-Cu-Au Deposit, Argentina. First Occurrence of a Bismuth Oxychloride in a Magmatic-Hydrothermal Breccia Pipe and Its Usefulness as an Indicator Phase in Mineral Exploration. Minerals 2016, 6, 62. [Google Scholar] [CrossRef] [Green Version]
- Kondratieva, L.A.; Anisimova, G.S.; Kardashevskaia, V.N. Types of Tellurium Mineralization of Gold Deposits of the Aldan Shield (Southern Yakutia, Russia). Minerals 2021, 11, 698. [Google Scholar] [CrossRef]
- Criddle, A.J.; Chisholm, J.E.; Stanley, C.J. Cervelleite, Ag4TeS, a new mineral from the Bambolla mine, Mexico, and a description of a photo-chemical reaction involving cervelleite, acanthite and hessite. Eur. J. Miner. 1989, 1, 371–380. [Google Scholar] [CrossRef] [Green Version]
- Helmy, H.M. The Um Samiuki volcanogenic Zn-Cu-Pb-Ag deposit, Eastern Desert, Egypt: A possible new occurrence of cervelleite. Can. Miner. 1999, 37, 143–158. [Google Scholar]
- Novoselov, K.A.; Belogub, E.V.; Zykov, V.V.; Yakovleva, V.A. Silver sulfotellurides from volcanic-hosted massive sulphide deposits in the Southern Urals. Mineral. Petrol. 2006, 87, 327–349. [Google Scholar] [CrossRef]
- Paar, W.; De Brodtkorb, M.K. Presencia de Cervelleíta y Hessita en la Galena del Yacimiento San Martín, Valcheta, Provincia. de Río Negro. 3° Reunión de Mineralogía y Metalogenia, Instituto de Recursos Minerales; Universidad Nacional de La Plata, Argentina Publicación 5: Buenos Aires, Argentina, 1996; Volume 5, pp. 173–175. [Google Scholar]
- Gu, X.P.; Watanabe, M.; Hoshino, K.; Shibata, Y. New find of silver tellurosulphides from the Funan gold deposit, East Shandong, China. Eur. J. Miner. 2003, 15, 147–155. [Google Scholar] [CrossRef]
- Spry, P.G.; Thieben, S.E. Two new occurrences of benleonardite, a rare silver tellurium sulphosalt, and a possible new occurrence of cervelleite. Miner. Mag. 1996, 60, 871–876. [Google Scholar] [CrossRef]
- Dobrev, S.; Strashimirov, S.; Vassileva, M.; Dragiev, H. Silver and Silver-Bearing Phases from Chala and Pcheloiad Deposits (Eastern Rhodopes) and Eniovche Deposit (Central Rhodopes); Annual of the University of Mining and Geology ‘St. Ivan Rilski’: Sofia, Bulgaria, 2002; Volume 45, pp. 39–44. [Google Scholar]
- Cook, N.J.; Ciobanu, C.L. Cervelleite, Ag4TeS, from three, localities in Romania, substitution of Cu, and the occurrence of the associated phase, Ag2Cu2TeS. N. Jb. Miner. Mh. 2003, 7, 321–336. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Cook, N.J.; Tămaş, C.; Leary, S.; Manske, S.; O’Connor, G.; Minuţ, A. Tellurides-Gold-Base Metal Associations at Roşia Montană: The Role of Hessite as Gold Carrier. In Au-Ag-Telluride Deposits of the Golden Quadrilateral, South Apuseni Mountains, Romania; Cook, N., Ciobanu, C.L., Eds.; IAGOD Guidebook Series; Natural History Museum of Landon: London, UK, 2004; Volume 12, pp. 187–202. [Google Scholar]
- Voudouris, P.; Spry, P.G.; Sakellaris, G.A.; Mavrogonatos, C. A cervelleite-like mineral and other Ag-Cu-Te-S minerals [Ag2CuTeS and (Ag, Cu)2TeS] in gold-bearing veins in metamorphic rocks of the Cycladic Blueschist Unit, Kallianou, Evia Island, Greece. Miner. Petrol. 2011, 101, 169–183. [Google Scholar] [CrossRef]
- Nekrasov, I.Y. Geochemistry, Mineralogy and Genesis of Gold Lodes; Nauka: Moscow, Russia, 1991; 302p. (In Russian) [Google Scholar]
- Warmada, I.W.; Lehmann, B.; Simandjuntak, M. Polymetallic sulfides and sulfosalts of the Pongkorepithermal gold-silver deposit, West Java, Indonesia. Can. Miner. 2003, 41, 185–200. [Google Scholar] [CrossRef] [Green Version]
- Pal’yanova, G.A.; Savva, N.E. Specific genesis of gold and silver sulfides at the Yunoe Deposit (Magadan Region, Russia). Russ. Geol. Geophys. 2009, 50, 587–602. [Google Scholar] [CrossRef]
- Pal’yanova, G.A.; Kokh, K.A.; Seryotkin, Y.V. Formation of gold and silver sulfides in the System Au-Ag-S. Russ. Geol. Geophys. 2011, 52, 443–449. [Google Scholar] [CrossRef]
- Barton, M.D.; Kieft, C.; Burke, E.A.J.; Oen, I.S. Uytenbogaardtite, a new silver-gold sulfide. Can. Miner. 1978, 16, 651–657. [Google Scholar]
- Castor, S.B.; Sjoberg, J.J. Uytenbogaardtite, Ag3AuS2, in the Bullford mining district, Nevada. Can. Miner. 1993, 31, 89–98. [Google Scholar]
- Greffié, C.; Bailly, L.; Milési, J.-P. Supergene alteration of primary ore assemblages from low-sulfidation Au-Ag epithermal deposits at Pongkor, Indonesia, and Nazareño, Perú. Econ. Geol. 2002, 97, 561–571. [Google Scholar] [CrossRef]
- Savva, N.E.; Pal’yanova, G.A. Genesis of gold and silver sulfides at Ulakhan deposit (northeastern Russia). Russ. Geol. Geophys. 2007, 48, 799–810. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Cook, N.J.; Pring, A. Bismuth Tellurides as Gold Scavengers. In Mineral Deposit Research: Meeting the Global Challenge; Mao, J.W., Bierlein, F.P., Eds.; Springer: Berlin, Germany, 2005; pp. 1383–1386. [Google Scholar]
- Tooth, B.; Brugger, J.; Ciobanu, C.L.; Liu, W. Modelling of gold-scavenging by bismuth melts coexisting with hydrothermal fluids. Geology 2008, 36, 815–818. [Google Scholar] [CrossRef]
- Douglas, N.; Mavrogenes, J.; Hack, A.; England, R. The Liquid Bismuth Collector Model: An Alternative Gold Deposition Mechanism. In Proceedings of the 15th Australian Geological Congress Abstracts, Sydney, NSW, Australia, 3–7 July 2000; Volume 59, p. 135. [Google Scholar]
- Feng, H.; Shen, P.; Zhu, R.; Tomkins, A.G.; Brugger, J.; Ma, G.; Li, C.; Wu, Y. Bi/Te control on gold mineralizing processes in the North China Craton: Insights from the Wulong gold deposit. Miner. Depos. 2023, 58, 263–286. [Google Scholar] [CrossRef]
- Zhao, J.; Pring, A. Mineral Transformations in Gold—(Silver) Tellurides in the Presence of Fluids: Nature and Experiment. Minerals 2019, 9, 167. [Google Scholar] [CrossRef] [Green Version]
- Zhai, D.; Liu, J. Gold-telluride-sulfide association in the Sandaowanzi epithermal Au-Ag-Te deposit, NE China: Implications for phase equilibrium and physicochemical conditions. Miner. Petrol. 2014, 108, 853–871. [Google Scholar] [CrossRef]
- Zhao, J.; Brugger, J.; Xia, F.; Ngothai, Y.; Chen, G.; Pring, A. Dissolution-reprecipitation vs. solid-state diffusion: Mechanism of mineral transformations in sylvanite, (AuAg)2Te4, under hydrothermal conditions. Am. Miner. 2013, 98, 19–32. [Google Scholar] [CrossRef]
- Zhao, J.; Brugger, J.; Grundler, P.V.; Xia, F.; Chen, G.; Pring, A. Mechanism and kinetics of a mineral transformation under hydrothermal conditions: Calaverite to metallic gold. Am. Miner. 2009, 94, 1541–1555. [Google Scholar] [CrossRef]
- Xu, W.; Zhao, J.; Brugger, J.; Chen, G.; Pring, A. Mechanism of mineral transformations in krennerite, Au3AgTe8, under hydrothermal conditions. Am. Miner. 2013, 98, 2086–2095. [Google Scholar] [CrossRef]
Type of Ore | Minerals |
---|---|
Polysulfide | Pyrite, chalcopyrite, galena, arsenopyrite, sphalerite, native tin, scheelite, and wolframite |
Gold–bismuth | Native bismuth, bismuthite, tellurobismuthite, bursaite, matildite, cuprobismutite, smirnite, and bismoclite |
Gold–silver–telluride | Krennerite, sylvanite, petzite, hessite, cervelleite, polybasite, native silver, acanthite, and uytenbogaardtite |
Mineral | Bi | Te | Ag | Cu | Cl | Pb | S | Si | Fe | O | Total | apfu |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Native Bi | 100.33 | 100.33 | Bi1.00 | |||||||||
Tellurobismuthite | 51.43 | 47.89 | 99.32 | Bi1.96Te3.00 | ||||||||
Bismuthite | 81.50 | 17.51 | 99.01 | Bi2.13S3.00 | ||||||||
Bursaite | 36.63 | 3.96 | 44.92 | 14.41 | 99.92 | (Pb5.31Bi4.27Ag0.90)S11.00 | ||||||
Matildite | 56.32 | 27.09 | 15.33 | 98.75 | Ag1.05Bi1.12S2.00 | |||||||
Cuprobismutite | 60.36 | 4.95 | 12.28 | 16.34 | 93.93 | (Cu9.10Bi13.54Ag2.16)S23.00 | ||||||
Bismoclite | 71.59 | 11.87 | 2.00 | 2.13 | 11.55 | 99.13 | Bi1.02Fe0.11Si0.21Cl1.00 | |||||
Smirnite | 66.79 | 19.13 | 1.86 | 12.38 | 100.16 | Bi2.06Te0.97Fe0.22O5.00 |
Mineral | Ag | Au | Sb | Te | Cu | As | S | Fe | Total | apfu |
---|---|---|---|---|---|---|---|---|---|---|
Native Ag | 99.98 | 99.98 | Au1.00 | |||||||
Krennerite | 3.71 | 42.60 | 52.17 | 2.41 | 100.89 | Au4.23Ag0.67Fe0.84Te8.00 | ||||
Sylvanite | 7.08 | 28.34 | 63.08 | 98.50 | Au1.16Ag0.53Te4.00 | |||||
Petzite | 43.17 | 21.71 | 35.60 | 100.48 | Ag2.87Au0.79Te2.00 | |||||
Hessite | 62.33 | 38.40 | 100.73 | Ag1.92Te1.00 | ||||||
Cervelleite | 68.23 | 25.12 | 5.07 | 98.42 | Ag4.00Te1.25S1.00 | |||||
Cu-rich cervelleite | 66.14 | 24.14 | 5.92 | 5.38 | 101.58 | (Ag3.65Cu0.56)Te1.13S1.00 | ||||
Polybasite | 64.57 | 6.81 | 8.36 | 2.26 | 16.28 | 2.26 | 100.53 | [Fe0.88(Ag3.97.Cu1.85)5.82 (As0.65Sb1.21)1.86S7][Ag9CuS4] | ||
Uytenbogaardtite | 56.45 | 28.53 | 11.79 | 4.33 | 101.10 | Ag2.85Au0.79Fe0.43S2.00 | ||||
Acanthite | 88.16 | 8.12 | 2.91 | 99.19 | Ag3.23Fe0.21S1.00 |
No. of Analyses | S | Fe | Ag | Au | Total | apfu |
---|---|---|---|---|---|---|
22-5 | 11.36 | 6.50 | 31.66 | 48.14 | 97.66 | Ag1.66Au1.38Fe0.66S2.00 |
16-5 | 11.87 | 4.77 | 52.14 | 32.22 | 101.00 | Ag2.61Au0.88Fe0.46S2.00 |
29-1 | 11.79 | 4.33 | 56.45 | 28.53 | 101.10 | Ag2.85Au0.79Fe0.42S2.00 |
44-3 | 12.50 | 3.21 | 56.15 | 28.08 | 99.94 | Ag2.67Au0.73Fe0.29S2.00 |
37-2 | 10.22 | 3.87 | 61.92 | 24.94 | 100.94 | Ag3.60Au0.79Fe0.43S2.00 |
37-1 | 10.46 | 4.09 | 63.71 | 23.60 | 101.85 | Ag3.62Au0.73Fe0.45S2.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kondratieva, L.A.; Anisimova, G.S.; Kardashevskaia, V.N. Ore Mineralogy and Typomorphism of Native Gold of the Spokoininsky Cluster of the Aldan–Stanovoy Gold Province. Minerals 2023, 13, 543. https://doi.org/10.3390/min13040543
Kondratieva LA, Anisimova GS, Kardashevskaia VN. Ore Mineralogy and Typomorphism of Native Gold of the Spokoininsky Cluster of the Aldan–Stanovoy Gold Province. Minerals. 2023; 13(4):543. https://doi.org/10.3390/min13040543
Chicago/Turabian StyleKondratieva, Larisa A., Galina S. Anisimova, and Veronika N. Kardashevskaia. 2023. "Ore Mineralogy and Typomorphism of Native Gold of the Spokoininsky Cluster of the Aldan–Stanovoy Gold Province" Minerals 13, no. 4: 543. https://doi.org/10.3390/min13040543
APA StyleKondratieva, L. A., Anisimova, G. S., & Kardashevskaia, V. N. (2023). Ore Mineralogy and Typomorphism of Native Gold of the Spokoininsky Cluster of the Aldan–Stanovoy Gold Province. Minerals, 13(4), 543. https://doi.org/10.3390/min13040543