Coherence of Bangui Magnetic Anomaly with Topographic and Gravity Contrasts across Central African Republic
Abstract
:1. Introduction
1.1. Background
1.2. Hypothesis and Research Questions
- (Q1): Is the Bangui magnetic anomaly positively associated with geophysical and topographic settings in the CAR, gravity values and free-air anomaly?
- (Q2): Is the Bangui magnetic anomaly associated with the distribution of the geologic setting in the region?
1.3. Study Area
2. Regional Geology
3. Materials and Methods
3.1. Histogram Equalisation
3.2. Geoid
3.3. IGPP Earth Free-Air Anomaly
3.4. Coherency of Geophysical Grids
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
- The following abbreviations are used in this manuscript:
CAR | Central African Republic |
CGMW | Commission for the Geological Map of the World |
EGM2008 | Earth Gravitational Model 2008 |
EMAG2 | Earth Magnetic Anomaly Grid |
ETOPO1 | Earth Topography Model with 1-arc-minute resolution |
FFT | Fast Fourier Transform |
GEBCO | General Bathymetric Chart of the Oceans |
GMT | Generic Mapping Tools |
IAGA | International Association of Geomagnetism and Aeronomy |
IGPP | Institute of Geophysics and Planetary Physics |
SRTM | Shuttle Radar Topography Mission |
USGS | United States Geological Survey |
WDMAM | World Digital Magnetic Anomaly Map |
Appendix A. GMT Scripts
Appendix A.1
Listing A1. GMT script for computing the histogram equalisation of CAR’s topographic grids. |
Appendix A.2
Listing A2. GMT script for mapping the Earth geoid model on CAR. |
Appendix A.3
Listing A3. GMT script for mapping the IGPP Earth Free-Air Anomaly on CAR. |
Appendix A.4
Listing A4. GMT script for estimating the coherency between geophysical grids on CAR. |
References
- Ndam Njikam, M.M.; Meying, A.; Zanga Amougou, A.; Ngon Ngon, G.F. Mapping transpressional and transtensional relay zones by coupling geological and geophysical field data: The case of the central Cameroon shear zone in the Mbere administrative division of the Adamawa region in Cameroon. J. Afr. Earth Sci. 2023, 199, 104816. [Google Scholar] [CrossRef]
- Amponsah, T.Y.; Danuor, S.K.; Wemegah, D.D.; Forson, E.D. Groundwater potential characterisation over the Voltaian basin using geophysical, geological, hydrological and topographical datasets. J. Afr. Earth Sci. 2022, 192, 104558. [Google Scholar] [CrossRef]
- Lemenkova, P.; Debeir, O. Recognizing the Wadi Fluvial Structure and Stream Network in the Qena Bend of the Nile River, Egypt, on Landsat 8–9 OLI Images. Information 2023, 14, 249. [Google Scholar] [CrossRef]
- Lemenkova, P.; Debeir, O. Computing Vegetation Indices from the Satellite Images Using GRASS GIS Scripts for Monitoring Mangrove Forests in the Coastal Landscapes of Niger Delta, Nigeria. J. Mar. Sci. Eng. 2023, 11, 871. [Google Scholar] [CrossRef]
- Matende, K.N.; Ranganai, R.T.; Mickus, K.L.; Lelièvre, P.G.; Mapeo, R.B.; Ramotoroko, C.D. Geophysical and geological investigation of the spatial and subsurface extent of the Segwagwa and Masoke igneous ring complexes in southeast Botswana: Geotectonic implications. J. Afr. Earth Sci. 2023, 197, 104766. [Google Scholar] [CrossRef]
- Steuer, A.; Smirnova, M.; Becken, M.; Schiffler, M.; Günther, T.; Rochlitz, R.; Yogeshwar, P.; Mörbe, W.; Siemon, B.; Costabel, S.; et al. Comparison of novel semi-airborne electromagnetic data with multi-scale geophysical, petrophysical and geological data from Schleiz, Germany. J. Appl. Geophys. 2020, 182, 104172. [Google Scholar] [CrossRef]
- Calamita, G.; Gallipoli, M.; Gueguen, E.; Sinisi, R.; Summa, V.; Vignola, L.; Stabile, T.; Bellanova, J.; Piscitelli, S.; Perrone, A. Integrated geophysical and geological surveys reveal new details of the large Montescaglioso (southern Italy) landslide of December 2013. Eng. Geol. 2023, 313, 106984. [Google Scholar] [CrossRef]
- Di Maio, R.; De Paola, C.; Forte, G.; Piegari, E.; Pirone, M.; Santo, A.; Urciuoli, G. An integrated geological, geotechnical and geophysical approach to identify predisposing factors for flowslide occurrence. Eng. Geol. 2020, 267, 105473. [Google Scholar] [CrossRef]
- Lar, U.A.; Bata, T.; Dibal, H.; Yusuf, S.N.; Lekmang, I.; Goyit, M.; Yenne, E. Potential petroleum prospects in the middle Benue trough, central Nigeria: Inferences from integrated applications of geological, geophysical and geochemical studies. Sci. Afr. 2023, 19, e01436. [Google Scholar] [CrossRef]
- Ngene, T.; Mukhopadhyay, M.; Ampana, S. Reconnaissance investigation of geothermal resources in parts of the Middle Benue Trough, Nigeria using remote sensing and geophysical methods. Energy Geosci. 2022, 3, 360–371. [Google Scholar] [CrossRef]
- Cheng, H.; Huang, Y.; Zhang, W.; Xu, Q. Physical process-based runout modeling and hazard assessment of catastrophic debris flow using SPH incorporated with ArcGIS: A case study of the Hongchun gully. CATENA 2022, 212, 106052. [Google Scholar] [CrossRef]
- Konwea, C.I.; Evurani, D.E.; Ajayi, O. Assessment of groundwater potential of the Obafemi Awolowo University Estate, Southwestern Nigeria. Sci. Afr. 2023, 20, e01597. [Google Scholar] [CrossRef]
- Al-Khersan, E.H.; Ali, S.M.; Al-Yasi, A.I. Environmental geophysical study for ideal locations of landfill within Iraqi Southern Desert. J. Appl. Geophys. 2022, 204, 104678. [Google Scholar] [CrossRef]
- Saha, A.; Nath, A.; Dey, A.K. Multivariate geophysical index-based prediction of the compression index of fine-grained soil through nonlinear regression. J. Appl. Geophys. 2022, 204, 104706. [Google Scholar] [CrossRef]
- Apeh, O.I.; Tenzer, R. Development of tailored gravity model based on global gravitational and topographic models and terrestrial gravity data for geophysical exploration of southern benue trough in southeast Nigeria. J. Appl. Geophys. 2022, 198, 104561. [Google Scholar] [CrossRef]
- Shebl, A.; Abdelaziz, M.I.; Ghazala, H.; Araffa, S.A.S.; Abdellatif, M.; Csámer, Á. Multi-criteria ground water potentiality mapping utilizing remote sensing and geophysical data: A case study within Sinai Peninsula, Egypt. Egypt. J. Remote Sens. Space Sci. 2022, 25, 765–778. [Google Scholar] [CrossRef]
- Jones, A.G.; Afonso, J.C.; Fullea, J. Geochemical and geophysical constrains on the dynamic topography of the Southern African Plateau. Geochem. Geophys. Geosyst. 2017, 18, 3556–3575. [Google Scholar] [CrossRef]
- Gorman, G.; Piggott, M.; Wells, M.; Pain, C.; Allison, P. A systematic approach to unstructured mesh generation for ocean modelling using GMT and Terreno. Comput. Geosci. 2008, 34, 1721–1731. [Google Scholar] [CrossRef]
- Sobh, M.; Ebbing, J.; Mansi, A.H.; Götze, H.J.; Emry, E.L.; Abdelsalam, M.G. The Lithospheric Structure of the Saharan Metacraton From 3-D Integrated Geophysical-Petrological Modeling. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018747. [Google Scholar] [CrossRef]
- Lemenkova, P.; Debeir, O. Quantitative Morphometric 3D Terrain Analysis of Japan Using Scripts of GMT and R. Land 2023, 12, 261. [Google Scholar] [CrossRef]
- Girdler, R.; Taylor, P.; Frawley, J. A possible impact origin for the Bangui magnetic anomaly (Central Africa). Tectonophysics 1992, 212, 45–58. [Google Scholar] [CrossRef]
- Baticle, Y. Impact du développement de Bangui (R.C.A.) sur le paysage périurbain (Suburban landscape of Bangui (R.C.A.): The impact of urban growth). Bull. l’Assoc. Géogr. Fr. 1994, 71, 152–155. [Google Scholar] [CrossRef]
- Villien, F.; Pirovano, J.P.; Soumille, P.; Vidal, P. Bangui, capitale d’un pays enclavé d’Afrique centrale. Étude historique et géographique. Pays Enclavés 1990, 4, 1–202. [Google Scholar]
- Vennetier, P. La navigation intérieure en Afrique noire: Le réseau français Congo-Oubangui. Cah. d’Outre-Mer 1959, 12, 321–348. [Google Scholar] [CrossRef]
- Regan, R.D.; Marsh, B.D. The Bangui Magnetic Anomaly: Its geological origin. J. Geophys. Res. Solid Earth 1982, 87, 1107–1120. [Google Scholar] [CrossRef]
- Ouabego, M.; Quesnel, Y.; Rochette, P.; Demory, F.; Fozing, E.; Njanko, T.; Hippolyte, J.C.; Affaton, P. Rock magnetic investigation of possible sources of the Bangui magnetic anomaly. Phys. Earth Planet. Inter. 2013, 224, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Njiteu Tchoukeu, C.D.; Basseka, C.A.; Djomani, Y.P.; Rousse, S.; Etame, J.; Llubes, M.; Seoane, L.; Som Mbang, C.; Eyike Yomba, A. Crustal thickness, depth to the bottom of magnetic sources and thermal structure of the crust from Cameroon to Central African Republic: Preliminary results for a better understanding of the origin of the Bangui Magnetic Anomaly. J. Afr. Earth Sci. 2021, 179, 104206. [Google Scholar] [CrossRef]
- Kochemasov, G.G.; Chuprov, A.I. The Bangui Magnetic Anomaly in Central Africa in the Light of New Geological Evidence. Int. Geol. Rev. 1990, 32, 151–161. [Google Scholar] [CrossRef]
- Njiteu Tchoukeu, C.D.; Sobh, M.; Basseka, C.A.; Mouzong, M.; Djomani, Y.P.; Etame, J. The mechanical behaviour of the lithosphere beneath the Chad Basin and the Bangui Magnetic Anomaly. Insights from Moho depth and effective elastic thickness estimates. J. Afr. Earth Sci. 2021, 182, 104299. [Google Scholar] [CrossRef]
- Felix Toteu, S. IGCP 470: The Neoproterozoic Pan-African Belt of Central-Africa: Sedimentation, Deformation History Magmatism, Metamorphism and Geotectonic Evolution. Gondwana Res. 2002, 5, 906–907. [Google Scholar] [CrossRef]
- Ravat, D.; Hinze, W.; von Frese, R. Analysis of MAGSAT magnetic contrasts across Africa and South America. Tectonophysics 1992, 212, 59–76. [Google Scholar] [CrossRef]
- Arkani-Hamed, J.; Strangway, D. An interpretation of magnetic signatures of aulacogens and cratons in Africa and South America. Tectonophysics 1985, 113, 257–269. [Google Scholar] [CrossRef]
- Wilson, M.; Guiraud, R. Magmatism and rifting in Western and Central Africa, from Late Jurassic to Recent times. Tectonophysics 1992, 213, 203–225. [Google Scholar] [CrossRef]
- Toteu, S.F.; de Wit, M.; Penaye, J.; Drost, K.; Tait, J.A.; Bouyo, M.H.; Van Schmus, W.R.; Jelsma, H.; Moloto-A-Kenguemba, G.R.; da Silva Filho, A.F.; et al. Geochronology and correlations in the Central African Fold Belt along the northern edge of the Congo Craton: New insights from U-Pb dating of zircons from Cameroon, Central African Republic, and south-western Chad. Gondwana Res. 2022, 107, 296–324. [Google Scholar] [CrossRef]
- Genik, G. Regional framework, structural and petroleum aspects of rift basins in Niger, Chad and the Central African Republic (C.A.R.). Tectonophysics 1992, 213, 169–185. [Google Scholar] [CrossRef]
- Vervelidou, F.; Lesur, V. Unveiling Earth’s Hidden Magnetization. Geophys. Res. Lett. 2018, 45, 12283–12292. [Google Scholar] [CrossRef] [Green Version]
- Poidevin, J.L. Les Ceintures de Roches Vertes de la Republique Centrafricaine (Bandas, Boufoyo, Bogoin, Mbomou). Contribution a la Connaissance du Precambrien du Nord du Craton du Congo. PhD Thesis, Université Clermont-Ferrand II, Clermont-Ferrand, France, 1991. [Google Scholar]
- Boulvert, Y. Esquisse de l’Histoire Géologique de la RCA; Institut Français de Recherche Scientifique pour le Développement en Coopération, ORSTOM: Bangui, Central African Republic, 1983. [Google Scholar]
- Poidevin, J.; Dostal, J.; Dupuy, C. Archaean greenstone belt from the Central African Republic (Equatorial Africa). Precambrian Res. 1981, 16, 157–170. [Google Scholar] [CrossRef]
- Dostal, J.; Dupuy, C.; Poidevin, J.L. Geochemistry of Precambrian basaltic rocks from the Central African Republic (Equatorial Africa). Can. J. Earth Sci. 1985, 22, 653–662. [Google Scholar] [CrossRef]
- Poidevin, J.L. Le protérozoïque supérieur de la République centrafricaine. Geol. Wetcnschappen 1985, 8, 1–75. [Google Scholar]
- Poidevin, J.L. Boninite-like rocks from the Palaeoproterozoic greenstone belt of Bogoin, Central African Republic: Geochemistry and petrogenesis. Precambrian Res. 1994, 68, 97–113. [Google Scholar] [CrossRef]
- Cornacchia, M.; Giorgi, L.; Caruba, C.; Vivier, G. Existence d’une zone de suture sur la marge nord du craton congolais (secteur de Bangui, centre ouest de la République Centrafricaine). C. R. l’Acad. Sci. Sér. 2 Méc. Phys. Chim. Sci. l’Univ. Sci. Terre 1989, 308, 107–110. [Google Scholar]
- Tanko, E.; Danguene, P.; Tsoungui, P.; Ganno, S.; Wambo, J.D.T.; Tchoupe, B.G.T.; Nono, G.D.K.; Ngnotue, T.; Kankeu, B.; Biandja, J.; et al. Geochemistry and zircon U–Pb ages of the Paleoproterozoic ultramafic rocks of the Mbi Valley, Boali area, Central African Republic. Acta Geochim. 2022, 41, 515–535. [Google Scholar] [CrossRef]
- Danguene, P.; Ngnotue, T.; Ganno, S.; Biandja, J.; Kankeu, B.; Nzenti, J. Paleoproterozoic Synkinematic Magnesian High-K Magmatism from the Tamkoro-Bossangoa Massif, along the Bossangoa-Bossembele Shear Zone in North-Western Central African Republic. J. Geosci. Geomat. 2014, 2, 151–164. [Google Scholar]
- Poidevin, J.; Pin, C. 2 Ga U-Pb zircon dating of Mbi granodiorite (Central African Republic) and its bearing on the chronology of the Proterozoic of Central Africa. J. Afr. Earth Sci. (1983) 1986, 5, 581–587. [Google Scholar] [CrossRef]
- Tanko Njiosseu, E.; Danguene, P.E.; Ngnotue, T.; Ganno, S.; Nono, G.D.K.; Nlend, C.D.N.; Kankeu, B.; Biandja, J.; Nzenti, J.P. Petrology and geochronology of metamorphic rocks from the Bossangoa-Bossembélé area, Northern Central African Republic—Evidence for Palaeoproterozoic high-grade metamorphism in the North Equatorial Fold Belt. Arab. J. Geosci. 2021, 14, 1660. [Google Scholar] [CrossRef]
- Gérard, G.; Gérard, J. Carte Géologique de Reconnaissance de l’A.E.F. Notice Explicative sur la Feuille Berbérati-Est—Scale: 500,000—Sheet Number/Numéro de Feuille/Bladnummer: NB 33 SE-E 33 Direction des Mines et de la Géologie de l’A.E.F-Brazaville. 1953. Available online: https://geocatalogue.africamuseum.be/geonetwork/srv/api/records/BE-RMCA-EARTHS-018894 (accessed on 7 April 2023).
- Toyama, R.; Ngos, S.; Sababa, E.; Tchouatcha, M.S.; Danguene Yedidya, E.P.; Préat, A.; Ndjigui, P.D. Paleoenvironment reconstruction of the Proterozoic carbonate platform, Ombella-M’poko formation (Central African Republic). J. Afr. Earth Sci. 2019, 156, 108–117. [Google Scholar] [CrossRef]
- Censier, C.; Lang, J. Sedimentary processes in the Carnot Formation (Central African Republic) related to the palaeogeographic framework of Central Africa. Sediment. Geol. 1999, 127, 47–64. [Google Scholar] [CrossRef]
- Censier, C. Characteristics of Mesozoic fluvio-lacustrine formations of the western Central African Republic (Carnot Sandstones) by means of mineralogical and exoscopic analyses of detrital material. J. Afr. Earth Sci. 1990, 10, 385–398. [Google Scholar] [CrossRef]
- Loule, J.P.; Pospisil, L. Geophysical evidence of Cretaceous volcanics in Logone Birni Basin (Northern Cameroon), Central Africa, and consequences for the West and Central African Rift System. Tectonophysics 2013, 583, 88–100. [Google Scholar] [CrossRef]
- Lavreau, J.; Poidevin, J.; Ledent, D.; Liegeois, J.; Weis, D. Contribution to the geochronology of the basement of the Central African Republic. J. Afr. Earth Sci. 1990, 11, 69–82. [Google Scholar] [CrossRef]
- Cornacchia, M.; Giorgi, L. Discordances majeures et magmatismes des séries précambriennes de la région de Bogoin (Centre ouest de la République Centrafricaine). J. Afr. Earth Sci. 1989, 9, 221–226. [Google Scholar] [CrossRef]
- Topien, R.M.; Moloto-A-Kenguemba, G.; Traore, M.; Rajendran, S.; Kouassi, B.R. Litho-structural mapping and structural evolution of the Bocaranga pluton, northwest Adamawa-Yadé domain, Central African Republic. J. Afr. Earth Sci. 2023, 198, 104793. [Google Scholar] [CrossRef]
- Mestraud, J.L.; Bouvier, P.; Dongala, M.; Touveron, G. Carte Géologique de la Républiquc Centrafricaine à l’Échelle du 1:1,500,000; Bureau de Recherches Géologiques et Minières (BRGM): Paris, France, 1964. [Google Scholar]
- Vonto, D.C.; Tchakounte, N.J.; Gentry, F.C.; Zaguy-Guerembo, R.L.; Zame, P.Z.; Djanarthany, S.; Nkoumbou, C. Geology and geotechnical characteristics of the Gbago and Ngouaka plutonic rocks, North East of Bangui, Central Africa Republic. J. Afr. Earth Sci. 2020, 167, 103831. [Google Scholar] [CrossRef]
- Boulvert, Y. Étude Géomorphologique de la République Centrafricaine Carte à 1/1,000,000 en Deux Feuilles Ouest et Est; ORSTOM Éditions: Paris, France, 1995; Volume 110. [Google Scholar]
- Censier, C.; Michel, J.; Lamouille, B. Rapport Final du Projet d’Appui au Secteur Artisanal du Diamant en République Centrafricaine (PASAD) [01/09/96–31/08/98]; Technical Report 655, République Centrafricaine Ministère de la Réforme Economique du Plan et de la Coopération Internationale; BRGM Service Minier National, Département de l’Exploration: Orleans, France, 1998. [Google Scholar]
- Censier, C.; Tourenq, J. Crystal forms and surface textures of alluvial diamonds from the Western Region of the Central African Republic. Miner. Depos. 1995, 30, 314–322. [Google Scholar] [CrossRef]
- Malpeli, K.C.; Chirico, P.G. A sub-national scale geospatial analysis of diamond deposit lootability: The case of the Central African Republic. Extr. Ind. Soc. 2014, 1, 249–259. [Google Scholar] [CrossRef]
- Berthoumieux, G.; Delany, F. Mission diamant dans l’Ouest-Oubangui. Bull. Serv. Mines Géol. 1957, 77–91. [Google Scholar]
- Kpeou, J.; Béziat, D.; Salvi, S.; Estrade, G.; Moloto-A-Kenguemba, G.; Debat, P. Gold mineralization related to Proterozoic cover in the Congo craton (Central African Republic): A consequence of Panafrican events. J. Afr. Earth Sci. 2020, 166, 103825. [Google Scholar] [CrossRef]
- Chirico, P.G.; Barthélémy, F.; Ngbokoto, F.A. Les Ressources Potentielles en Diamants Alluviaux et l’Évaluation de la Capacité de Production en République Centrafricaine; Technical Report 2010-5043; U.S. Geological Survey: Reston, VA, USA, 2013; 23p. [Google Scholar]
- Chirico, P.G.; Barthélémy, F.; Ngbokoto, F.A. Alluvial Diamond Resource Potential and Production Capacity Assessment of the Central African Republic; Technical Report 2010-5043; U.S. Geological Survey: Reston, VA, USA, 2007. [Google Scholar]
- Nguimalet, C.R.; Orange, D.; Waterendji, J.P.; Yambele, A. Hydroclimatic Dynamics of Upstream Ubangi River at Mobaye, Central African Republic. In Congo Basin Hydrology, Climate, and Biogeochemistry; American Geophysical Union (AGU): Washington, DC, USA, 2022; Chapter 6; pp. 83–96. [Google Scholar] [CrossRef]
- Suchel, J.B. L’exploitation forestière en République Centrafricaine. Cah. d’Outre-Mer 1968, 21, 324–330. [Google Scholar] [CrossRef]
- Spinage, C.A. First steps in the ecology of the Bamingui-Bangoran National Park, Central African Republic. Afr. J. Ecol. 1988, 26, 73–88. [Google Scholar] [CrossRef]
- Villien, F. L’agriculture dans la ville: L’exemple de Bangui. Cah. d’Outre-Mer 1988, 41, 283–302. [Google Scholar] [CrossRef]
- Quantin, P. Les Sols de la République Centrafricaine; Technical Report 16; Mérn. Office de la Recherche Scientifique et Technique Outre-Mer (ORSTOM): Paris, France, 1965; 113p. [Google Scholar]
- Prioul, C. Les cultures maraîchères à Bangui. Cah. d’Outre-Mer 1969, 22, 191–202. [Google Scholar] [CrossRef]
- Combeau, A.; Quantin, P. Observation sur Ies relations entre stabilité structurale et matiére organique dans quelques sols d’Afrique Centrale. Cah. Off. Rech. Sci. Tech. Outre-Mer (ORSTOM) Pédolog. 1964, 2, 3–11. [Google Scholar]
- Quantin, P. Reconnaissance Pédologique au Nord-Est de la République Centrafricaine (Birao); Technical Report Rapport de Terrain; Office de la Recherche Scientifique et Technique Outre-Mer (ORSTOM) Inédit: Paris, France, 1962; p. 38. [Google Scholar]
- Salomon, J.N.; Boulvert, Y. Sur l’existence de paléo-crypto karsts dans le bassin de l’Oubangui (République centrafricaine). Karstologia 1988, 11, 37–48. [Google Scholar] [CrossRef]
- GEBCO Compilation Group. GEBCO_2022 Grid—A Continuous Terrain Model of the Global Oceans and Land; British Oceanographic Data Centre (BODC): Liverpool, UK, 2022. [Google Scholar] [CrossRef]
- NASA JPL. NASA Shuttle Radar Topography Mission Global 3 Arc Second; NASA EOSDIS Land Processes DAAC, Data Set; NASA: Washington, DC, USA, 2013. [Google Scholar] [CrossRef]
- NOAA National Geophysical Data Center. ETOPO1 1 Arc-Minute Global Relief Model; NOAA National Centers for Environmental Information: Asheville, NC, USA, 2009. [Google Scholar]
- Sandwell, D.T.; Harper, H.; Tozer, B.; Smith, W.H. Gravity field recovery from geodetic altimeter missions. Adv. Space Res. 2021, 68, 1059–1072. [Google Scholar] [CrossRef]
- Pavlis, N.K.; Holmes, S.A.; Kenyon, S.C.; Factor, J.K. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res. Solid Earth 2012, 117, B04406. [Google Scholar] [CrossRef] [Green Version]
- QGIS Development Team. QGIS Geographic Information System; Open Source Geospatial Foundation: Chicago, IL, USA, 2009. [Google Scholar]
- Traore, M.; Takodjou Wambo, J.D.; Ndepete, C.P.; Tekin, S.; Pour, A.B.; Muslim, A.M. Lithological and alteration mineral mapping for alluvial gold exploration in the south east of Birao area, Central African Republic using Landsat-8 Operational Land Imager (OLI) data. J. Afr. Earth Sci. 2020, 170, 103933. [Google Scholar] [CrossRef]
- Runge, J.; Nguimalet, C.R. Physiogeographic features of the Oubangui catchment and environmental trends reflected in discharge and floods at Bangui 1911–1999, Central African Republic. Geomorphology 2005, 70, 311–324. [Google Scholar] [CrossRef]
- Traore, M.; Lee, M.S.; Rasul, A.; Balew, A. Assessment of land use/land cover changes and their impacts on land surface temperature in Bangui (the capital of Central African Republic). Environ. Chall. 2021, 4, 100114. [Google Scholar] [CrossRef]
- Spinellis, D. Drawing Tools. IEEE Softw. 2009, 26, 12–13. [Google Scholar] [CrossRef]
- Lemenkova, P.; Debeir, O. Satellite Altimetry and Gravimetry Data for Mapping Marine Geodetic and Geophysical Setting of the Seychelles and the Somali Sea, Indian Ocean. J. Appl. Eng. Sci. 2022, 12, 191–202. [Google Scholar] [CrossRef]
- Kasalica, V.; Lamprecht, A.L. Automated composition of scientific workflows: A case study on geographic data manipulation. In Proceedings of the 2018 IEEE 14th International Conference on e-Science (e-Science), Amsterdam, The Netherlands, 29 October–1 November 2018; pp. 362–363. [Google Scholar] [CrossRef]
- Lemenkova, P.; Debeir, O. Seismotectonics of Shallow-Focus Earthquakes in Venezuela with Links to Gravity Anomalies and Geologic Heterogeneity Mapped by a GMT Scripting Language. Sustainability 2022, 14, 15966. [Google Scholar] [CrossRef]
- Yadav, A.; Saraswat, S.; Faujdar, N. Geological Information Extraction from Satellite Imagery Using Machine Learning. In Proceedings of the 2022 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, India, 13–14 October 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Lemenkova, P.; Debeir, O. R Libraries for Remote Sensing Data Classification by k-means Clustering and NDVI Computation in Congo River Basin, DRC. Appl. Sci. 2022, 12, 12554. [Google Scholar] [CrossRef]
- Senturk, S.; Cakir, Z.; Berk Ustundag, B. The potential of Sentinel-IA interferometric SAR data in monitoring of surface subsidence caused by overdrafting groundwater in agricultural areas. In Proceedings of the 2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Tianjin, China, 18–20 July 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Lemenkova, P.; Debeir, O. Satellite Image Processing by Python and R Using Landsat 9 OLI/TIRS and SRTM DEM Data on Côte d’Ivoire, West Africa. J. Imaging 2022, 8, 317. [Google Scholar] [CrossRef] [PubMed]
- Wessel, P.; Smith, W.H.F. Free software helps map and display data. EOS Trans. Am. Geophys. Union 1991, 72, 441–446. [Google Scholar] [CrossRef]
- Wessel, P.; Luis, J.F.; Uieda, L.; Scharroo, R.; Wobbe, F.; Smith, W.H.F.; Tian, D. The Generic Mapping Tools Version 6. Geochem. Geophys. Geosyst. 2019, 20, 5556–5564. [Google Scholar] [CrossRef] [Green Version]
- Le Stunff, Y.; Ricard, Y. Topography and geoid due to lithospheric mass anomalies. Geophys. J. Int. 1995, 122, 982–990. [Google Scholar] [CrossRef]
- Hager, B.H. Global isostatic geoid anomalies for plate and boundary layer models of the lithosphere. Earth Planet. Sci. Lett. 1983, 63, 97–109. [Google Scholar] [CrossRef] [Green Version]
- Hager, B.H.; Clayton, R.W. Constraints on the Structure of Mantle Convection Using Seismic Observations, Flow Models, and the Geoid. In Mantle Convection: Plate Tectonics and Global Dynamics; Chapter Fluid Mechanics of Astrophysics and Geophysics; Gordon and Breach Science Publishers: New York, NY, USA, 1989; Volume 4, pp. 657–763. [Google Scholar]
- Richards, F.D.; Hoggard, M.J.; Ghelichkhan, S.; Koelemeijer, P.; Lau, H.C. Geodynamic, geodetic, and seismic constraints favour deflated and dense-cored LLVPs. Earth Planet. Sci. Lett. 2023, 602, 117964. [Google Scholar] [CrossRef]
- Dorbath, C.; Dorbath, L.; Gaulon, R.; Hatzfeld, D. Seismological investigation of the Bangui magnetic anomaly region and its relation to the margin of the Congo craton. Earth Planet. Sci. Lett. 1985, 75, 231–244. [Google Scholar] [CrossRef]
- Moloto-A-Kenguemba, G.R.; Trindade, R.I.; Monié, P.; Nédélec, A.; Siqueira, R. A late Neoproterozoic paleomagnetic pole for the Congo craton: Tectonic setting, paleomagnetism and geochronology of the Nola dike swarm (Central African Republic). Precambrian Res. 2008, 164, 214–226. [Google Scholar] [CrossRef]
- Goussi Ngalamo, J.F.; Sobh, M.; Bisso, D.; Abdelsalam, M.G.; Atekwana, E.; Ekodeck, G.E. Lithospheric structure beneath the Central Africa Orogenic Belt in Cameroon from the analysis of satellite gravity and passive seismic data. Tectonophysics 2018, 745, 326–337. [Google Scholar] [CrossRef]
- Boukeke, D.B. Structures Crustales d’Afrique Centrale Déduites des Anomalies Graviiviétriques et Magnétiques: Le Domaine Précambrien de la République Centrafricaine et du Sud Cameroun. Ph.D. Thesis, L’Université Paris-Sud, Paris, France, 1994. [Google Scholar]
- Daly, M.C.; Green, P.; Watts, A.B.; Davies, O.; Chibesakunda, F.; Walker, R. Tectonics and Landscape of the Central African Plateau and their Implications for a Propagating Southwestern Rift in Africa. Geochem. Geophys. Geosyst. 2020, 21, e2019GC008746. [Google Scholar] [CrossRef]
- Albouy, Y.; Godivier, R. Cartes Gravimétriques de la République Centrafricaine; ORSTOM: Paris, France, 1981; p. 8. [Google Scholar]
- Milesi, J.; Toteu, S.; Deschamps, Y.; Feybesse, J.; Lerouge, C.; Cocherie, A.; Penaye, J.; Tchameni, R.; Moloto-A-Kenguemba, G.; Kampunzu, H.; et al. An overview of the geology and major ore deposits of Central Africa: Explanatory note for the 1:4,000,000 map “Geology and major ore deposits of Central Africa”. J. Afr. Earth Sci. 2006, 44, 571–595. [Google Scholar] [CrossRef]
- Chevrot, S. Multichannel analysis of shear wave splitting. J. Geophys. Res. Solid Earth 2000, 105, 21579–21590. [Google Scholar] [CrossRef]
- Forte, A.M.; Peltier, W.R.; Dziewonski, A.M.; Woodward, R.L. Dynamic surface topography: A new interpretation based upon mantle flow models derived from seismic tomography. Geophys. Res. Lett. 1993, 20, 225–228. [Google Scholar] [CrossRef] [Green Version]
- Mapoka, H.; Danguene, Y.; Nzenti, J.; Biandja, J.; Kankeu, B.; Suh, C. Major Structural Features and the Tectonic Evolution of the Bossangoa-Bossembele Basement, Northwestern Central African Republic. Open Geol. J. 2011, 5, 21–32. [Google Scholar] [CrossRef]
- Taylor, P.T. Bangui Anomaly. In Encyclopedia of Geomagnetism and Paleomagnetism; Springer: Dordrecht, The Netherlands, 2007; pp. 39–40. [Google Scholar] [CrossRef]
- Green, A.G. Interpretation of Project MAGNET Aerornagnetic Profiles Across Africa. Geophys. J. Int. 1976, 44, 203–228. [Google Scholar] [CrossRef] [Green Version]
- Lesur, V.; Hamoudi, M.; Choi, Y.; Dyment, J.; Thébault, E. Building the second version of the World Digital Magnetic Anomaly Map (WDMAM). Earth Planets Space 2016, 68, 27. [Google Scholar] [CrossRef]
- Ravat, D.; Wang, B.; Wildermuth, E.; Taylor, P.T. Gradients in the interpretation of satellite-altitude magnetic data: An example from central Africa. J. Geodyn. 2002, 33, 131–142. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, Q. Petroleum system of the Fula depression at the Muglad basin in the Central African fault zone. J. Earth Sci. 2011, 22, 363–370. [Google Scholar] [CrossRef]
- de Haro Barbas, B.F.; Elias, A.G.; Cnossen, I.; Zossi de Artigas, M. Long-term changes in solar quiet (Sq) geomagnetic variations related to Earth’s magnetic field secular variation. J. Geophys. Res. Space Phys. 2013, 118, 3712–3718. [Google Scholar] [CrossRef] [Green Version]
- Maus, S.; Barckhausen, U.; Berkenbosch, H.; Bournas, N.; Brozena, J.; Childers, V.; Dostaler, F.; Fairhead, J.D.; Finn, C.; von Frese, R.R.B.; et al. EMAG2: A 2-arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements. Geochem. Geophys. Geosyst. 2009, 10, Q08005. [Google Scholar] [CrossRef]
- Meyer, B.; Saltus, R.; Chulliat, A. EMAG2v3: Earth Magnetic Anomaly Grid (2-Arc-Minute Resolution), Version 3; NOAA National Centers for Environmental Information: Asheville, NC, USA, 2017. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemenkova, P.; Debeir, O. Coherence of Bangui Magnetic Anomaly with Topographic and Gravity Contrasts across Central African Republic. Minerals 2023, 13, 604. https://doi.org/10.3390/min13050604
Lemenkova P, Debeir O. Coherence of Bangui Magnetic Anomaly with Topographic and Gravity Contrasts across Central African Republic. Minerals. 2023; 13(5):604. https://doi.org/10.3390/min13050604
Chicago/Turabian StyleLemenkova, Polina, and Olivier Debeir. 2023. "Coherence of Bangui Magnetic Anomaly with Topographic and Gravity Contrasts across Central African Republic" Minerals 13, no. 5: 604. https://doi.org/10.3390/min13050604
APA StyleLemenkova, P., & Debeir, O. (2023). Coherence of Bangui Magnetic Anomaly with Topographic and Gravity Contrasts across Central African Republic. Minerals, 13(5), 604. https://doi.org/10.3390/min13050604