Simulating Bulk Ore Sorting Performance of a Panel Cave Mine: A Comparison between Two Approaches
Abstract
:1. Introduction
2. Overview of the Cadia East Panel Cave Mine
3. Methodology
3.1. Data Description
3.2. Compositing Drill Core Samples and Block Modelling
3.3. Determining Cave Footprints and Locating Data Points
3.4. Estimating In Situ Heterogeneity and Simulating Bulk Ore Sorting Performance
4. Results and Discussion
4.1. In Situ Grade Heterogeneity Estimations
4.2. Simulating Bulk Ore Sorting Performance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weston, A.J. The Evolution of Block Caving Technology. In Proceedings of the Seventh International Conference and Exhibition on Mass Mining, Sydney, NSW, Australia, 9–11 May 2016. [Google Scholar]
- Moss, A.; Klein, B.; Nadolski, S. Cave to mill: Improving value of caving operations. In Proceedings of the Caving 2018: Proceedings of the Fourth International Symposium on Block and Sublevel Caving, Vancouver, BC, Canada, 15–17 October 2018. [Google Scholar]
- Nadolski, S.; Samuels, M.; Klein, B.; Hart, C.J.R. Evaluation of bulk and particle sensor-based sorting systems for the New Afton block caving operation. Miner. Eng. 2018, 121, 169–179. [Google Scholar] [CrossRef]
- Klein, B.; Bamber, A. Mineral Sorting. In Mineral Processing and Extractive Metallurgy Handbook; Society for Mining, Metallurgy & Exploration (SME): Englewood, CO, USA, 2019; pp. 763–786. [Google Scholar]
- Scott, M.; Amini, E. Quantifying economic and environmental impacts of preconcentration. In Proceedings of the Preconcentration Digital Conference, Online, 10–11, 17–18 November 2020. [Google Scholar]
- Scott, M.; Rutter, J.; Plessis, J.D.; Alexander, D. Operational deployment of sensor technologies for bulk ore sorting at Mogalakwena PGE Mine. In Proceedings of the Preconcentration Digital Conference, Online, 10–11, 17–18 November 2020. [Google Scholar]
- Li, G.; Klein, B.; Sun, C.; Kou, J. Investigation on influential factors of bulk ore sortability based on fractal modelling. Miner. Eng. 2021, 177, 107362. [Google Scholar] [CrossRef]
- Duffy, K.; Valery, W.; Jankovic, A.; Holtham, P.; Valle, R. In search of the Holy Grail—Bulk ore sorting. In Proceedings of the Austmine 2015—Transforming Mining, Technology and Innovation, Brisbane, QLD, Australia, 19–20 May 2015. [Google Scholar]
- Nadolski, S.; Klein, B.; Elmo, D.; Scoble, M.; Liu, Y.; Scholar, J. Investigation into the Implementation of Sensor-based Ore Sorting Systems at a Block Caving Operation. In Proceedings of the Seventh International Conference & Exhibition on Mass Mining, Sydney, NSW, Australia, 9–11 May 2016. [Google Scholar]
- Ballantyne, G.; Pyle, M.; Foggiatto, B.; Vizcarra, T. Assessing the value of bulk ore sorting with drill core data. In Proceedings of the Preconcentration Digital Conference, Online, 10–11, 17–18 November 2020. [Google Scholar]
- Revell, P.A.; Wilkie, G.J. An integrated and balanced approach to developing pre-concentration technologies across the mining value chain. In Proceedings of the Preconcentration Digital Conference, Online, 10–11, 17–18 November 2020. [Google Scholar]
- Klein, B.; Erdenebat, E.; Nadolski, S.; Samuels, M. Assessing Ore Heterogeneity for Bulk Sorting at the New Afton Copper Mine. In Proceedings of the 8th Sensor-Based Sorting & Control Conference, Aachen, Germany, 6–7 March 2018. [Google Scholar]
- Noble, G.; Ferguson, S. Understanding ore heterogeneity and effective bulk ore sorting using PGNAA/PFTNA. In Proceedings of the Preconcentration Digital Conference, Online, 10–11, 17–18 November 2020. [Google Scholar]
- Rutter, J.; Dunham, S. Heterogeneity and bulk ore sorting—Methods to estimate ore sorting performance. In Proceedings of the Preconcentration Digital Conference, Online, 10–11, 17–18 November 2020. [Google Scholar]
- McCarthy, R.J. Is Bigger Better?—An Analysis Orebody Heterogeneity and Mining Scale; SRK Consulting: Vancouver, BC, Canada, 2018. [Google Scholar]
- McCarthy, R.J. Exploiting heterogeneity: Improving head grade and project value. In Proceedings of the World Gold Conference, Perth, WA, Australia, 11–13 September 2019. [Google Scholar]
- Cooke, D.R.; Wilson, A.J.; House, M.J.; Wolfe, R.C.; Walshe, J.L.; Lickfold, V.; Crawford, A.J. Alkalic porphyry Au-Cu and associated mineral deposits of the Ordovician to Early Silurian Macquarie Arc, New South Wales. Aust. J. Earth Sci. 2007, 54, 445–463. [Google Scholar] [CrossRef]
- Gleeson, K.; Newcombe, G.; Griffin, P.; Stephenson, P. Cadia Operations New South Wales, Australia NI 43-101 Technical Report; Newcrest Mining Limited: Melbourne, VIC, Australia, 2020. [Google Scholar]
- Holliday, J.R.; Wilson, A.J.; Blevin, P.L.; Tedder, I.J.; Dunham, P.D.; Pfitzner, M. Porphyry gold-copper mineralisation in the Cadia district, eastern Lachlan Fold Belt, New South Wales, and its relationship to shoshonitic magmatism. Miner. Depos. 2002, 37, 100–116. [Google Scholar] [CrossRef]
- Barber, C.B.; Dobkin, D.P.; Huhdanpaa, H.T. The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 1996, 22, 469–483. [Google Scholar] [CrossRef]
- Gy, P.M. Introduction to the theory of sampling I. Heterogeneity of a population of uncorrelated units. Trends Anal. Chem. 1995, 14, 67–76. [Google Scholar] [CrossRef]
- Nadolski, S. Cave-To-Mill: Mine and Mill Integration for Block Cave Mines. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2018. [Google Scholar]
- Bonnici, N.K. The Mineralogical and Textural Characteristics of Copper-Gold Deposits Related to Mineral Processing Attributes. Ph.D. Thesis, University of Tasmania, Hobart, Tasmania, 2012. [Google Scholar]
- Li, G.; Klein, B.; Sun, C.; Kou, J. Insight in ore grade heterogeneity and potential of bulk ore sorting application for block cave mining. Miner. Eng. 2021, 170, 106999. [Google Scholar] [CrossRef]
- Rossi, M.E.; Deutsch, C.V. Mineral Resource Estimation; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Boisvert, J.B.; Ortiz, J.M.; Deutsch, C.V. Local recoverable reserves prediction with block LU simulation. Int. J. Min. Miner. Eng. 2008, 1, 3–21. [Google Scholar] [CrossRef]
Approach 1: Block Modelling | ||||
Block Size | Panel Cave | Number of Blocks | Au Grade (g/t) | Cu Grade (%) |
5 × 5 × 5 m3 | PC1 | 482,080 | 0.59 | 0.32 |
PC2-West | 388,183 | 0.74 | 0.27 | |
PC2-East | 388,766 | 0.64 | 0.33 | |
10 × 10 × 10 m3 | PC1 | 60,424 | 0.69 | 0.33 |
PC2-West | 48,691 | 0.72 | 0.29 | |
PC2-East | 50,320 | 0.69 | 0.35 | |
20 × 20 × 20 m3 | PC1 | 7525 | 0.68 | 0.33 |
PC2-West | 6078 | 0.73 | 0.30 | |
PC2-East | 6441 | 0.69 | 0.35 | |
Approach 2: Drill Core Compositing | ||||
Composite Length | Panel Cave | Number of Drill Core Composites | Au Grade (g/t) | Cu Grade (%) |
5 m | PC1 | 3426 | 0.84 | 0.34 |
PC2-West | 3138 | 0.99 | 0.34 | |
PC2-East | 3798 | 0.84 | 0.40 | |
10 m | PC1 | 1711 | 0.84 | 0.34 |
PC2-West | 1575 | 0.99 | 0.34 | |
PC2-East | 1908 | 0.84 | 0.40 | |
20 m | PC1 | 853 | 0.84 | 0.34 |
PC2-West | 800 | 0.99 | 0.34 | |
PC2-East | 957 | 0.83 | 0.40 |
Assumptions | Unit | With Bulk Ore Sorting | Without Bulk Ore Sorting | ||
---|---|---|---|---|---|
Concentrate | Reject | ||||
Cost | Mine operating cost | USD/t | 4.25 | 4.25 | 4.25 |
Mine sustaining capital cost | USD/t | 0.63 | 0.63 | 0.63 | |
Mineralization treatment operating cost | USD/t | 6.64 | 0.00 | 6.64 | |
Mineralization treatment sustaining capital cost | USD/t | 0.71 | 0.00 | 0.71 | |
Tailings dam sustaining capital cost | USD/t | 0.60 | 0.00 | 0.60 | |
General and administration cost | USD/t | 2.14 | 2.14 | 2.14 | |
Sorting cost | USD/t | 0.4 | 0.4 | 0 | |
Total | 15.37 | 7.42 | 14.97 | ||
Price | Au | USD/oz | 1300 | ||
Cu | USD/lb | 3.40 | |||
Plant recovery models | Cave | Model | |||
Au | PC1 | ||||
PC2-West and PC2-East | |||||
Cu | All caves |
Variable | Mean Relative Change (%) in DH (Reference: DH of the Smallest Scale) | |||
---|---|---|---|---|
Approach 1: Block Model Grade Data | Approach 2: Drill Hole Grade Data | |||
Block Size | Change (%) | Composite Size | Change (%) | |
Au | 5 × 5 × 5 m3 | 0 | 5 m | 0 |
10 × 10 × 10 m3 | −27 | 10 m | −16 | |
20 × 20 × 20 m3 | −38 | 20 m | −27 | |
Cu | 5 × 5 × 5 m3 | 0 | 5 m | 0 |
10 × 10 × 10 m3 | −31 | 10 m | −15 | |
20 × 20 × 20 m3 | −44 | 20 m | −27 |
Block Size vs. Composite Length | Panel Cave | Number of Core Samples/Blocks Identified in Cave Footprints (%) |
---|---|---|
5 × 5 × 5 m3 vs. 5 m | PC1 | 0.71 |
PC2-West | 0.81 | |
PC2-East | 0.98 | |
10 × 10 × 10 m3 vs. 10 m | PC1 | 2.83 |
PC2-West | 3.23 | |
PC2-East | 3.79 | |
20 × 20 × 20 m3 vs. 20 m | PC1 | 11.34 |
PC2-West | 13.16 | |
PC2-East | 14.86 |
Approach 1: Block Modelling | Recovery (%) | Concentrate Grade | Reject Grade | Upgrading (%) | Mass Rejection (%) | |||||
Block Size | Panel Cave | Au | Cu | Au (g/t) | Cu (%) | Au (g/t) | Cu (%) | Au | Cu | |
5 × 5 × 5 m3 | PC1 | 98.14 | 99.04 | 0.61 | 0.33 | 0.22 | 0.06 | 103.32 | 104.27 | 5.02 |
PC2-West | 98.74 | 97.99 | 0.80 | 0.29 | 0.11 | 0.06 | 107.84 | 107.03 | 8.45 | |
PC2-East | 98.91 | 97.74 | 0.73 | 0.37 | 0.05 | 0.05 | 114.28 | 112.93 | 13.45 | |
10 × 10 × 10 m3 | PC1 | 99.61 | 99.66 | 0.70 | 0.34 | 0.15 | 0.06 | 101.48 | 101.53 | 1.84 |
PC2-West | 99.64 | 98.55 | 0.77 | 0.31 | 0.04 | 0.06 | 106.83 | 105.66 | 6.73 | |
PC2-East | 99.36 | 98.50 | 0.75 | 0.38 | 0.05 | 0.06 | 108.61 | 107.67 | 8.52 | |
20 × 20 × 20 m3 | PC1 | 99.77 | 99.80 | 0.68 | 0.34 | 0.17 | 0.07 | 100.70 | 100.73 | 0.92 |
PC2-West | 99.75 | 98.96 | 0.76 | 0.31 | 0.04 | 0.06 | 105.11 | 104.28 | 5.10 | |
PC2-East | 99.48 | 98.73 | 0.74 | 0.37 | 0.06 | 0.07 | 106.33 | 105.53 | 6.44 | |
Approach 2: Drill Core Compositing | Recovery (%) | Concentrate Grade | Reject Grade | Upgrading (%) | Mass Rejection(%) | |||||
Composite Size | Panel Cave | Au | Cu | Au (g/t) | Cu (%) | Au (g/t) | Cu (%) | Au | Cu | |
5 m | PC1 | 97.43 | 98.12 | 0.92 | 0.38 | 0.20 | 0.06 | 109.20 | 109.97 | 10.77 |
PC2-West | 98.49 | 98.38 | 1.07 | 0.36 | 0.18 | 0.07 | 107.35 | 107.23 | 8.25 | |
PC2-East | 99.36 | 98.77 | 0.92 | 0.43 | 0.06 | 0.05 | 109.22 | 108.57 | 9.03 | |
10 m | PC1 | 98.13 | 98.54 | 0.90 | 0.37 | 0.19 | 0.06 | 107.14 | 107.59 | 8.42 |
PC2-West | 98.94 | 98.96 | 1.04 | 0.35 | 0.19 | 0.06 | 104.58 | 104.61 | 5.40 | |
PC2-East | 99.49 | 98.88 | 0.90 | 0.43 | 0.05 | 0.06 | 108.04 | 107.38 | 7.91 | |
20 m | PC1 | 98.53 | 98.86 | 0.88 | 0.36 | 0.19 | 0.06 | 105.32 | 105.67 | 6.45 |
PC2-West | 99.30 | 99.34 | 1.01 | 0.35 | 0.19 | 0.06 | 102.90 | 102.95 | 3.50 | |
PC2-East | 99.54 | 98.95 | 0.89 | 0.42 | 0.05 | 0.06 | 106.91 | 106.28 | 6.90 |
Approach 1: Block Modelling | |||
Block Size | Panel Cave | Change in NSR (USD/t) | Comment on Sortability |
5 × 5 × 5 m3 | PC1 | −0.49 | Not sortable |
PC2-West | −0.23 | Not sortable | |
PC2-East | 0.22 | Sortable | |
10 × 10 × 10 m3 | PC1 | −0.39 | Not sortable |
PC2-West | −0.09 | Not sortable | |
PC2-East | −0.05 | Not sortable | |
20 × 20 × 20 m3 | PC1 | −0.41 | Not sortable |
PC2-West | −0.15 | Not sortable | |
PC2-East | −0.18 | Not sortable | |
Approach 2: Drill Core Compositing | |||
Composite Size | Panel Cave | Change in NSR (USD/t) | Comment on Sortability |
5 m | PC1 | −0.50 | Not sortable |
PC2-West | −0.42 | Not sortable | |
PC2-East | −0.02 | Not sortable | |
10 m | PC1 | −0.44 | Not sortable |
PC2-West | −0.44 | Not sortable | |
PC2-East | −0.06 | Not sortable | |
20 m | PC1 | −0.44 | Not sortable |
PC2-West | −0.42 | Not sortable | |
PC2-East | −0.12 | Not sortable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cetin, M.C.; Li, G.; Klein, B.; Futcher, W. Simulating Bulk Ore Sorting Performance of a Panel Cave Mine: A Comparison between Two Approaches. Minerals 2023, 13, 603. https://doi.org/10.3390/min13050603
Cetin MC, Li G, Klein B, Futcher W. Simulating Bulk Ore Sorting Performance of a Panel Cave Mine: A Comparison between Two Approaches. Minerals. 2023; 13(5):603. https://doi.org/10.3390/min13050603
Chicago/Turabian StyleCetin, Mahir Can, Genzhuang Li, Bern Klein, and William Futcher. 2023. "Simulating Bulk Ore Sorting Performance of a Panel Cave Mine: A Comparison between Two Approaches" Minerals 13, no. 5: 603. https://doi.org/10.3390/min13050603
APA StyleCetin, M. C., Li, G., Klein, B., & Futcher, W. (2023). Simulating Bulk Ore Sorting Performance of a Panel Cave Mine: A Comparison between Two Approaches. Minerals, 13(5), 603. https://doi.org/10.3390/min13050603