High-Pressure Experimental and DFT Structural Studies of Aurichalcite Mineral
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Details
2.2. Computational Details
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dasgupta, R. Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev. Mineral. Geochem. 2013, 75, 183. [Google Scholar] [CrossRef]
- Suito, K.; Namba, J.; Horikawa, T.; Taniguchi, Y.; Sakurai, N.; Kobayashi, M.; Onodera, A.; Shimomura, O.; Kikegawa, T. Phase relations of CaCO3 at high pressure and high temperature. Am. Mineral. 2001, 86, 997–1002. [Google Scholar] [CrossRef]
- Isshiki, M.; Irifune, T.; Hirose, K.; Ono, S.; Ohishi, Y.; Watanuki, T.; Nishibori, E.; Takata, M.; Sakata, M. Stability of magnesite and its high-pressure form in the lowermost mantle. Nature 2004, 427, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Boulard, E.; Menguy, N.; Auzende, A.; Benzerara, K.; Bureau, H.; Antonangeli, D.; Corgne, A.; Morard, G.; Siebert, J.; Perrillat, J.P. Experimental investigation of the stability of Fe-rich carbonates in the lower mantle. J. Geophys. Res. 2012, 117, B02208. [Google Scholar] [CrossRef]
- Chulia-Jordan, R.; Santamaria-Perez, D.; Otero-de-la-Roza, A.; Ruiz-Fuertes, J.; Marqueño, T.; Gomis, O.; MacLeod, S.; Popescu, C. Phase stability of natural Ni0.75Mg0.22Ca0.03CO3 gaspeite mineral at high pressure and temperature. J. Phys. Chem. C 2020, 124, 19781–19792. [Google Scholar] [CrossRef]
- Zhang, J.; Reeder, R.J. Comparative compressibilities of calcite structure carbonates: Deviations from empirical relations. Am Mineral. 1999, 84, 861–870. [Google Scholar] [CrossRef]
- Ono, S.; Brodholt, J.P.; Price, G.D. Phase transitions of BaCO3 at high pressures. Mineral. Mag. 2008, 72, 659–665. [Google Scholar] [CrossRef]
- Ono, S. High-pressure phase transformation in MnCO3: A synchrotron XRD study. Mineral. Mag. 2007, 71, 105–111. [Google Scholar] [CrossRef]
- Mao, Z.; Armentrout, M.; Rainey, E.; Manning, C.E.; Dera, P.; Prakapenka, V.B.; Kavner, A. Dolomite III: A new candidate lower mantle carbonate. Geophys. Res. Lett. 2011, 38, L22303. [Google Scholar] [CrossRef]
- Merlini, M.; Crichton, W.A.; Hanfland, M.; Gemmi, M.; Müller, H.; Kupenko, I.; Dubrovinsky, L. Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle. Proceed. Nat. Acad. Sci. USA 2012, 109, 13509–13514. [Google Scholar] [CrossRef]
- Santamaria-Perez, D.; Otero-de-la-Roza, A.; Ruiz-Fuertes, J.; Chulia-Jordan, R.; Marqueño, T.; MacLeod, S.; Popescu, C. Pressure and temperature effects on low-density Mg3Ca(CO3)4 huntite carbonate. J. Phys. Chem. C 2020, 124, 1077–1087. [Google Scholar] [CrossRef]
- Chulia-Jordan, R.; Santamaria-Perez, D.; Ruiz-Fuertes, J.; Otero-de-la-Roza, A.; Popescu, C. Compressibility and phase stability of iron-rich ankerite. Minerals 2021, 11, 607. [Google Scholar] [CrossRef]
- Chulia-Jordan, R.; Santamaria-Perez, D.; Ruiz-Fuertes, J.; Otero-de-la-Roza, A.; Popescu, C. Crystal structure of BaCa(CO3)2 alstonite carbonate and its phase stability upon compression. ACS Earth Space Chem. 2021, 5, 1130–1139. [Google Scholar] [CrossRef]
- Chulia-Jordan, R.; Santamaria-Perez, D.; Gonzalez-Platas, J.; Otero-de-la-Roza, A.; Ruiz-Fuertes, J.; Popescu, C. Phase stability and dense polymorph of the BaCa(CO3)2 barytocalcite carbonate. Sci. Rep. 2022, 12, 7413. [Google Scholar] [CrossRef]
- Gao, J.; Huang, W.F.; Wu, X.; Fan, D.W.; Wu, Z.Y.; Xia, D.G.; Qin, S. Compressibility of carbonophosphate bradleyite Na3Mg(CO3)(PO4) by X-ray diffraction and Raman spectroscopy. Phys. Chem. Miner. 2015, 42, 191–201. [Google Scholar] [CrossRef]
- Gao, J.; Wu, X.; Qin, S. The crystal chemistry and the compressibility of silicatecarbonate minerals: Spurrite, galuskinite and tilleyite. Geosci. Front. 2015, 6, 771–777. [Google Scholar] [CrossRef]
- Santamaria-Perez, D.; Ruiz-Fuertes, J.; Marqueño, T.; Pellicer-Porres, J.; Chulia-Jordan, R.; MacLeod, S.; Popescu, C. Structural behavior of natural silicate–carbonate spurrite mineral, Ca5(SiO4)2(CO3), under high-pressure, high-temperature conditions. Inorg. Chem. 2018, 57, 98–105. [Google Scholar] [CrossRef]
- Santamaria-Perez, D.; Ruiz-Fuertes, J.; Peña-Alvarez, M.; Chulia-Jordan, R.; Marqueño, T.; Zimmer, D.; Gutierrez-Cano, V.; MacLeod, S.; Gregoryanz, E.; Popescu, C.; et al. Post-tilleyite, a dense calcium silicate-carbonate phase. Sci. Rep. 2019, 9, 7898. [Google Scholar] [CrossRef]
- Merlini, M.; Perchiazzi, N.; Hanfland, M.; Bossak, A. Phase transition at high pressure in Cu2CO3(OH)2 related to the reduction of the Jahn-Teller effect. Acta Cryst. B 2012, 68, 266–274. [Google Scholar] [CrossRef]
- Xu, J.; Kuang, Y.; Zhang, B.; Liu, Y.; Fan, D.; Zhou, W.; Xie, H. High-pressure study of azurite Cu3(CO3)2(OH)2 by synchrotron radiation X-ray diffraction and Raman spectroscopy. Phys. Chem. Miner. 2015, 42, 805–816. [Google Scholar] [CrossRef]
- Gao, J.; Yuan, X.; Chen, B.; Liu, Z.; Su, W. High-pressure phase transformation of carbonate malachite Cu2(CO3)(OH)2 driven by [CuO6] regularization and [CO3] rotation. Geosci. Front. 2021, 12, 965–976. [Google Scholar] [CrossRef]
- Gorce, J.S.; Caddick, M.J.; Bodnar, R.J. Thermodynamic constraints on carbonate stability and carbon volatility during subduction. Earth Planet Sci. Lett. 2019, 519, 213–222. [Google Scholar] [CrossRef]
- Giester, G.; Rieck, B. Crystal structure refinement of aurichalcite, (Cu,Zn)5(OH)6(CO3)2, from the Lavrion Mining District, Greece. N. Jb. Miner. Abh. 2014, 191, 225–232. [Google Scholar] [CrossRef]
- Harding, M.M.; Kariuki, B.M.; Cernik, R.; Cressey, G. The structure of Aurichalcite, (Cu,Zn)5(OH)6(CO3)2, determined from a microcrystal. Acta Cryst. B 1994, 50, 673–676. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, J.; Song, H.; Chou, L. Characterization and performance of Cu/ZnO/Al2O3 catalysts prepared via decomposition of M(Cu,Zn)-ammonia complexes under sub-atmospheric pressure for methanol synthesis from H2 and CO2. J. Nat. Gas Chem. 2011, 20, 629–634. [Google Scholar] [CrossRef]
- Charnock, J.M.; Schofield, P.F.; Henderson, C.M.B.; Cressey, G.; Cressey, B.A. Cu and Zn ordering in aurichalcite. Mineral. Mag. 1996, 60, 887–896. [Google Scholar] [CrossRef]
- Ghose, S. The crystal structure of Hydrozincite, Zn5(OH)6(CO3)2. Acta Cryst. 1964, 17, 1051. [Google Scholar] [CrossRef]
- Zheng, H.; Li, J.; Zhang, X.; Li, Z.; Xie, K. Structural and electronic properties of Cu-doped Zn5(OH)6(CO3)2 from first principles. J. Mater. Sci. 2015, 50, 6794–6807. [Google Scholar] [CrossRef]
- Reddy, B.J.; Nieto, F.; Sanchez-Navas, A. Spectroscopic characterization of rosasite and aurichalcite. N. Jb. Miner. Mh. 2004, 7, 302–316. [Google Scholar] [CrossRef]
- Reddy, B.J.; Frost, R.L.; Locke, A. Synthesis and spectroscopic characterization of aurichacite (Cu,Zn)5(OH)6(CO3)2: Implications for Cu-ZnO catalyst precursors. Transition Met. Chem. 2008, 33, 331–339. [Google Scholar] [CrossRef]
- Frost, R.L.; Locke, A.J.; Hales, M.C.; Martens, W.N. Thermal stability and synthetic aurichalcite implications for making mixed metal oxides for use as catalysts. J. Therm. Anal. Calor. 2008, 94, 203–208. [Google Scholar] [CrossRef]
- Fauth, F.; Peral, I.; Popescu, C.; Knapp, M. The new material science powder diffraction beamline at ALBA synchrotron. Powder Diffr. 2013, 28, S360. [Google Scholar] [CrossRef]
- Klotz, S.; Chervin, J.C.; Munsch, P.; Le Marchand, G. Hydrostatic limits of 11 pressure transmitting media. J. Phys. D Appl. Phys. 2009, 42, 075413. [Google Scholar] [CrossRef]
- Dewaele, A.; Loubeyre, P.; Mezouar, M. Equations of state of six metals above 94 GPa. Phys. Rev. B. 2004, 70, 094112. [Google Scholar] [CrossRef]
- Prescher, C.; Prakapenka, V.B. DIOPTAS: A Program for Reduction of Two-Dimensional X-Ray Diffraction Data and Data Exploration. High Press. Res. 2015, 35, 223–230. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Redfern, S.A.T. Unit cell refinement from powder diffraction data: The use of regression diagnostics. Mineral. Mag. 1997, 61, 65–77. [Google Scholar] [CrossRef]
- Rodriguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B. 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Nolze, G.; Kraus, W. Powdercell 2.0 for Windows. Powd. Diffract. 1998, 13, 256–259. [Google Scholar]
- Blöch, P.E. Projector augmented-wave method. Phys. Rev. B. 1994, 50, 17953. [Google Scholar] [CrossRef]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M.B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Cond. Matter. 2017, 29, 465901. [Google Scholar] [CrossRef]
- Becke, A.D. On the large-gradient behavior of the density functional exchange energy. J. Chem. Phys. 1986, 85, 7184. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.R. The Exchange-Hole Dipole Moment Dispersion Model. In Non-Covalent Interactions in Quantum Chemistry and Physics; Elsevier: Amsterdam, The Netherlands, 2017; pp. 169–194. [Google Scholar]
- Becke, A.D.; Johnson, E.R. Exchange-hole dipole moment and the dispersion interaction revisited. J. Chem. Phys. 2007, 127, 154108. [Google Scholar] [CrossRef] [PubMed]
- Otero-de-la-Roza, A.; Johnson, E.R. Van der Waals interactions in solids using the exchange-hole dipole moment model. J. Chem. Phys. 2012, 136, 174109. [Google Scholar] [CrossRef]
- Borlido, P.; Aull, T.; Huran, A.W.; Tran, F.; Marques, M.A.L.; Botti, S. Large-scale benchmark of exchange-correlation functionals for the determination of electronic band gaps of solids. J. Chem. Theory Comput. 2019, 15, 5069–5079. [Google Scholar] [CrossRef]
- Dal Corso, A. Pseudopotentials periodic table: From H to Pu. Comput. Mater. Sci. 2014, 95, 337–350. [Google Scholar] [CrossRef]
- Marzari, N.; Vanderbilt, D.; De Vita, A.; Payne, M.C. Thermal contraction and disordering of the Al (110) surface. Phys. Rev. Lett. 1999, 82, 3296. [Google Scholar] [CrossRef]
- Otero-de-la-Roza, A.; Luaña, V. Gibbs2: A new version of the quasi-harmonic model code. I. Robust treatment of the static data. Comput. Phys. Commun. 2011, 182, 1708–1720. [Google Scholar] [CrossRef]
- Otero-de-la-Roza, A.; Abbasi-Perez, D.; Luaña, V. Gibbs2: A new version of the quasi-harmonic model code. II. Models for solid-state thermodynamics, features and implementation. Comput. Phys. Commun. 2011, 182, 2232–2248. [Google Scholar] [CrossRef]
- Santamaria-Perez, D.; Pavic, L.; Chulia-Jordan, R.; Ruiz-Fuertes, J.; Popescu, C.; Otero-de-la-Roza, A. Phase stability of stress-sensitive Ag2CO3 silver carbonate at high pressures and temperatures. Solid State Sci. 2023, 135, 107068. [Google Scholar] [CrossRef]
Pressure (GPa) | a Axis (Å) | b Axis (Å) | c Axis (Å) | β (°) | Volume (Å3) |
---|---|---|---|---|---|
0.00 | 13.809(7) | 6.412(2) | 5.313(3) | 100.70(5) | 462.3(3) |
0.00 | 13.806(7) | 6.410(2) | 5.315(3) | 100.65(5) | 462.3(3) |
0.10 | 13.806(7) | 6.413(2) | 5.315(3) | 100.68(5) | 462.5(3) |
0.15 | 13.800(7) | 6.408(2) | 5.310(3) | 100.64(5) | 461.6(3) |
0.25 | 13.794(7) | 6.401(2) | 5.309(3) | 100.60(5) | 460.8(3) |
0.40 | 13.787(7) | 6.399(2) | 5.304(3) | 100.58(5) | 460.1(3) |
0.6 | 13.774(7) | 6.388(2) | 5.300(3) | 100.52(5) | 458.5(3) |
0.75 | 13.767(7) | 6.386(2) | 5.293(3) | 100.50(5) | 457.7(3) |
0.9 | 13.759(7) | 6.379(2) | 5.293(3) | 100.45(5) | 456.9(3) |
1.05 | 13.750(7) | 6.374(2) | 5.286(3) | 100.42(5) | 455.8(3) |
1.25 | 13.741(7) | 6.368(2) | 5.281(3) | 100.39(5) | 454.7(3) |
1.35 | 13.731(7) | 6.361(2) | 5.280(3) | 100.33(5) | 453.7(3) |
1.55 | 13.721(7) | 6.356(2) | 5.273(3) | 100.31(5) | 452.6(3) |
1.70 | 13.715(7) | 6.350(2) | 5.272(3) | 100.26(5) | 451.8(3) |
1.90 | 13.706(7) | 6.344(2) | 5.266(3) | 100.23(5) | 450.7(3) |
2.1 | 13.698(7) | 6.337(2) | 5.262(3) | 100.18(5) | 449.6(3) |
2.35 | 13.685(7) | 6.331(2) | 5.258(3) | 100.14(5) | 448.5(3) |
2.60 | 13.674(7) | 6.323(2) | 5.251(3) | 100.06(5) | 447.1(3) |
2.80 | 13.663(7) | 6.316(2) | 5.248(3) | 100.04(5) | 446.0(3) |
Pressure (GPa) | a Axis (Å) | b Axis (Å) | c Axis (Å) | α (°) | β (°) | γ (°) | Volume (Å3) |
---|---|---|---|---|---|---|---|
3.3 | 13.663(8) | 6.307(3) | 5.244(4) | 90.28(7) | 100.05(6) | 89.52(8) | 444.9(5) |
3.5 | 13.653(8) | 6.298(3) | 5.240(4) | 90.30(7) | 100.03(6) | 89.44(8) | 443.6(5) |
4.0 | 13.638(9) | 6.287(3) | 5.232(4) | 90.30(7) | 100.00(6) | 89.37(8) | 441.7(5) |
4.6 | 13.622(9) | 6.275(3) | 5.224(4) | 90.30(7) | 99.97(7) | 89.31(8) | 439.8(5) |
4.9 | 13.607(9) | 6.266(3) | 5.219(4) | 90.29(7) | 99.93(7) | 89.25(8) | 438.3(5) |
5.4 | 13.599(9) | 6.258(3) | 5.214(4) | 90.28(7) | 99.94(7) | 89.20(8) | 437.0(5) |
6.0 | 13.583(10) | 6.246(3) | 5.206(5) | 90.25(7) | 99.96(7) | 89.09(9) | 435.0(6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santamaría-Pérez, D.; Chuliá-Jordán, R.; Otero-de-la-Roza, A.; Oliva, R.; Popescu, C. High-Pressure Experimental and DFT Structural Studies of Aurichalcite Mineral. Minerals 2023, 13, 619. https://doi.org/10.3390/min13050619
Santamaría-Pérez D, Chuliá-Jordán R, Otero-de-la-Roza A, Oliva R, Popescu C. High-Pressure Experimental and DFT Structural Studies of Aurichalcite Mineral. Minerals. 2023; 13(5):619. https://doi.org/10.3390/min13050619
Chicago/Turabian StyleSantamaría-Pérez, David, Raquel Chuliá-Jordán, Alberto Otero-de-la-Roza, Robert Oliva, and Catalin Popescu. 2023. "High-Pressure Experimental and DFT Structural Studies of Aurichalcite Mineral" Minerals 13, no. 5: 619. https://doi.org/10.3390/min13050619
APA StyleSantamaría-Pérez, D., Chuliá-Jordán, R., Otero-de-la-Roza, A., Oliva, R., & Popescu, C. (2023). High-Pressure Experimental and DFT Structural Studies of Aurichalcite Mineral. Minerals, 13(5), 619. https://doi.org/10.3390/min13050619