In Situ High-Pressure Raman Spectroscopic, Single-Crystal X-ray Diffraction, and FTIR Investigations of Rutile and TiO2II
Abstract
:1. Introduction
2. Sample Description and Experimental Methods
3. Result and Discussion
3.1. In Situ High-Pressure Raman Spectroscopy
3.2. Single-Crystal X-ray Diffraction Analyses
3.3. FTIR Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, S.; Zhang, J.H.; Smyth, J.R.; Zhang, J.F.; Liu, D.; Zhu, X.; Wang, X.; Ye, Y. Crystal Structure, Thermal Expansivity and High-Temperature Vibrational Spectra on Natural Hydrous Rutile. J. Earth Sci. 2020, 31, 1190–1199. [Google Scholar] [CrossRef]
- Yang, Y.; Xia, Q.K.; Feng, M.; Gu, X.Y. In situ FTIR investigations at varying temperatures on hydrous components in rutile. Am. Miner. 2011, 96, 1851–1855. [Google Scholar] [CrossRef]
- Johnson, E.A. Water in Nominally Anhydrous Crustal Minerals: Speciation, Concentration, and Geologic Significance. Rev. Mineral. Geochem. 2006, 62, 117–154. [Google Scholar] [CrossRef]
- Vlassopoulos, D.; Rossman, G.R.; Haggerty, S.E. Coupled substitution of H and minor elements in rutile and implications of high OH contents in Nb- and Cr-rich rutile from the upper mantle. Am. Miner. 1993, 78, 1181–1191. [Google Scholar]
- Endo, S.; Sato, H.; Tang, J.; Nakamoto, Y.; Kikegawa, T.; Shimomura, O.; Kusaba, K. Baddeleyite-type high-pressure phase of TiO2 and its stable P-T region. High-Press. Res. Appl. Earth Planet. Sci. 1992, 67, 457–461. [Google Scholar]
- Gerward, L.; Olsen, J.S. Post-rutile high-pressure phases in TiO2. J. Appl. Cryst. 1997, 30, 259–264. [Google Scholar] [CrossRef]
- Chen, F.; Su, W.; Li, X.G.; Hu, X.M.; Gao, J. In situ high temperature and high-pressure investigation of crystal structure and OH of rutile in jadeite quartzite from the Dabie Mountains, China. Acta Petrol. Sin. 2021, 37, 3893–3902. [Google Scholar]
- Mammone, J.F.; Sharma, S.K.; Nicol, M. Raman study of rutile (TiO2) at high pressure. Solid State Commun. 1980, 34, 799–802. [Google Scholar] [CrossRef]
- Xiao, W.S.; Zhang, H.; Tan, D.Y.; Weng, K.N.; Li, Y.C.; Luo, C.J.; Liu, J.; Xie, H.S. Raman characterization of rutile phase transitions under high-pressure and high-temperature. Spectrosc. Spect. Anal. 2007, 27, 1340–1343. [Google Scholar]
- Olsen, J.S.; Gerward, L.; Jiang, J.Z. On the rutile/α-PbO2-type phase boundary of TiO2. J. Phys. Chem. Solids 1999, 60, 229–233. [Google Scholar] [CrossRef]
- Goresy, A.E.; Ming, C.; Gillet, P.; Dubrovinsky, L.; Ahuja, R. A natural shock-induced dense polymorph of rutile with alpha-PbO2 structure in the suevite from the Ries crater in Germany. Earth Planet. Sc. Lett. 2001, 192, 485–495. [Google Scholar] [CrossRef]
- Meng, D.W.; Wu, X.L.; Fan, X.Y.; Zhang, Z.J.; Chen, H.; Meng, X.; Zheng, J.P. High pressure response of rutile polymorphs and its significance for indicating the subduction depth of continental crust. Acta Geol. Sin. 2008, 82, 371–376. [Google Scholar]
- Wu, X.L.; Meng, D.W.; Han, Y.J. α-PbO2-type nanophase of TiO2 from coesite-bearing eclogite in the Dabie Mountains, China. Am. Miner. 2005, 90, 1458–1461. [Google Scholar] [CrossRef]
- Liu, F.L.; Xu, Z.Q.; Xue, H.M.; Meng, F.C. Ultrahigh-pressure mineral inclusions preserved in zircons separated from eclogite and its country-rocks in the main drill hole of Chinese Continental Scientific Drilling Project (0~4500 m). Acta Petrol. Sin. 2005, 21, 277–292. [Google Scholar]
- Zhang, Z.M.; Xiao, Y.L.; Hoefs, J.; Liou, J.G.; Simon, K. Ultrahigh pressure metamorphic rocks from the Chinese Continental Scientific Drilling Project: I. Petrology and geochemistry of the main hole (0–2,050 m). Contrib. Mineral. Petr. 2006, 152, 421–441. [Google Scholar] [CrossRef]
- Klotz, S.; Chervin, J.C.; Munsch, P.; Le Marchand, G. Hydrostatic limits of 11 pressure transmitting media. J. Phys. D Appl. Phys. 2009, 42, 075413. [Google Scholar] [CrossRef]
- Mao, H.K.; Xu, J.; Bell, P.M. Calibration of the ruby pressure gauge to 800-kbar under quasi-hydrostatic conditions. J. Geophys. Res. 1986, 91, 4673–4676. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXL: Programs for Crystal Structure Analysis; University of Göttingen: Göttingen, Germany, 2018. [Google Scholar]
- Farrugia, L.J. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 1999, 32, 837–838. [Google Scholar] [CrossRef]
- Prince, E. International Tables for Crystallography, Volume C: Mathematical Physical and Chemical Tables, 3rd ed.; Reidel: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Maldener, J.; Rauch, F.; Gavranic, M.; Beran, A. OH absorption coefficients of rutile and cassiterite deduced from nuclear reaction analysis and FTIR spectroscopy. Miner. Petrol. 2001, 71, 21–29. [Google Scholar] [CrossRef]
- Kovács, I.; Hermann, J.; O’Neill, H.; Gerald, J.F.; Sambridge, M.; Horváth, G. Quantitative absorbance spectroscopy with unpolarized light: Part II. Experimental evaluation and development of a protocol for quantitative analysis of mineral IR spectra. Am. Miner. 2008, 93, 765–778. [Google Scholar] [CrossRef]
- Lan, T.; Tang, X.L.; Fultz, B. Phonon Anharmonicity of Rutile TiO2 Studied by Raman Spectrometry and Molecular Dynamics Simulations. Phys. Rev. B 2012, 85, 094305. [Google Scholar] [CrossRef]
- Porto, S.; Fleury, P.A.; Damen, T.C. Raman spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2. Phys. Rev. 1967, 154, 522. [Google Scholar] [CrossRef]
- Lagarec, K.; Desgreniers, S. Raman study of single crystal Anatase TiO2 up to 70 GPa. Solid State Commun. 1995, 94, 519–524. [Google Scholar] [CrossRef]
- Robinson, K.; Gibbs, G.V.; Ribbe, P.H. Quadratic elongation: A quantitative measure of distortion in coordination polyhedra. Science 1971, 172, 567–570. [Google Scholar] [CrossRef]
- Zhang, L.; Smyth, J.R. Crystal chemistry of metal element substitution in olivine and its high-pressure polymorphs: Implications for the upper-mantle and the mantle transition zone. Earth-Sci. Rev. 2022, 232, 104127. [Google Scholar] [CrossRef]
- Johnson, O.; Ohlsen, W.; Kingsbury, P.J. Defects in rutile. III. Optical and electrical properties of impurities and charge carriers. Phys. Rev. 1968, 175, 1102–1108. [Google Scholar] [CrossRef]
- Bromiley, G.D.; Hilairet, N. Hydrogen and minor element incorporation in synthetic rutile. Mineral. Mag. 2005, 69, 345–358. [Google Scholar] [CrossRef]
- Bromiley, G.D.; Shiryaev, A.A. Neutron irradiation and post-irradiation annealing of rutile (TiO2-x): Effect on hydrogen incorporation and optical absorption. Phys. Chem. Miner. 2006, 33, 426–434. [Google Scholar] [CrossRef]
- Khomenko, V.; Langer, K.; Rager, H.; Fett, A. Electronic absorption by Ti3+ ions and electronic delocalization in synthetic blue rutile. Phys. Chem. Miner. 1998, 25, 338–346. [Google Scholar] [CrossRef]
- Libowitzky, E. Correlation of O-H stretching frequencies and O-H···O hydrogen bond lengths in minerals. Monatsh. Chem. 1999, 130, 1047–1059. [Google Scholar] [CrossRef]
- Nisr, C.; Leinenweber, K.; Prakapenka, V.; Prescher, C.; Tkachev, S.; Shim, S.-H. Phase transition and equation of state of dense hydrous silica up to 63 GPa. J. Geophys. Res.-Sol. Earth 2017, 122, 6972–6983. [Google Scholar] [CrossRef]
- Xue, X.Y.; Kanzaki, M.; Fukui, H.; Ito, E.; Hashimoto, T. Cation order and hydrogen bonding of high-pressure phases in the Al2O3-SiO2-H2O system: An NMR and Raman study. Am. Miner. 2006, 91, 850–861. [Google Scholar] [CrossRef]
- Seaman, S.J.; Williams, M.L.; Jercinovic, M.J.; Koteas, G.C.; Brown, L.B. Water in nominally anhydrous minerals: Implications for partial melting and strain localization in the lower crust. Geology 2013, 41, 1051–1054. [Google Scholar] [CrossRef]
Pressure (GPa) | Phase 1 (Rutile) | |||||||||||
2.2 | 232.80 | 452.85 | 614.03 | - | - | - | - | - | - | - | - | - |
4.1 | 239.46 | 459.78 | 620.86 | - | - | - | - | - | - | - | - | - |
7.5 | 248.66 | 469.17 | 633.03 | - | - | - | - | - | - | - | - | - |
8.2 | 251.21 | 473.11 | 638.38 | - | - | - | - | - | - | - | - | - |
9.7 | 253.77 | 477.56 | 644.70 | - | - | - | - | - | - | - | - | - |
10.8 | - | 481.55 | 648.59 | - | - | - | - | - | - | - | - | - |
Phase 2 | ||||||||||||
12.4 | - | - | - | 449.38 | 485.44 | 598.69 | 654.41 | - | - | - | - | - |
13.2 | - | - | - | 453.34 | 487.90 | 599.17 | 657.32 | - | - | - | - | - |
13.8 | 179.33 | 320.30 | 382.16 | 457.30 | 489.38 | 603.04 | 658.92 | - | - | - | - | - |
14.1 | 182.43 | 321.81 | 381.16 | 460.76 | 490.36 | 604.49 | 660.23 | - | - | - | - | - |
14.6 | 181.91 | 322.32 | 381.16 | 464.72 | 489.87 | 603.62 | 659.26 | - | - | - | - | - |
Phase 3 (baddeleyite-type TiO2) | ||||||||||||
16.0 | 159.17 | 221.01 | 264.99 | 323.33 | 351.05 | 408.63 | 439.47 | 492.33 | 634.01 | 660.71 | 702.25 | 833.26 |
15.2 | 159.69 | 221.53 | 267.02 | 325.86 | 351.55 | 407.64 | 438.97 | 492.33 | 630.60 | 658.77 | 698.88 | 833.26 |
14.7 | 159.17 | 220.50 | 263.46 | 324.85 | 349.54 | 406.14 | 437.98 | 491.84 | 630.11 | 659.74 | 697.43 | 830.90 |
14.0 | 154.51 | 218.96 | 262.95 | 324.34 | 349.04 | 402.65 | 436.94 | 490.86 | 628.17 | 658.29 | 696.47 | 830.43 |
13.6 | 152.44 | 217.43 | 261.42 | 324.34 | 347.03 | 402.15 | 436.00 | 490.86 | 627.19 | 657.80 | 697.43 | 830.90 |
13.0 | 151.92 | 217.94 | 262.95 | 329.89 | 347.03 | 399.66 | 435.00 | 489.87 | 626.22 | 654.90 | 695.51 | 828.54 |
10.5 | 142.58 | 209.72 | 258.87 | 320.80 | 346.02 | 390.17 | 430.53 | 486.92 | 602.37 | 650.53 | 690.20 | 822.88 |
Phase 4 | ||||||||||||
8.2 | 142.58 | 180.88 | 252.23 | 289.40 | 315.75 | 378.15 | 449.38 | 478.54 | 573.97 | 614.03 | 640.33 | - |
7.1 | 128.56 | 183.46 | 253.25 | 289.91 | 314.74 | 374.15 | 439.96 | 471.14 | 569.11 | 605.46 | 623.06 | - |
Phase 5 (TiO2II) | ||||||||||||
5.0 | 178.82 | 288.89 | 318.28 | 374.65 | 439.47 | 555.97 | 592.40 | 624.76 | - | - | - | - |
0.0 | 174.17 | 287.37 | 315.75 | 365.12 | 431.03 | 538.90 | 575.91 | 612.22 | - | - | - | - |
Rutile | TiO2II | ||
---|---|---|---|
Average bond length | 1.9599 | Average bond length | 1.9574 |
Octahedral volume | 9.9127 | Octahedral volume | 9.7171 |
Octahedral angle variance | 29.4997 | Octahedral angle variance | 66.5861 |
Mean octahedral quadratic elongation | 1.0085 | Mean octahedral quadratic elongation | 1.0203 |
<Ti-O> (2) | 1.9863 | <Ti-O> (2) | 1.8874 |
<Ti-O> (4) | 1.9467 | <Ti-O> (2) | 1.9481 |
<O-O> edge | 2.7812 | <Ti-O> (2) | 2.0368 |
<O-O> edge (shared edge) | 2.5284 | <O-O> edge | 2.8360 |
<O-O> edge | 2.9607 | <O-O> edge | 2.8873 |
<O-O> distance | 3.8934 | <O-O> edge | 2.9488 |
<O-O> distance | 3.9726 | <O-O> edge | 2.7310 |
Occupancy | 1 | <O-O> edge (shared edge) | 2.5143 |
<O-O> edge | 2.7168 | ||
<O-O> edge | 2.6509 | ||
<O-O> distance | 3.8317 | ||
Occupancy | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Gao, S.; Wu, P.; Zhang, Z.; Zhang, L.; Li, X.; Qin, X. In Situ High-Pressure Raman Spectroscopic, Single-Crystal X-ray Diffraction, and FTIR Investigations of Rutile and TiO2II. Minerals 2023, 13, 703. https://doi.org/10.3390/min13050703
Lu X, Gao S, Wu P, Zhang Z, Zhang L, Li X, Qin X. In Situ High-Pressure Raman Spectroscopic, Single-Crystal X-ray Diffraction, and FTIR Investigations of Rutile and TiO2II. Minerals. 2023; 13(5):703. https://doi.org/10.3390/min13050703
Chicago/Turabian StyleLu, Xiaofeng, Shuchang Gao, Peiyan Wu, Ziyu Zhang, Li Zhang, Xiaoguang Li, and Xueqing Qin. 2023. "In Situ High-Pressure Raman Spectroscopic, Single-Crystal X-ray Diffraction, and FTIR Investigations of Rutile and TiO2II" Minerals 13, no. 5: 703. https://doi.org/10.3390/min13050703
APA StyleLu, X., Gao, S., Wu, P., Zhang, Z., Zhang, L., Li, X., & Qin, X. (2023). In Situ High-Pressure Raman Spectroscopic, Single-Crystal X-ray Diffraction, and FTIR Investigations of Rutile and TiO2II. Minerals, 13(5), 703. https://doi.org/10.3390/min13050703