Influence of Sodium Carbonate on the Flotation Separation of Smithsonite and Calcite by Sulfuration-Amine Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Micro-Flotation Test
2.3. Contact Angle Measurements
2.4. Zeta Potential Measurement
2.5. XPS Measurements
3. Results and Discussion
3.1. Micro-Flotation Results of Smithsonite and Calcite
3.2. Dissolved Components Analysis of Smithsonite
3.3. Contact Angle Measurement
3.4. Zeta Potential Analysis
3.5. XPS Measurements
4. Conclusions
- The addition of sodium carbonate significantly promoted the flotation separation of smithsonite and calcite. Sodium carbonate inhibited the floatability of calcite while improving that of smithsonite.
- The presence of CO32− hindered the dissolution of smithsonite, thereby reducing the adverse effect of dissolution on the flotation of smithsonite.
- Sodium carbonate increased the contact angle of smithsonite significantly and the hydrophobicity was enhanced, while the contact angle of calcite decreased and the hydrophilicity was achieved.
- CO32− was favorable for adsorption of dodecylamine on the surface of smithsonite, while the saturated CO32− and high alkalinity enhanced the inhibitory effect of sodium hexametaphosphate on calcite.
- The introduction of sodium carbonate increased the active sites on the surface of smithsonite, while CO32− enhanced the chelation of calcium and sodium hexametaphosphate on the calcite surface.
- Mix ores and actual ore flotation will be studied further to verify the findings in this study, and the interaction mechanism of sodium carbonate in the flotation separation of smithsonite and calcite will also be calculated in depth by density functional theory.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ejtemaei, M.; Gharabaghi, M.; Irannajad, M. A review of zinc oxide mineral beneficiation using flotation method. Adv. Colloid Interface Sci. 2014, 206, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Irannajad, M.; Ejtemaei, M.; Gharabaghi, M. The effect of reagents on selective flotation of smithsonite-calcite-quartz. Miner. Eng. 2009, 10, 22. [Google Scholar] [CrossRef]
- Ejtemaei, M.; Irannajad, M.; Gharabaghi, M. Influence of important factors on flotation of zinc oxide mineral using cationic, anionic and mixed (cationic/anionic) collectors. Miner. Eng. 2011, 24, 1402–1408. [Google Scholar] [CrossRef]
- Qin, J.; Liu, G.; Fan, H.; Tan, W. The hydrophobic mechanism of di(2-ethylhexyl) phosphoric acid to hemimorphite flotation. Colloids Surf. A Physicochem. Eng. Asp. 2018, 545, 68–77. [Google Scholar] [CrossRef]
- Zhang, J.J.; Du, W.X.; Hu, S.M.; Xia, S.Q.; Wang, L.S.; Wu, X.T. A new strategy for the preparation of H2tdet intermediate–synthesis and crystal structure of {α-[Sn(edt)2(tdet)]}·{β-[Sn(edt)2(tdet)]} (edt = ethane-1,2-dithiolate, tdet=diethylenetrithiolato). Inorg. Chem. Commun. 2003, 6, 387–388. [Google Scholar] [CrossRef]
- Liu, S.; Liu, G.; Huang, Y.; Zhong, H. Hydrophobic intensification flotation: Comparison of collector containing two minerophilic groups with conventional collectors. Trans. Nonferrous Met. Soc. China 2020, 30, 2536–2546. [Google Scholar] [CrossRef]
- Dong, L.; Jiao, F.; Qin, W.; Zhu, H.; Jia, W. New insights into the carboxymethyl cellulose adsorption on scheelite and calcite: Adsorption mechanism, AFM imaging and adsorption model. Appl. Surf. Sci. 2019, 463, 105–114. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.K.; Wei, C.; Liu, C.X.; Jiang, J.B.; Wang, F. Sulfidation roasting of low grade lead–zinc oxide ore with elemental sulfur. Miner. Eng. 2010, 23, 563–566. [Google Scholar] [CrossRef]
- Liu, M.H.; Liang, Y.Q.; Jian, S.; Zhang, X.D. Flotation of a Copper-Lead Sulfide-Oxide Ore: Using a Combined Depressant for Galena and an Effective Activator D2 for Copper Oxide Minerals. Adv. Mater. Res. 2013, 634, 3368–3374. [Google Scholar] [CrossRef]
- Lan, Z.Y.; Li, D.F.; Liu, Q.J.; Tong, X. Study on Flotation of Lead-Zinc Oxide Ore from Yunnan. Adv. Mater. Res. 2013, 807, 2317–2322. [Google Scholar] [CrossRef]
- Guimarães, R.C.; Araujo, A.C.; Peres, A.E.C. Reagents in igneous phosphate ores flotation. Miner. Eng. 2005, 18, 199–204. [Google Scholar] [CrossRef]
- Navidi Kashani, A.H.; Rashchi, F. Separation of oxidized zinc minerals from tailings: Influence of flotation reagents. Miner. Eng. 2008, 21, 967–972. [Google Scholar] [CrossRef]
- de Arruda, M.M.S.; Cunha, L.M.G.; Visconte, L.L.Y.; Rubinger, M.M.M.; Oliveira, M.R.L.; Pacheco, E.B.A.V. Behavior of zinc complex of bis(N-phenylsulfonyldithiocarbimate) as accelerator in the vulcanization of nitrile rubber compounds. J. Appl. Polym. Sci. 2019, 136, 47211. [Google Scholar] [CrossRef]
- Liang, Y.Q.; Zhang, X.D.; Zhang, H.P.; Liu, M.H. Using a New Bulk Flotation Process to Enhance the Recovery of Mineral Beneficiation in a Lead-Zinc Sulfide-Oxide Mixed Ore. Adv. Mater. Res. 2013, 634, 3545–3550. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, W.; Duan, H.; Yang, T.; Li, Z.; Zhou, S. Sodium carbonate effects on the flotation separation of smithsonite from quartz using N,N′-dilauroyl ethylenediamine dipropionate as a collector. Miner. Eng. 2018, 126, 1–8. [Google Scholar] [CrossRef]
- Chen, W.; Feng, Q.; Zhang, G.; Yang, Q. Investigations on flotation separation of scheelite from calcite by using a novel depressant: Sodium phytate. Miner. Eng. 2018, 126, 116–122. [Google Scholar] [CrossRef]
- Caldeira, C.L.; Ciminelli, V.S.T.; Osseo-Asare, K. The role of carbonate ions in pyrite oxidation in aqueous systems. Geochim. Et Cosmochim. Acta 2010, 74, 1777–1789. [Google Scholar] [CrossRef]
- Forssberg, K.; Subrahmanyam, T.V.; Nilsson, L.K. Influence of grinding method on complex sulphide ore flotation: A pilot plant study. Int. J. Miner. Process. 1993, 38, 157–175. [Google Scholar] [CrossRef]
- Zeng, X.; Xu, L.; Tian, J.; Yin, W.; Yang, Y.; Deng, W. Effect of a CA depressant on flotation separation of celestite from fluorite and calcite using SDS as a collector. Miner. Eng. 2017, 111, 201–208. [Google Scholar] [CrossRef]
- Somas, P.; Hu, Y. Flotation solution chemistry. Met. Ore Dress. Abroad 1990, 27, 8. [Google Scholar]
- Yang, X.F.; Liu, Q.J.; Deng, R.D. Study on High Oxidation Rate Refractory Ore of Lanping. Adv. Mater. Res. 2014, 912, 505–508. [Google Scholar] [CrossRef]
- Yang, J.; Lee, S.; Lee, E.; Lee, J.; Hong, S. Effect of solution chemistry on the surface property of reverse osmosis membranes under seawater conditions. Desalination 2009, 247, 148–161. [Google Scholar] [CrossRef]
- Shi, Q.; Zhang, G.; Feng, Q.; Deng, H. Effect of solution chemistry on the flotation system of smithsonite and calcite. Int. J. Miner. Process. 2013, 119, 34–39. [Google Scholar] [CrossRef]
- Mehdilo, A.; Irannajad, M.; Zarei, H. Smithsonite Flotation from Zinc Oxide Ore using Alkyl Amine Acetate Collectors. Sep. Sci. Technol. 2014, 49, 445–457. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, G.; Mai, Q.; Liu, H.; Li, C.; Feng, H. Flotation separation of smithsonite from calcite using depressant sodium alginate and mixed cationic/anionic collectors. Colloids Surf. A Physicochem. Eng. Asp. 2020, 586, 124227. [Google Scholar] [CrossRef]
- Gao, Z.; Sun, W.; Hu, Y. New insights into the dodecylamine adsorption on scheelite and calcite: An adsorption model. Miner. Eng. 2015, 79, 54–61. [Google Scholar] [CrossRef]
- Chen, W.; Feng, Q.; Zhang, G.; Yang, Q.; Zhang, C. The effect of sodium alginate on the flotation separation of scheelite from calcite and fluorite. Miner. Eng. 2017, 113, 1–7. [Google Scholar] [CrossRef]
- Kang, J.; Hu, Y.; Sun, W.; Gao, Z.; Liu, R. Utilization of Sodium Hexametaphosphate for Separating Scheelite from Calcite and Fluorite Using an Anionic–Nonionic Collector. Minerals 2019, 9, 705. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Xu, J.; Luo, C.; Yuan, C. Chemical Study on the Flotation Solution of Lozite/calcite Amine. J. Cent. South Univ. (Sci. Technol.) 1995, 589. [Google Scholar]
- Wang, G.; Sun, N.; Gao, C.; Zhu, X.; Sun, Y.; Li, C.; Shan, H. Promoting mechanism of sulfur addition in catalytic dehydrogenation of isobutane over Mo/MgAl2O4 catalysts. Appl. Catal. A Gen. 2014, 478, 71–80. [Google Scholar] [CrossRef]
- Wu, D.; Wen, S.; Deng, J.; Liu, J.; Mao, Y. Study on the sulfidation behavior of smithsonite. Appl. Surf. Sci. 2015, 329, 315–320. [Google Scholar] [CrossRef]
- Winiarski, J.; Tylus, W.; Winiarska, K.; Szczygieł, I.; Szczygieł, B. XPS and FT-IR Characterization of Selected Synthetic Corrosion Products of Zinc Expected in Neutral Environment Containing Chloride Ions. J. Spectrosc. 2018, 2018, 2079278. [Google Scholar] [CrossRef] [Green Version]
- Galmiz, O.; Stupavska, M.; Wulff, H.; Kersten, H.; Brablec, A.; Cernak, M. Deposition of Zn-containing films using atmospheric pressure plasma jet. Open Chem. 2014, 13, 670–674. [Google Scholar] [CrossRef]
- Dake, L.S.; Baer, D.R.; Friedrich, D.M. Auger parameter measurements of phosphorus compounds for characterization of phosphazenes. J. Vac. Sci. Technol. A Vac. Surf. Film. 1989, 7, 1634–1638. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, J.; Guo, Z.; Dong, X.; Liu, Y.; Wang, Y.; Xia, Y. A Metal-Organic Framework Host for Highly Reversible Dendrite-free Zinc Metal Anodes. Joule 2019, 3, 1289–1300. [Google Scholar] [CrossRef]
- Diplas, S.; Shao, G.; Tsakiropoulos, P.; Watts, J.F.; Matthew, J.A.D. Calculations of charge transfer in Mg-and Al-transition metal alloys using the Auger parameter. Surf. Interface Anal. 2000, 29, 65–72. [Google Scholar] [CrossRef]
- Dake, L.S.; Baer, D.R.; Zachara, J.M. Auger parameter measurements of zinc compounds relevant to zinc transport in the environment. Surf. Interface Anal. 1989, 14, 71–75. [Google Scholar] [CrossRef]
- Wang, R.; Wei, Z.; Han, H.; Sun, W.; Hu, Y.; Wang, J.; Wang, L.; Liu, H.; Yang, Y.; Zhang, C.; et al. Fluorite particles as a novel calcite recovery depressant in scheelite flotation using Pb-BHA complexes as collectors. Miner. Eng. 2019, 132, 84–91. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, Y.; Sun, W.; Zhai, J.; Yin, Z.; Guan, Q. Effect of phytic acid on the surface properties of scheelite and fluorite for their selective flotation. Colloids Surf. A Physicochem. Eng. Asp. 2019, 573, 80–87. [Google Scholar] [CrossRef]
Samples | Relative Amounts % | |||||
---|---|---|---|---|---|---|
C | N | Zn | O | S | P | |
(a) | 28.84 | 0.92 | 15.87 | 42.65 | 1.18 | 10.54 |
(b) | 38.63 | 2.38 | 15.34 | 20.47 | 7.96 | 15.22 |
(c) | 38.79 | 2.52 | 15.16 | 18.28 | 9.11 | 16.14 |
Samples | Relative Amounts % | |||||
---|---|---|---|---|---|---|
C | N | Ca | O | S | P | |
(a) | 42.93 | 1.47 | 11.63 | 41.39 | 1.94 | 0.64 |
(b) | 39.03 | 2.02 | 12.44 | 43.86 | 0.63 | 2.02 |
(c) | 38.45 | 2.00 | 12.52 | 44.1 | 0.68 | 2.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piao, Y.; He, F.; Pang, Z.; Liu, T.; Shang, Y.; Luo, K.; Zhu, Y. Influence of Sodium Carbonate on the Flotation Separation of Smithsonite and Calcite by Sulfuration-Amine Method. Minerals 2023, 13, 624. https://doi.org/10.3390/min13050624
Piao Y, He F, Pang Z, Liu T, Shang Y, Luo K, Zhu Y. Influence of Sodium Carbonate on the Flotation Separation of Smithsonite and Calcite by Sulfuration-Amine Method. Minerals. 2023; 13(5):624. https://doi.org/10.3390/min13050624
Chicago/Turabian StylePiao, Yongchao, Fayu He, Zengrui Pang, Taishun Liu, Yanbo Shang, Kehua Luo, and Yangge Zhu. 2023. "Influence of Sodium Carbonate on the Flotation Separation of Smithsonite and Calcite by Sulfuration-Amine Method" Minerals 13, no. 5: 624. https://doi.org/10.3390/min13050624
APA StylePiao, Y., He, F., Pang, Z., Liu, T., Shang, Y., Luo, K., & Zhu, Y. (2023). Influence of Sodium Carbonate on the Flotation Separation of Smithsonite and Calcite by Sulfuration-Amine Method. Minerals, 13(5), 624. https://doi.org/10.3390/min13050624