Development of Mid-Infrared Absorption Spectroscopy for Gemstone Analysis
Abstract
:1. Introduction
2. Experimental Setup
3. Results
3.1. Corundum Sample Screening
3.2. Emerald Clarity Enhancement Screening
3.3. Diamond Type Identification
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kiefert, L. Ruby & sapphire—A gemologist’s guide. J. Gemmol. 2017, 35, 561–563. [Google Scholar]
- Emmett, J.L.; Scarratt, K.; McClure, S.F.; Moses, T.; Douthit, T.R.; Hughes, R.; Novak, S.; Shigley, J.E.; Wang, W.; Bordelon, O.; et al. Beryllium diffusion of ruby and sapphire. Gems Gemol. 2003, 39, 84–135. [Google Scholar] [CrossRef]
- Emmett, J.L.; Douthit, T.R. Heat treating the sapphires of rock creek, Montana. Gems Gemol. 1993, 29, 250–272. [Google Scholar] [CrossRef]
- Themelis, T. The Heat Treatment of Ruby & Sapphire, 3rd ed.; GemLab Inc.: Bangkok, Thailand, 2018. [Google Scholar]
- Aines, R.D.; Rossman, G.R. Water in minerals? A peak in the infrared. J. Geophys. Res. 1984, 89, 4059–4071. [Google Scholar] [CrossRef]
- Saeseaw, S.; Kongsomart, B.; Atikarnsakul, U.; Khowpong, C.; Vertriest, W.; Soonthorntantikul, W. Update on “Low-Temperature” Heat Treatment of Mozambican Ruby: A Focus on Inclusions and FTIR Spectroscopy. GIA Rearch News. 2018. Available online: https://www.gia.edu/ongoing-research/update-low-temperature-heat-treatment-mozambican-ruby-focus-on-inclusions-and-ftir-spectroscopy (accessed on 8 March 2023).
- Smith, C.P.; Der Bogert, C.V. Infrared Spectra of Gem Corundum. Gems Gemol. 2006, 42, 92–93. [Google Scholar]
- Schwarz, D.; Pardieu, V.; Saul, J.M.; Schmetzer, K.; Laurs, B.M.; Giuliani, G.; Klemm, L.; Malsy, A.K.; Erel, E.; Hauzenberger, C.; et al. Rubies and sapphires from Winza, central Tanzania. Gems Gemol. 2008, 44, 322–347. [Google Scholar] [CrossRef]
- Haas, J.; Mizaikoff, B. Advances in mid-infrared spectroscopy for chemical analysis. Annu. Rev. Anal. Chem. 2016, 9, 45–68. [Google Scholar] [CrossRef] [PubMed]
- Kammerling, R.C.; Koivula, J.I.; Kane, R.E.; Maddison, P.; Shigley, J.E.; Fritsch, E. Fracture filling of emeralds: Opticon and traditional “oils”. Gems Gemol. 1991, 27, 70–85. [Google Scholar] [CrossRef]
- Kiefert, L.; Hänni, H.A.; Chalain, J.P.; Weber, W. Identification of filler substances in emeralds by infrared and Raman spectroscopy. J. Gemmol. 2000, 26, 501–520. [Google Scholar] [CrossRef]
- Johnson, M.L.; Elen, S.; Muhlmeister, S. On the identification of various emerald filling substances. Gems Gemol. 1999, 35, 82–107. [Google Scholar] [CrossRef]
- Dischler, B. Handbook of Spectral Lines in Diamond; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Walsh, M.J.; Reddy, R.K.; Bhargava, R. Label-free biomedical imaging with mid-IR spectroscopy. IEEE J. Select. Top. Quantum Electron. 2012, 18, 1502–1513. [Google Scholar]
- Adler, F.; Masłowski, P.; Foltynowicz, A.; Cossel, K.C.; Briles, T.C.; Hartl, I.; Ye, J. Mid-infrared Fourier transform spectroscopy with a broadband frequency comb. Opt. Express. 2010, 18, 21861–21872. [Google Scholar]
- Becker, E.D.; Farrar, T.C. Fourier transform spectroscopy. Science 1972, 178, 361–368. [Google Scholar] [PubMed]
- Smith, B.C. Fundamentals of Fourier Transform Infrared Spectroscopy, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Tidemand-Lichtenberg, P.; Dam, J.S.; Andersen, H.V.; Høgstedt, L.; Pedersen, C. Mid-infrared upconversion spectroscopy. J. Opt. Soc. Am. B. 2016, 33, D28–D35. [Google Scholar]
- Friis, S.M.M.; Høgstedt, L. Upconversion-based mid-infrared spectrometer using intra-cavity LiNbO3 crystals with chirped poling structure. Opt. Lett. 2019, 44, 4231–4234. [Google Scholar]
- Tironi, A.; Trezza, M.A.; Irassar, E.F.; Scian, A.N. Thermal treatment of kaolin: Effect on the pozzolanic activity. Procedia Mater. Sci. 2012, 1, 343–350. [Google Scholar] [CrossRef]
- Georges-Ivo, E.E. Fourier transform infrared spectrophotometry and X-ray powder diffractometry as complementary techniques in characterizing clay size fraction of kaolin. J. Appl. Sci. Environ. Manag. 2005, 9, 43–48. [Google Scholar]
- Brinatti, A.M.; Mascarenhas, Y.P.; Pereira, V.P.; Partiti, C.S.d.M.; Macedo, Á. Mineralogical characterization of a highly-weathered soil by the Rietveld Method. Sci. Agric. 2010, 67, 454–464. [Google Scholar]
- Schroeder, P.A. Infrared Spectroscopy in Clay Science; CMS Workshop Lect.: Chantilly, VA, USA, 2002; Volume 11, pp. 181–206. [Google Scholar]
- Monarumit, N.; Satitkune, S.; Wathanakul, P. Role of Ti content on the occurrence of the 3309 cm−1 peak in FTIR absorption spectra of ruby samples. J. Appl. Spectrosc. 2018, 85, 385–390. [Google Scholar]
- Emmett, J.L.; Brush Prairie, W.A. Comments on: A question concerning heat–treated blue sapphires by John I, Kovula Alethea Inns, New S. from Research. 7 August 2009. [Google Scholar]
- Monarumit, N.; Lhuaamporn, T.; Satitkune, S.; Wongkokua, W.; Wathanakul, P. Applications of mid-and near infrared spectroscopy to indicate conditions of heat treatment in synthetic ruby samples. In Proceedings of the 4th International Gem and Jewelry Conference, Chiang Mai, Thailand, 8–9 December 2014. [Google Scholar]
- Li, J.; Sun, Y.; Hao, W.; Luo, H.; Cheng, Y.; Liu, H.; Liu, Y.; Ye, H.; Fan, C. Polymer-filled aquamarine. Gems Gemol. 2009, 45, 197–199. [Google Scholar]
- Coxon, D.J.L.; Staniforth, M.; Breeze, B.G.; Greenough, S.E.; Goss, J.P.; Monti, M.; Lloyd-Hughes, J.; Stavros, V.G.; Newton, M.E. An Ultrafast Shakedown Reveals the Energy Landscape, Relaxation Dynamics, and Concentration of the N3VH0 Defect in Diamond. J. Phys. Chem. Lett. 2020, 11, 6677–6683. [Google Scholar] [CrossRef] [PubMed]
Sample | Variety | -OH Peak | Inclusion | Country of Origin | Weight (ct) | Color |
---|---|---|---|---|---|---|
A | Sapphire | N/A | Kaolinite | Sri Lanka | 1.580 | Yellow |
B | Sapphire | N/A | Gibbsite | Burma (Myanmar) | 1.593 | Blue |
C | Sapphire | 3109 cm−1 series | N/A | Madagascar | 0.811 | Yellow |
D | Sapphire | 3109 cm−1 series | N/A | Sri Lanka | 1.242 | Yellow |
E | Sapphire | 3109 cm−1 series | N/A | Sri Lanka | 0.936 | Yellow |
F | Sapphire | 3309 cm−1 series | N/A | Australia | 3.271 | Blue |
Sample | Variety | Clarity Enhancement | Weight (ct) |
---|---|---|---|
A | Emerald | N/A | 0.85 |
B | Emerald | Opticon-hardened | 0.79 |
Sample | Variety | Type | Weight (ct) |
---|---|---|---|
A | Diamond | Ia | 0.13 |
B | Diamond | IIb (boron center) | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Takahashi, H. Development of Mid-Infrared Absorption Spectroscopy for Gemstone Analysis. Minerals 2023, 13, 625. https://doi.org/10.3390/min13050625
Wang Z, Takahashi H. Development of Mid-Infrared Absorption Spectroscopy for Gemstone Analysis. Minerals. 2023; 13(5):625. https://doi.org/10.3390/min13050625
Chicago/Turabian StyleWang, Zhen, and Hiroshi Takahashi. 2023. "Development of Mid-Infrared Absorption Spectroscopy for Gemstone Analysis" Minerals 13, no. 5: 625. https://doi.org/10.3390/min13050625
APA StyleWang, Z., & Takahashi, H. (2023). Development of Mid-Infrared Absorption Spectroscopy for Gemstone Analysis. Minerals, 13(5), 625. https://doi.org/10.3390/min13050625