The Influence of Fluid-Exsolving Depth on Mineralization Quality: Evidence from Biotite and Zircon Mineralogy and Fluid Inclusions from the 460 Gaodi Porphyry Mo-Cu Deposit, NE China
Abstract
:1. Introduction
2. Geological Setting
2.1. Regional Geology
2.2. Geology of the 460 Gaodi Deposit
2.2.1. Strata, Structure and Magmatic Rocks
2.2.2. Wall Rock Alteration, Mineralization and Mineralization Stage
3. Samples and Analytical Methods
3.1. Samples and Petrography
3.1.1. Pre-Ore Monzogranite
3.1.2. Ore-Related Granite Porphyry
3.2. Fluid Inclusion Petrography
3.3. Methods
3.3.1. Electron Microprobe Analysis of Biotite
3.3.2. Trace Elements of Zircon
3.3.3. Fluid Inclusion Microthermometry
4. Results
4.1. Biotite Composition
Lithologies | STAT | SiO2 | TiO2 | Al2O3 | FeO | MnO | MgO | CaO | Na2O | K2O | Cr2O3 | NiO | F | Cl | Total | AlT | Fe2+/ (Mg + Fe2+) | T °C | P (MPa) | Depth (km) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Monzo- granite (n = 13) | Min. | 34.84 | 2.68 | 16.76 | 5.62 | 0.60 | 14.07 | 0.06 | 0.16 | 9.89 | 0.06 | 0.00 | 1.51 | 0.04 | 92.17 | 2.99 | 0.15 | 713 | 254 | 9.41 |
Max. | 39.18 | 3.23 | 18.35 | 11.48 | 0.79 | 18.68 | 0.21 | 0.34 | 10.99 | 0.13 | 0.04 | 2.49 | 0.11 | 99.46 | 3.09 | 0.31 | 786 | 284 | 10.52 | |
Avg. | 37.72 | 2.90 | 17.70 | 7.91 | 0.69 | 16.82 | 0.10 | 0.27 | 10.70 | 0.09 | 0.01 | 1.93 | 0.06 | 96.89 | 3.05 | 0.21 | 759 | 270 | 9.99 | |
S.D. | 1.36 | 0.19 | 0.38 | 2.03 | 0.08 | 1.48 | 0.04 | 0.06 | 0.28 | 0.03 | 0.01 | 0.28 | 0.02 | 2.08 | 0.03 | 0.06 | 23 | 10 | 0.36 | |
Granite porphyry (n = 16) | Min. | 32.73 | 2.52 | 14.86 | 14.47 | 0.24 | 12.26 | 0.03 | 0.12 | 6.79 | 0.02 | 0.00 | 0.77 | 0.01 | 91.80 | 2.69 | 0.33 | 677 | 161 | 5.97 |
Max. | 37.40 | 3.67 | 18.78 | 16.64 | 0.41 | 14.28 | 0.14 | 0.40 | 10.32 | 0.23 | 0.06 | 1.03 | 0.08 | 97.72 | 3.31 | 0.39 | 734 | 349 | 12.94 | |
Avg. | 35.94 | 3.30 | 16.64 | 15.36 | 0.30 | 13.48 | 0.07 | 0.21 | 9.03 | 0.10 | 0.01 | 0.93 | 0.05 | 95.43 | 2.96 | 0.35 | 719 | 245 | 9.07 | |
S.D. | 1.32 | 0.35 | 0.92 | 0.67 | 0.04 | 0.54 | 0.03 | 0.07 | 1.22 | 0.06 | 0.02 | 0.08 | 0.01 | 1.62 | 0.17 | 0.02 | 17 | 51 | 1.90 |
4.2. Zircon Geochemistry
4.3. Fluid Inclusion Microthermometry
5. Discussion
5.1. Magmatic Conditions
5.1.1. Temperature
5.1.2. Pressure and Crystallization Depth
5.1.3. Redox State
5.2. Crystallization, Supercritical Fluid, and Exsolving Depth
5.3. Fluid Evolution Process in the Hydrothermal Stage
5.3.1. Estimation of Temperature and Pressure of Hydrothermal Stages
5.3.2. Phase Change and Metal Precipitation Mechanisms
5.4. Fluid-Exsolving Depth and Mineralization Quality
6. Conclusions
- (1)
- The fluid-exsolving depth of the 460 Gaodi porphyry Mo-Cu deposit exceeds 6 km;
- (2)
- The ore-related granite porphyry exhibits elevated zircon lg(ƒO2) ratios, with ΔFMQ values ranging from +1.8 to +9.6 (average ΔFMQ of +6.6), indicative of high oxidation states and greater mineralization potential of the metallogenic magma, compared to pre-ore monzogranite;
- (3)
- Owing to the considerable depth of fluid exsolution, a significant proportion of the fluid undergoes substantial conductive cooling along the slow decompression path, resulting in P-T conditions that remain within the liquid-only field without boiling, which favors metal enrichment;
- (4)
- The fluid-exsolving depth can have a considerable impact on the mineralization quality of a porphyry deposit, and hence should be taken into account when evaluate the economic potential of mineral occurrences/deposits.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zeng, Q.D.; Liu, J.M.; Qin, K.Z.; Fan, H.R.; Chu, S.X.; Wang, Y.B.; Zhou, L.L. Types, characteristics, and time-space distribution of molybdenum deposits in China. Int. Geol. Rev. 2013, 55, 1311–1358. [Google Scholar] [CrossRef]
- Qin, K.Z.; Zhai, M.G.; Li, G.M.; Zhao, J.X.; Zeng, Q.D.; Gao, J.; Xiao, W.J.; Li, J.L.; Sun, S. Links of collage orogenesis of multiblocks and crust evolution to characteristic metallogeneses in China. Acta Petrol. Sin. 2017, 33, 305–325, (In Chinese with English Abstract). [Google Scholar]
- Zhao, C.; Qin, K.Z.; Song, G.X.; Li, G.M.; Li, Z.Z. Early Palaeozoic high-Mg basalt-andesite suite in the Duobaoshan Porphyry Cu deposit, NE China: Constraints on petrogenesis, mineralization, and tectonic setting. Gondwana Res. 2019, 71, 91–116. [Google Scholar] [CrossRef]
- Zeng, Q.D.; Liu, J.M.; Chu, S.X.; Wang, Y.B.; Sun, Y.; Duan, X.X.; Zhou, L.L.; Qu, W.J. Re–Os and U–Pb geochronology of the Duobaoshan porphyry Cu–Mo–(Au) deposit, northeast China, and its geological significance. J. Asian Earth Sci. 2014, 79, 895–909. [Google Scholar] [CrossRef]
- Hao, Y.J.; Ren, Y.S.; Duan, M.X.; Tong, K.Y.; Chen, C.; Yang, Q.; Li, C. Metallogenic events and tectonic setting of the Duobaoshan ore field in Heilongjiang Province, NE China. J. Asian Earth Sci. 2015, 97, 442–458. [Google Scholar] [CrossRef]
- Li, N.; Sun, Y.L.; Li, J.; Li, W.B. Molybdenite Re/Os age of Wunugetu Shan porphyry Cu/Mo deposit, Inner Mongolia, and its implication for metallgenic geodynamics. Acta Petrol. Sin. 2007, 23, 2881–2888, (In Chinese with English Abstract). [Google Scholar]
- Wang, Y.H.; Zhao, C.B.; Zhang, F.F.; Liu, J.J.; Wang, J.P.; Peng, R.M.; Liu, B. SIMS zircon U-Pb and molybdenite Re-Os geochronology, Hf isotope, and whole-rock geochemistry of the Wunugetushan porphyry Cu-Mo deposit and granitoids in NE China and their geological significance. Gondwana Res. 2015, 28, 1228–1245. [Google Scholar] [CrossRef]
- Feng, Y.Z.; Chen, H.Y.; Xiao, B.; Li, R.C.; Deng, C.Z.; Han, J.S.; Li, G.H.; Shi, H.L.; Lai, C. Late Mesozoic magmatism at Xiaokelehe Cu-Mo deposit in Great Xing’an Range, NE China: Geodynamic and metallogenic implications. Lithos 2020, 374–375, 105713. [Google Scholar] [CrossRef]
- Sun, Y.G.; Li, B.L.; Ding, Q.F.; Qu, Y.; Wang, C.K.; Wang, L.L.; Xu, Q.L. Mineralization Age and Hydrothermal Evolution of the Fukeshan Cu (Mo) Deposit in the Northern Great Xing’an Range, Northeast China: Evidence from Fluid Inclusions, H–O–S–Pb Isotopes, and Re–Os Geochronology. Minerals 2020, 10, 591. [Google Scholar] [CrossRef]
- Wu, C.; Jiang, T.; Liu, W.; Zhang, D.; Zhou, Z. Early Cretaceous adakitic granites and mineralization of the Yili porphyry Mo deposit in the Great Xing’an Range: Implications for the geodynamic evolution of northeastern China. Int. Geol. Rev. 2015, 57, 1152–1171. [Google Scholar] [CrossRef]
- Richards, J.P. The oxidation state, and sulfur and Cu contents of arc magmas: Implications for metallogeny. Lithos 2015, 233, 27–45. [Google Scholar] [CrossRef]
- Richards, J.P. Porphyry copper deposit formation in arcs: What are the odds? Geosphere 2022, 18, 130–155. [Google Scholar] [CrossRef]
- Richards, J.P.; Jourdan, F.; Creaser, R.A.; Maldonado, G.; DuFrane, S.A. Geology, geochemistry, geochronology, and economic potential of Neogene volcanic rocks in the Laguna Pedernal and Salar de Aguas Calientes segments of the Archibarca lineament, northwest Argentina. J. Volcanol. Geotherm. Res. 2013, 258, 47–73. [Google Scholar] [CrossRef]
- Audetat, A. The Metal Content of Magmatic-Hydrothermal Fluids and Its Relationship to Mineralization Potential. Econ. Geol. 2019, 114, 1033–1056. [Google Scholar] [CrossRef]
- Sun, W.D.; Arculus, R.J.; Kamenetsky, V.S.; Binns, R.A. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature 2004, 431, 975–978. [Google Scholar] [CrossRef]
- Zhou, T.C.; Zeng, Q.D.; Chu, S.X.; Zhou, L.L.; Yang, Y.H. Magmatic oxygen fugacities of porphyry Mo deposits in the East Xing’an-Mongolian Orogenic Belt (NE China) with metallogenic implications. J. Asian Earth Sci. 2018, 165, 145–159. [Google Scholar] [CrossRef]
- Landtwing, M.R.; Pettke, T.; Halter, W.E.; Heinrich, C.A.; Redmond, P.B.; Einaudi, M.T.; Kunze, K. Copper deposition during quartz dissolution by cooling magmatic–hydrothermal fluids: The Bingham porphyry. Earth Planet Sci. Lett. 2005, 235, 229–243. [Google Scholar] [CrossRef]
- Polya, D.A. Efficiency of hydrothermal ore formation and the Panasqueira W-Cu(Ag)-Sn vein deposit. Nature 1988, 333, 838–841. [Google Scholar] [CrossRef]
- Zhang, D.H.; Jin, X.D.; Mao, S.D.; Wang, L.L. The classification of ore-forming fluid and the efficiency of ore formation of magmatic hydrothermal solution. Earth Sci. Front. 2011, 18, 90–102, (In Chinese with English Abstract). [Google Scholar]
- Sanderson, D.J.; Roberts, S.; Gumiel, P.; Greenfield, C. Quantitative Analysis of Tin- and Tungsten-Bearing Sheeted Vein Systems. Econ. Geol. 2008, 103, 1043–1056. [Google Scholar] [CrossRef]
- Heinrich, C. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: A thermodynamic study. Miner Depos. 2005, 39, 864–889. [Google Scholar] [CrossRef]
- Rusk, B.G.; Reed, M.H.; Dilles, J.H. Fluid Inclusion Evidence for Magmatic-Hydrothermal Fluid Evolution in the Porphyry Copper-Molybdenum Deposit at Butte, Montana. Econ. Geol. 2008, 103, 307–334. [Google Scholar] [CrossRef]
- Hezarkhani, A.; Williams-Jones, A.E.; Gammons, C.H. Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Iran. Miner. Depos. 1999, 34, 770–783. [Google Scholar] [CrossRef]
- Zhang, D.H.; Zhang, W.Z.; Xu, G.J. Exsolution and evolution of magmatic hydrothermal fluids and their constraints on the porphyry ore-forming system. Earth Sci. Front. 2001, 8, 193–202, (In Chinese with English Abstract). [Google Scholar]
- Cline, J.S.; Bodnar, R.J. Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt? J. Geophys. Res. Solid Earth 1991, 96, 8113–8126. [Google Scholar] [CrossRef]
- Bodnar, R.J. Fluid-inclusion evidence for a magmatic source for metals in porphyry copper deposits. Magma Fluid Ore Depos. 1995, 23, 139–152. [Google Scholar]
- Carroll, M.R.; Webster, J.D. Solubilities of sulfur, noble gases, nitrogen, chlorine, and fluorine in magmas. In Volatiles in Magmas; Walter de Gruyter GmbH: Berlin, Germany, 1994. [Google Scholar]
- Candela, P.A. Controls on ore metal ratios in granite-related ore systems—An experimental and computational approach. Trans. R. Soc. Edinb.-Earth Sci. 1992, 83, 317–326. [Google Scholar]
- Sibson, R.H. Roughness at the base of the seismogenic zone: Contributing factors. J. Geophys. Res. 1984, 89, 5791–5799. [Google Scholar] [CrossRef]
- Koide, H.; Bhattacharji, S. Formation of fractures around magmatic intrusions and their role in ore localization. Econ. Geol. 1975, 70, 781–799. [Google Scholar] [CrossRef]
- Mao, W.; Zhong, H.; Zhu, W.G.; Lin, X.G.; Zhao, X.Y. Magmatic-hydrothermal evolution of the Yuanzhuding porphyry Cu-Mo deposit, South China: Insights from mica and quartz geochemistry. Ore Geol. Rev. 2018, 101, 765–784. [Google Scholar] [CrossRef]
- Audetat, A.; Pettke, T.; Heinrich, C.A.; Bodnar, R.J. The Composition of Magmatic-Hydrothermal Fluids in Barren and Mineralized Intrusions. Econ. Geol. 2008, 103, 877–908. [Google Scholar] [CrossRef]
- Williams-Jones, A.E.; Heinrich, C.A. 100th Anniversary special paper: Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Econ. Geol. 2005, 100, 1287–1312. [Google Scholar] [CrossRef]
- Heinrich, C.A.; Gunthler, D. Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid. Geology 1999, 27, 755–758. [Google Scholar] [CrossRef]
- Proffett, J.M. Geology of the Bajo de la Alumbrera Porphyry Copper-Gold Deposit, Argentina. Econ. Geol. 2003, 98, 1535–1574. [Google Scholar] [CrossRef]
- Proffett, J.M. High Cu grades in porphyry Cu deposits and their relationship to emplacement depth of magmatic sources. Geology 2009, 37, 675–678. [Google Scholar] [CrossRef]
- Chen, Y.J.; Wang, P.; Li, N.; Yang, Y.F.; Pirajno, F. The collision-type porphyry Mo deposits in Dabie Shan, China. Ore Geol. Rev. 2017, 81, 405–430. [Google Scholar] [CrossRef]
- Audetat, A.; Edmonds, M. Magmatic-Hydrothermal Fluids. Elements 2020, 16, 401–406. [Google Scholar] [CrossRef]
- Munoz, J.L. Calculation of HF and HCl fugacities from biotite compositions: Revised equations. Geol. Soc. Am. Abstr. Program 1992, 24, A221. [Google Scholar]
- Abdel-Rahman, A.F.M. Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas. J. Petrol. 1994, 35, 525–541. [Google Scholar] [CrossRef]
- Wones, D.R.; Eugster, H.P. Stability of biotite—Experiment theory and application. Am. Mineral 1965, 50, 1228–1272. [Google Scholar]
- Trail, D.; Watson, E.B.; Tailby, N.D. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochim. Cosmochim. Acta 2012, 97, 70–87. [Google Scholar] [CrossRef]
- Loucks, R.R.; Fiorentini, M.L.; Henriquez, G.J. New Magmatic Oxybarometer Using Trace Elements in Zircon. J. Petrol. 2020, 61, egaa034. [Google Scholar] [CrossRef]
- Liu, Y.J.; Feng, Z.Q.; Jiang, L.W.; Jin, W.; Li, W.M.; Guan, Q.B.; Wen, Q.B.; Liang, C.Y. Ophiolite in the eastern Central Asian Orogenic Belt, NE China. Acta Petrol. Sin. 2019, 35, 3017–3047, (In Chinese with English Abstract). [Google Scholar]
- Wu, F.Y.; Zhao, G.C.; Sun, D.Y.; Wilde, S.A.; Yang, J.H. The Hulan Group: Its role in the evolution of the Central Asian Orogenic Belt of NE China. J. Asian Earth Sci. 2007, 30, 542–556. [Google Scholar] [CrossRef]
- Li, Y.; Xu, W.L.; Tang, J.; Pei, F.P.; Wang, F.; Sun, C.Y. Geochronology and geochemistry of Mesozoic intrusive rocks in the Xing’an Massif of NE China: Implications for the evolution and spatial extent of the Mongol–Okhotsk tectonic regime. Lithos 2018, 304, 57–73. [Google Scholar] [CrossRef]
- Goldstein, R.H.; Reynolds, T.J. Systematics of Fluid Inclusions in Diagenetic Minerals; SEPM Short Course: Broken Arrow, OK, USA, 1994. [Google Scholar]
- Audetat, A.; Gunther, D. Mobility and H2O loss from fluid inclusions in natural quartz crystals. Contrib. Miner. Petrol. 1999, 137, 1–14. [Google Scholar] [CrossRef]
- Becker, S.P.; Fall, A.; Bodnar, R.J. Synthetic fluid inclusions. XVII. PVTX properties of high salinity H2O-NaCl solutions (>30 wt% NaCl): Application to fluid inclusions that homogenize by halite disappearance from porphyry copper and other hydrothermal ore deposits. Econ. Geol. 2008, 103, 539–554. [Google Scholar] [CrossRef]
- Thompson, J.M.; Meffre, S.; Danyushevsky, L. Impact of air, laser pulse width and fluence on U–Pb dating of zircons by LA-ICPMS. J. Anal. At. Spectrom. 2018, 33, 221–230. [Google Scholar] [CrossRef]
- Paton, C.; Woodhead, J.D.; Hellstrom, J.C.; Hergt, J.M.; Maas, R. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochem. Geophys. Geosyst. 2010, 11, Q0AA06. [Google Scholar] [CrossRef]
- Nachit, H.; Ibhi, A.; Abia, E.H.; Ben Ohoud, M. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. CR Geosci. 2005, 337, 1415–1420. [Google Scholar] [CrossRef]
- Rasmussen, K.L.; Mortensen, J.K. Magmatic petrogenesis and the evolution of (F:Cl:OH) fluid composition in barren and tungsten skarn-associated plutons using apatite and biotite compositions: Case studies from the northern Canadian Cordillera. Ore Geol. Rev. 2013, 50, 118–142. [Google Scholar] [CrossRef]
- Zhang, W.; Lentz, D.R.; Thorne, K.G.; McFarlane, C. Geochemical characteristics of biotite from felsic intrusive rocks around the Sisson Brook W-Mo-Cu deposit, west-central New Brunswick: An indicator of halogen and oxygen fugacity of magmatic systems. Ore Geol. Rev. 2016, 77, 82–96. [Google Scholar] [CrossRef]
- Kumar, S.; Pathak, M. Mineralogy and geochemistry of biotites from Proterozoic granitoids of western Arunachal Himalaya: Evidence of bimodal granitogeny and tectonic affinity. J. Geol. Soc. India 2010, 75, 715–730. [Google Scholar] [CrossRef]
- Stone, D. Temperature and pressure variations in suites of Archean felsic plutonic rocks, Berens River area, northwest Superior Province, Ontario, Canada. Can. Miner. 2000, 38, 455–470. [Google Scholar] [CrossRef]
- Li, X.Y.; Zhang, C.; Behrens, H.; Holtz, F. Calculating biotite formula from electron microprobe analysis data using a machine learning method based on principal components regression. Lithos 2020, 356–357, 105371. [Google Scholar] [CrossRef]
- Henry, D.J.; Guidotti, C.V.; Thomson, J.A. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms. Am. Miner. 2005, 90, 316–328. [Google Scholar] [CrossRef]
- Uchida, E.; Endo, S.; Makino, M. Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Resour. Geol. 2007, 57, 47–56. [Google Scholar] [CrossRef]
- Foster, M.D. Interpretation of the composition of trioctahedral micas. US Geol. Surv. Prof. Paper B 1960, 354, 11–49. [Google Scholar]
- Boynton, W.V. Chapter 3—Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In Developments in Geochemistry; Henderson, P., Ed.; Elsevier: Amsterdam, The Netherlands, 1984; Volume 2, pp. 63–114. [Google Scholar]
- Li, W.K.; Cheng, Y.Q.; Yang, Z.M. Geo-fO2: Integrated Software for Analysis of Magmatic Oxygen Fugacity. Geochem. Geophys. Geosyst. 2019, 20, 2542–2555. [Google Scholar]
- Ferry, J.M.; Watson, E.B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Miner. Petrol. 2007, 154, 429–437. [Google Scholar] [CrossRef]
- Fu, B.; Page, F.Z.; Cavosie, A.J.; Fournelle, J.; Kita, N.T.; Lackey, J.S.; Wilde, S.A.; Valley, J.W. Ti-in-zircon thermometry: Applications and limitations. Contrib. Miner. Petrol. 2008, 156, 197–215. [Google Scholar] [CrossRef]
- Blundy, J.; Wood, B. Prediction of crystal-melt partition-coefficients from Elastic-Moduli. Nature 1994, 372, 452–454. [Google Scholar] [CrossRef]
- Ballard, J.R.; Palin, J.M.; Campbell, I.H. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: Application to porphyry copper deposits of northern Chile. Contrib. Miner. Petrol. 2002, 144, 347–364. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Black, L.P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J. Metamorph. Geol. 2000, 18, 423–439. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Schaltegger, U. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Hall, D.L.; Sterner, S.M.; Bodnar, R.J. Freezing point depression of NaCl-KCl-H2O solutions. Econ. Geol. 1988, 83, 197–202. [Google Scholar] [CrossRef]
- Shao, J.L. Prospecting Mineralogy of Gold Ore; China University of Geosciences Press: Wuhan, China, 1988. [Google Scholar]
- Watson, E.B.; Wark, D.A.; Thomas, J.B. Crystallization thermometers for zircon and rutile. Contrib. Miner. Petrol. 2006, 151, 413–433. [Google Scholar] [CrossRef]
- Shen, P.; Hattori, K.; Pan, H.D.; Jackson, S.; Seitmuratova, E. Oxidation Condition and Metal Fertility of Granitic Magmas: Zircon Trace-Element Data from Porphyry Cu Deposits in the Central Asian Orogenic Belt. Econ. Geol. 2015, 110, 1861–1878. [Google Scholar] [CrossRef]
- Strong, D.F. Ore deposit models—5—A model for granophile mineral-deposits. Geosci. Can. 1981, 8, 155–161. [Google Scholar]
- Robb, L.J. Introduction to Ore-Forming Processes; Blackwell Publishing Company: Hoboken, NJ, USA, 2005. [Google Scholar]
- Hu, R.G.; Zhao, Y.L.; Cai, Y.F.; Feng, Z.H.; Liu, X.J.; Zhou, Z.H.; Sha, P.Z. Characteristics of Biotite in the Granite Porphyry and Its Significance for Petrogenesis and Mineralization of Dachang Sn-Polymetallic Ore Deposit, Guangxi. Earth Sci. 2020, 45, 14, (In Chinese with English Abstract). [Google Scholar]
- Zhang, S.H.; Li, W.X.; Zhou, X.X.; Yang, D.S.; Lv, P.L. Chemical composition of biotite from Wushan copper deposit, Jiangxi Province: Geology and metallogenic significances. Geochimica 2020, 49, 637–652, (In Chinese with English Abstract). [Google Scholar]
- Trail, D.; Watson, E.B.; Tailby, N.D. The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature 2011, 480, 79-U238. [Google Scholar] [CrossRef]
- Zou, X.Y.; Qin, K.Z.; Han, X.L.; Li, G.M.; Evans, N.J.; Li, Z.Z.; Yang, W. Insight into zircon REE oxy-barometers: A lattice strain model perspective. Earth Planet Sci. Lett. 2019, 506, 87–96. [Google Scholar] [CrossRef]
- Lu, Y.J.; Loucks, R.R.; Fiorentini, M.; Mccuaig, T.C.; Kobussen, A. Zircon Compositions as a Pathfinder for Porphyry Cu ± Mo ± Au Deposits; Society of Economic Geologists: Littleton, CO, USA, 2016; pp. 329–347. [Google Scholar]
- Qiu, K.-F.; Marsh, E.; Yu, H.-C.; Pfaff, K.; Gulbransen, C.; Gou, Z.-Y.; Li, N. Fluid and metal sources of the Wenquan porphyry molybdenum deposit, Western Qinling, NW China. Ore Geol. Rev. 2017, 86, 459–473. [Google Scholar] [CrossRef]
- Meng, X.Y.; Mao, J.W.; Zhang, C.Q.; Zhang, D.Y.; Liu, H. Melt recharge, f (O2)-T conditions, and metal fertility of felsic magmas: Zircon trace element chemistry of Cu-Au porphyries in the Sanjiang orogenic belt, southwest China. Min. Depos. 2018, 53, 649–663. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Porphyry Copper Systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef]
- Cloos, M. Bubbling magma chambers, cupolas, and porphyry copper deposits. Int. Geol. Rev. 2001, 43, 285–311. [Google Scholar] [CrossRef]
- Seedorff, E.; Barton, M.D.; Stavast, W.J.A.; Maher, D.J. Root Zones of Porphyry Systems: Extending the Porphyry Model to Depth. Econ. Geol. 2008, 103, 939–956. [Google Scholar] [CrossRef]
- Runyon, S.E.; Steele-Macinnis, M.; Seedorff, E.; Lecumberri-Sanchez, P.; Mazdab, F.K. Coarse muscovite veins and alteration deep in the Yerington batholith, Nevada: Insights into fluid exsolution in the roots of porphyry copper systems. Min. Depos. 2017, 52, 463–470. [Google Scholar] [CrossRef]
- Qin, K.Z.; Zhao, J.X.; Fan, H.R.; Tang, D.M.; Li, G.M.; Yu, K.L.; Cao, M.J.; Su, B.X. On the ore-forming depth and possible maximum vertical extension of the major type ore deposits. Earth Sci. Front. 2021, 28, 271–294, (In Chinese with English Abstract). [Google Scholar]
- Huang, M.-L.; Bi, X.-W.; Richards, J.P.; Hu, R.-Z.; Xu, L.-L.; Gao, J.-F.; Zhu, J.-J.; Zhang, X.-C. High water contents of magmas and extensive fluid exsolution during the formation of the Yulong porphyry Cu-Mo deposit, eastern Tibet. J. Asian Earth Sci. 2019, 176, 168–183. [Google Scholar] [CrossRef]
- Burnham, C.W. Magmas and hydrothermal fluids. In Geochemistry of Hydrothermal Ore Deposits; Wiley: New York, NY, USA, 1979; pp. 71–136. [Google Scholar]
- Whitney, J.A.; Naldrett, A.J. Ore Deposition Associated with Magmas; Open Library: El Paso, TX, USA, 1989. [Google Scholar]
- Li, Z.-Z.; Qin, K.-Z.; Li, G.-M.; Jin, L.-Y.; Song, G.-X.; Han, R. Incursion of meteoric water triggers molybdenite precipitation in porphyry Mo deposits: A case study of the Chalukou giant Mo deposit. Ore Geol. Rev. 2019, 109, 144–162. [Google Scholar] [CrossRef]
- Cline, J.S.; Bodnar, R.J. Direct Evolution of Brine from a Crystallizing Silicic Melt at the Questa, New-Mexico, Molybdenum Deposit. Econ. Geol. Bull. Soc. Econ. Geol. 1994, 89, 1780–1802. [Google Scholar] [CrossRef]
- Henley, R.W.; Mcnabb, A. Magmatic vapor plume and ground-water interaction in porphyry copper emplacement. Econ. Geol. 1978, 73, 1–20. [Google Scholar] [CrossRef]
- Redmond, P.B.; Einaudi, M.T.; Inan, E.E.; Landtwing, M.R.; Heinrich, C.A. Copper deposition by fluid cooling in intrusion-centered systems: New insights from the Bingham porphyry ore deposit, Utah. Geology 2004, 32, 217–220. [Google Scholar] [CrossRef]
- Sourirajan, S.; Kennedy, G.C. System H2O-NaCl at elevated temperatures and pressures. Am. J. Sci. 1962, 260, 115. [Google Scholar] [CrossRef]
- Haas, J.L. Physical properties of the coexisting phases and thermochemical properties of the H2O component in boiling NaCl solutions. US Geol. Surv. Bull. 1976, 1421, 1–73. [Google Scholar]
- Fournier, R.O. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Econ. Geol. 1999, 94, 1193–1211. [Google Scholar] [CrossRef]
- Hang, S.; Zhang, L.; Li, K.; Chen, Z.; Wu, H.; Xiang, P.; Zhang, X. CH4-containing fluid inclusion study of the Taipingchuan porphyry Cu-Mo deposit, Inner Mongolia. Acta Petrol. Sin. 2010, 26, 1386–1396. [Google Scholar]
- Li, N.; Chen, Y.J.; Lai, Y.; Li, W.B. Fluid inclusion study of the Wunugetushan porphyry Cu-Mo deposit, Inner Mongolia. Acta Petrol. Sin. 2007, 23, 2177–2188, (In Chinese with English Abstract). [Google Scholar]
- Shi, Q.; Lai, Y.; Guo, H.; Kang, Y.; Liu, C. Fluid inclusion and C-O isotopic constrains on the origin and evolution of ore-forming fluids of the Badaguan Cu-Mo deposit, Inner Mongolia. Ore Geol. Rev. 2021, 136, 104267. [Google Scholar] [CrossRef]
- Candela, P.A.; Holland, H.D. The partitioning of copper and molybdenum between silicate melts and aqueous fluids. Geochim Cosmochim. Acta 1984, 48, 373–380. [Google Scholar] [CrossRef]
- Keppler, H.; Wyllie, P.J. Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite-H2O HCl and haplogranite-H2O HF. Contrib. Miner. Petrol. 1991, 109, 139–150. [Google Scholar] [CrossRef]
- Candela, P.A. Calculation of magmatic fluid contributions to porphyry-type ore systems—Predicting fluid inclusion chemistries. Geochem. J. 1989, 23, 295–305. [Google Scholar] [CrossRef]
- Webster, J.D.; Vivo, B.D. Experimental and modeled solubilities of chlorine in aluminosilicate melts, consequences of magma evolution, and implications for exsolution of hydrous chloride melt at Mt. Somma-Vesuvius. Am. Miner. 2002, 87, 1046–1061. [Google Scholar] [CrossRef]
- Zajacz, Z.; Halter, W.E.; Pettke, T.; Guillong, M. Determination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions: Controls on element partitioning. Geochim. Cosmochim. Acta 2008, 72, 2169–2197. [Google Scholar] [CrossRef]
- Chevychelov, V. Partitioning of Pb, Zn, W, Mo, Cl, and major elements between aqueous fluid and melt in the systems granodiorite (granite, leucogranite)-H2O-NaCl-HCl V. Yu. Chevychelov and T. K. Chevychelova. Neues Jahrb. Mineral. Abhandlungen. 1997, 172, 101–115. [Google Scholar] [CrossRef]
- Bai, T.B.; Koster van Groos, A.F. The distribution of Na, K, Rb, Sr, Al, Ge, Cu, W, Mo, La, and Ce between granitic melts and coexisting aqueous fluids. Geochim. Cosmochim. Acta 1999, 63, 1117–1131. [Google Scholar] [CrossRef]
Lithologies | Statistics | Ti | Ce | Eu | ΣREE | LREE/HREE | Eu/Eu* | lg(ƒO2) | T(°C) | (Ce/Ce*)D | Ce4+/Ce3+ | ∆FMQ |
---|---|---|---|---|---|---|---|---|---|---|---|---|
3M-112 (n = 10) | Min. | 2.2 | 24.20 | 0.36 | 1107 | 0.02 | 0.14 | −18.2 | 659 | 15.0 | 14.0 | −2.5 |
Max. | 5.7 | 60.20 | 4.92 | 1883 | 0.05 | 0.60 | −12.8 | 741 | 122.7 | 121.8 | 4.1 | |
Avg. | 3.6 | 41.94 | 1.04 | 1491 | 0.04 | 0.23 | −15.5 | 696 | 67.2 | 66.3 | 1.3 | |
S.D. | 1.2 | 13.63 | 1.38 | 250 | 0.01 | 0.13 | 1.8 | 27 | 33.2 | 33.2 | 2.0 | |
8G-994 (n = 20) | Min. | 1.5 | 17.40 | 0.48 | 409 | 0.04 | 0.45 | −14.0 | 630 | 49.1 | 48.2 | 1.8 |
Max. | 5.7 | 57.10 | 3.88 | 971 | 0.12 | 0.72 | −7.9 | 741 | 649.9 | 649.7 | 9.6 | |
Avg. | 3.1 | 36.11 | 1.41 | 633 | 0.07 | 0.58 | −10.6 | 684 | 300.3 | 299.7 | 6.6 | |
S.D. | 1.1 | 12.07 | 0.81 | 154 | 0.02 | 0.06 | 1.7 | 28 | 151.2 | 151.4 | 1.9 |
Stage | Types | Statistics | Liquid Proportion | Tm/°C | Thhalite/°C | ThL-V/°C | Th/°C | Salinity 1 | Pressure/MPa 2 |
---|---|---|---|---|---|---|---|---|---|
1 | V (n = 31) | Min. | 35 | −8.3 | 238 | 3.4 | 19.5 | ||
Max. | 60 | −2.0 | 450 | 12.0 | 48.3 | ||||
Avg. | 50 | −4.9 | 372 | 7.6 | 35.3 | ||||
L (n = 58) | Min. | 40 | −8.6 | 240 | 4.2 | 21.5 | |||
Max. | 80 | −2.5 | 482 | 12.4 | 53.1 | ||||
Avg. | 60 | −5.3 | 366 | 8.2 | 35.5 | ||||
H (n = 12) | Min. | 419 | 191 | 419 | 49.5 | ||||
Max. | 476 | 311 | 476 | 56.6 | |||||
Avg. | 453 | 258 | 453 | 53.7 | |||||
2 | V (n = 31) | Min. | 40 | −7.1 | 260 | 3.1 | 20.1 | ||
Max. | 60 | −1.8 | 430 | 10.6 | 42.2 | ||||
Avg. | 53 | −4.6 | 340 | 7.2 | 31.6 | ||||
L (n = 77) | Min. | 40 | −7.8 | 245 | 4.0 | 21.2 | |||
Max. | 90 | −2.4 | 458 | 11.5 | 47.2 | ||||
Avg. | 66 | −5.2 | 345 | 8.1 | 33.3 | ||||
H (n = 12) | Min. | 300 | 166 | 300 | 38.1 | ||||
Max. | 407 | 312 | 407 | 48.2 | |||||
Avg. | 358 | 231 | 358 | 43.3 | |||||
3 | L (n = 122) | Min. | 60 | −7.1 | 144 | 3.2 | 12.4 | ||
Max. | >90 | −1.9 | 383 | 10.6 | 38.1 | ||||
Avg. | 76 | −4.3 | 248 | 6.8 | 22.7 | ||||
4 | V (n = 22) | Min. | 30 | −3.9 | 157 | 3.4 | 12.6 | ||
Max. | 60 | −2.0 | 250 | 6.3 | 21.6 | ||||
Avg. | 47 | −3.3 | 190 | 5.4 | 16.1 | ||||
L (n = 84) | Min. | 40 | −5.9 | 115 | 3.8 | 9.0 | |||
Max. | >90 | −2.3 | 310 | 9.1 | 30.7 | ||||
Avg. | 78 | −4.1 | 223 | 6.5 | 20.2 | ||||
5 | L (n = 86) | Min. | 60 | −6.0 | 121 | 3.5 | 9.9 | ||
Max. | >90 | −2.1 | 246 | 9.2 | 24.2 | ||||
Avg. | 88 | −3.7 | 170 | 6.0 | 15.0 |
Stages | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
T(°C) | 368–>482 | 343–458 | 248–383 | 216–310 | 170–246 |
P(MPa) | 35–>53 | 33–37 | 23–38 | 19–31 | 15–24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kan, J.; Qin, K.; Wang, L.; Hui, K.; Han, R. The Influence of Fluid-Exsolving Depth on Mineralization Quality: Evidence from Biotite and Zircon Mineralogy and Fluid Inclusions from the 460 Gaodi Porphyry Mo-Cu Deposit, NE China. Minerals 2023, 13, 699. https://doi.org/10.3390/min13050699
Kan J, Qin K, Wang L, Hui K, Han R. The Influence of Fluid-Exsolving Depth on Mineralization Quality: Evidence from Biotite and Zircon Mineralogy and Fluid Inclusions from the 460 Gaodi Porphyry Mo-Cu Deposit, NE China. Minerals. 2023; 13(5):699. https://doi.org/10.3390/min13050699
Chicago/Turabian StyleKan, Jing, Kezhang Qin, Le Wang, Kaixuan Hui, and Ri Han. 2023. "The Influence of Fluid-Exsolving Depth on Mineralization Quality: Evidence from Biotite and Zircon Mineralogy and Fluid Inclusions from the 460 Gaodi Porphyry Mo-Cu Deposit, NE China" Minerals 13, no. 5: 699. https://doi.org/10.3390/min13050699
APA StyleKan, J., Qin, K., Wang, L., Hui, K., & Han, R. (2023). The Influence of Fluid-Exsolving Depth on Mineralization Quality: Evidence from Biotite and Zircon Mineralogy and Fluid Inclusions from the 460 Gaodi Porphyry Mo-Cu Deposit, NE China. Minerals, 13(5), 699. https://doi.org/10.3390/min13050699