Cu–S Isotopes of the Main Sulfides and Indicative Significance in the Qibaoshan Cu–Au Polymetallic Ore District, Wulian County, Shandong Province, North China Craton
Abstract
:1. Introduction
2. Regional Geology
3. Ore Deposit Geology
4. Samples and Analytical Methods
4.1. Samples
4.2. Copper Isotope Analysis
4.3. Sulfur Isotope Analysis
5. Results
5.1. Copper Isotopes in Chalcopyrite
5.2. In Situ Sulfur Isotopes in Sulfides
6. Discussion
6.1. Cu Isotopic Variation in Chalcopyrite and Its Implications
6.2. Sulfur Source
6.3. Implication for Ore-Forming Process
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Balaram, V.; Satyanarayanan, M. Data Quality in Geochemical Elemental and Isotopic Analysis. Minerals 2022, 12, 999. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Ehrig, K.; Slattery, A.; Verdugo-Ihl, M.R.; Courtney-Davies, L.; Gao, W. Advances and Opportunities in Ore Mineralogy. Minerals 2017, 7, 233. [Google Scholar] [CrossRef]
- Yuan, H.; Yuan, W.; Bao, Z.; Chen, K.; Huang, F.; Liu, S. Development of two new copper isotope standard solutions and their copper Isotopic compositions. Geostand. Geoanal. Res. 2016, 41, 77–84. [Google Scholar] [CrossRef]
- Moynier, F.; Vance, D.; Fujii, T.; Savage, P. The isotope geochemistry of zinc and copper. Rev. Mineral. Geochem. 2017, 82, 543–600. [Google Scholar] [CrossRef]
- Gou, W.; Li, W.; Ji, J.; Li, W. Zinc Isotope Fractionation during sorption onto Al oxide: Atomic level understanding from EXAFS. Environ. Sci. Technol. 2018, 52, 9087–9096. [Google Scholar] [CrossRef]
- Belshaw, N.; Zhu, X.; Guo, Y.; O’Nions, R. High precision measurement of iron isotopes by plasma source mass spectrometry. Int. J. Mass Spectrom. 2000, 197, 191–195. [Google Scholar] [CrossRef]
- Dauphas, N.; Pourmand, A.; Teng, F. Routine isotopic analysis of iron by HR-MC-ICPMS: How precise and how accurate? Chem. Geol. 2009, 267, 175–184. [Google Scholar] [CrossRef]
- Millet, M.; Baker, J.; Payne, C. Ultra-precise stable Fe isotope measurements by high resolution multiple-collector inductively coupled plasma mass spectrometry with a 57Fe-58Fe double-spike. Chem Geol. 2012, 304, 18–25. [Google Scholar] [CrossRef]
- Sullivan, K.; Layton-Matthews, D.; Leybourne, M.; Kidder, J.; Mester, Z.; Yang, L. Copper Isotopic Analysis in Geological and Biological Reference Materials by MC-ICP-MS. Geostand. Geoanal. Res. 2020, 44, 349–362. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, X.K. Applications of Cu Isotopes on Studies of Mineral Deposits: A Status Report. J. Jilin Univ. Earth Sci. Ed. 2010, 40, 739–751, (In Chinese with English Abstract). [Google Scholar]
- Zhu, X.K.; Wang, Y.; Yan, B.; Li, J.; Dong, A.G.; Li, Z.H.; Sun, J. Developments of Non-Traditional Stable Isotope Geochemistry. Bull. Mineral. Petrol. Geochem. 2013, 32, 651–688, (In Chinese with English Abstract). [Google Scholar]
- Wang, Z.Z.; Liu, S.A.; Li, D.D.; Lv, Y.W.; Wu, S.; Zhao, Y. A review of progress in copper stable isotope geochemistry. Earth Sci. Front. 2015, 22, 072–083, (In Chinese with English Abstract). [Google Scholar]
- Wang, Y.; Zhu, X.K.; Mao, J.W.; Cheng, Y.B.; Li, Z.H. Preliminary Study on Cu Isotopic Geochemistry Behavior of Dongguashan Porphyry-skarn Deposit, Tongling District. Acta Geol. Sin. 2014, 88, 2413–2422, (In Chinese with English Abstract). [Google Scholar]
- Albarède, F. The stable isotope geochemistry of copper and zinc. Rev. Mineral. Geochem. 2004, 55, 409–427. [Google Scholar] [CrossRef]
- Larson, P.B.; Maher, K.; Ramos, F.C.; Chang, Z.S.; Gaspar, M.; Meinert, L.D. Copper isotope ratios in magmatic and hydrothermal ore-forming environments. Chem. Geol. 2003, 201, 337–350. [Google Scholar] [CrossRef]
- Malitch, K.N.; Latypovc, R.M.; Badanina, I.Y.; Sluzhenikin, S.F. Insights into ore genesis of Ni-Cu-PGE sulfide deposits of the Noril’sk Province (Russia): Evidence from copper and sulfur isotopes. Lithos 2014, 204, 172–187. [Google Scholar] [CrossRef]
- Tang, D.M.; Qin, K.Z.; Su, B.X.; Mao, Y.J.; Evans, N.J.; Niu, Y.J.; Kang, Z. Sulfur and copper isotopic signatures of chalcopyrite at Kalatongke and Baishiquan: Insights into the origin of magmatic Ni-Cu sulfide deposits. Geochim. Cosmochim. Acta 2020, 275, 209–228. [Google Scholar] [CrossRef]
- Graham, S.; Pearson, N.; Jackson, S.; Griffin, W.; O’Reilly, S.Y. Tracing Cu and Fe from source to porphyry: In situ determination of Cu and Fe isotope ratios in sulfides from the Grasberg Cu-Au deposit. Chem. Geol. 2004, 207, 147–169. [Google Scholar] [CrossRef]
- Li, Z.Q.; Yang, Z.M.; Zhu, X.Y.; Hou, Z.Q.; Li, S.Z.; Li, Z.H.; Wang, Y. Cu isotope Composition of Qulong porphyry Cu deposit, Tibet. Acta Geol. Sinica 2009, 83, 1985–1996, (In Chinese with English Abstract). [Google Scholar]
- Mathur, R.; Spencer, T.; Fernando, B.; Brantley, S.; Wilson, M.; Phillips, A.; Munizaga, F.; Maksaev, V.; Vervoort, J.; Hart, G. Exploration potential of Cu isotope fractionation in porphyry copper deposits. J. Geochem. Explor. 2009, 102, 1–6. [Google Scholar] [CrossRef]
- Nie, L.M.; Li, Z.Q.; Fanf, X.J. Cu isotope fractionation during magma evolution process of Qulong porphyry copper deposit, Tibet. Mineral Depos. 2012, 31, 718–726, (In Chinese with English Abstract). [Google Scholar]
- Zheng, Y.C.; Liu, S.A.; Wu, C.D.; Griffin, W.L.; Li, Z.Q.; Xu, B.; Yang, Z.M.; Hou, Z.Q.; O’Reilly, S.Y. Cu isotopes reveal initial Cu enrichment in sources of giant porphyry deposits in a collisional setting. Geology 2019, 47, 135–138. [Google Scholar] [CrossRef]
- Wang, Y. Iron and Copper Isotope Geochemistry of Tongling ore District of the Middle-Lower Yangtze River Valley. Ph.D. Thesis, Chinese Academy of Geological Sciences, Beijing, China, 2011. (In Chinese with English Abstract). [Google Scholar]
- Mason, T.F.D.; Weiss, D.J.; Chapman, J.B. Zn and Cu isotopic variability in the Alexandrinka volcanic-hosted massive sulphide (VHMS) ore deposit, Urals, Russia. Chem. Geol. 2005, 221, 170–187. [Google Scholar] [CrossRef]
- Wang, Z.C.; Park, J.W.; Wang, X.; Zou, Z.Q.; Kim, J.; Zhang, P.Y.; Li, M. Evolution of copper isotopes in arc systems: Insights from lavas and molten sulfur in Niuatahi volcano, Tonga rear arc. Geochim. Cosmochim. Acta 2019, 250, 13–33. [Google Scholar] [CrossRef]
- Markl, G.; Yann, L.; Gregor, S. Copper isotopes as monitors of redox processes in hydrothermal mineralization. Geochim. Cosmochim. Acta 2006, 70, 4215–4228. [Google Scholar] [CrossRef]
- Huang, Y.; Sa, R.N.; Zhou, L.; Ou-Yang, X.Q.; Li, X.J.; Shi, G.Y.; Sun, X.M. Fe-Cu isotopic compositions and their indicative significance in Yushui Copper polymetallic deposit, eastern Guangdong Province. Mineral Depos. 2014, 33, 95–96, (In Chinese with English Abstract). [Google Scholar]
- Yang, L.F.; Shi, K.X.; Wang, C.M.; Wu, B.; Du, B.; Chen, J.Y.; Xia, J.S.; Chen, J. Ore genesis of the Jinman copper deposit in the Lanping Basin, Sanjiang Orogen: Constraints by copper and sulfur isotopes. Acta Petrol. Sinica 2016, 32, 2392–2406, (In Chinese with English Abstract). [Google Scholar]
- Ou-Yang, X.C.; Di, Y.J.; Wang, C.M.; Zhang, D.; Yang, Q.; Wu, B.; Wang, Q.; Luo, Z. Genesis of Dongxiang copper deposit in Jiangxi Province: Constraints from copper and sulfur isotopes. Mineral Depos. 2017, 36, 250–264, (In Chinese with English Abstract). [Google Scholar]
- Fan, F.P.; Xiao, H.L.; Chen, L.Z.; Li, H.L.; Liu, J.X.; Deng, Z.L.; Li, S.B.; Lin, G.W.; Zhou, X. Copper Isotope Studies of a Deep Ore Body in the Xinliaodong CopperPolymetallic Deposit, Eastern Guangdong Province. Rock Miner. Anal. 2017, 36, 420–429, (In Chinese with English Abstract). [Google Scholar]
- Wang, Y.; Su, S.G.; Zhang, Q.; Zhou, Q.M.; Zhang, Y.N. Cu-S isotopic characteristics and metallogenic prediction in the ore of Dajing tin and copper polymetallic deposit, Inner Mongolia. Earth Sci. Front. 2021, 29, 319–328, (In Chinese with English Abstract). [Google Scholar]
- Asael, D.; Matthews, A.; Bar-Matthews, M.; Halicz, L. Copper isotope fractionation in sedimentary copper mineralizaion (Timna Valley, Israel). Chem. Geol. 2007, 243, 238–254. [Google Scholar] [CrossRef]
- Asael, D.; Matthews, A.; Oszczepalski, S.; Bar-Matthews, M.; Halicz, L. Fluid speciation controls of low temperature copper isotope fractionation applied to the Kupferschiefer and Timna ore deposits. Chem. Geol. 2009, 262, 147–158. [Google Scholar] [CrossRef]
- Mathur, R.; Ruiz, J.; Titley, S. Cu isotopic fractionation in the supergene environment with and without bacteria. Geochim. Cosmochim. Acta 2005, 69, 5233–5246. [Google Scholar] [CrossRef]
- Maher, K.C.; Larson, P.B. Variation in copper isotope ratios and controls on fractionation in hypogene skarn mineralizaion at Coroccohuayco and Tintaya, Perú. Econ. Geol. 2007, 102, 225–237. [Google Scholar] [CrossRef]
- Kimbll, B.E.; Mathur, R.; Dohnalkova, A.C.; Wall, A.J.; Runkel, R.L.; Brantley, S.L. Copper isotope fractionation in acid mine drainage. Geochimica Cosmochimica Acta 2009, 73, 1247–1263. [Google Scholar] [CrossRef]
- Guo, H.H.; Xia, Y.; Bai, R.X.; Zhang, X.C.; Huang, F. Experiments on Cu-isotope fractionation between chlorine-bearing fluid and silicate magma: Implications for fluid exsolution and porphyry Cu deposits. Natl. Sci. Rev. 2020, 7, 1319–1330. [Google Scholar] [CrossRef]
- Zhu, X.K.; O’Nions, R.K.; Guo, Y.; Belshaw, N.S.; Rickard, D. Determination of natural Cu-isotope variation by plasmasource mass spectrometry: Implications for use as geochemical tracers. Chem. Geolog. 2000, 163, 139–149. [Google Scholar] [CrossRef]
- Rouxel, O.; Fouquet, Y.; Ludden, J.N. Copper Isotope systematics of the lucky strike, rainbow, and logatchev sea-floor hydrothermal field on the mid-Atlantic ridge. Econ. Geol. 2004, 99, 585–600. [Google Scholar] [CrossRef]
- MacDonald, G.D.; Amold, L.C. Geological and geochemical zoning of the Grasberg Igneous Complex, Irian, Indonesia. J. Geochem. Explor. 1994, 50, 143–178. [Google Scholar] [CrossRef]
- Braxton, D.; Mathur, R. Exploration applications of copper isotopes in the supergene environment: A case study of the Bayugo porphyry copper-gold deposit, southern Philippines. Econ. Geol. 2011, 106, 1447–1463. [Google Scholar] [CrossRef]
- Mathur, R.; Ruiz, J.; Casselman, M.J. Use of Cu isotopes to distinguish primary and secondary Cu mineralizaion in the Cañariaco Norte porphyry copper deposit, Northern Peru. Miner. Depos. 2012, 47, 755–762. [Google Scholar] [CrossRef]
- Mathur, R.; Dendas, M.; Titley, S.; Phillips, A. Patterns in the copper isotope composition of minerals in porphyry copper deposits in southwestern United States. Econ. Geol. 2010, 105, 1457–1467. [Google Scholar] [CrossRef]
- Zhao, H.X.; Li, B.; Zhou, Y.X.; Zhu, Z.Y.; Chen, S.M. Genesis of the giant Zijinshan epithermal Cu-Au deposit, Fujian Province, southeastern China: Cu-He-Ar isotope perspective. Ore Geology Rev. 2022, 148, 105047. [Google Scholar] [CrossRef]
- Wang, Y. Geological characteristics and origin of Qibaoshan gold deposit in Shandong Province. Geol. Rev. 1991, 37, 327–337, (In Chinese with English Abstract). [Google Scholar]
- Yu, G.Y. Metallogenesis and Metallogenic Prognosis of Gold-Copper Polymetallic Deposits in Qibaoshan Orefield, Wulian County, Shandong Province. Ph.D. Thesis, Jilin University, Jilin, China, 2020. (In Chinese with English Abstract). [Google Scholar]
- Zhang, L.Y.; Cheng, M.Q. Geochemical characteristics of Qibaoshan Au-Cu deposit Shandong Province and it’s genesis. Contrib. Geol. Miner. Resour. Res. 1996, 11, 18–24, (In Chinese with English Abstract). [Google Scholar]
- Tian, N.F.; Zhang, F.; Gao, Z.J.; Yuan, J. Geological Characteristics and Prospecting Direction of Qibaoshan Copper and Polymetallic Mineralization in Wulian County of Shandong Province. Shandong Land Resour. 2011, 27, 8–11, (In Chinese with English Abstract). [Google Scholar]
- Wu, S.S.; Zhang, X.B.; Zhang, Y.; Huang, G.H.; Zhang, T.Z.; Lai, C.K. In-situ trace element and S isotope compositions of sulfides from the Tonggou Cu deposit, Eastern Tianshan Orogen: Implication for ore-forming process. Ore Geol. Rev. 2022, 149, 105085. [Google Scholar] [CrossRef]
- Chugaev, A.V.; Plotinskaya, O.Y.; Dubinina, E.O.; Stepanov, S.Y.; Gareev, B.I.; Batalin, G.A.; Rassokhina, I.V.; Chizhova, J.N.; Bondar, D.; Abramova, V.D. Mixed crustal-mantle source of porphyry Cu-Mo deposits of the Urals: Pyrite trace element geochemistry and Pb-S isotope data. J. Geochem. Explor. 2022, 242, 107075. [Google Scholar] [CrossRef]
- Su, Z.K.; Zhao, X.F.; Wang, C.Y. Trace elements and sulfur isotopic compositions of sulfides in the giant Dahongshan Fe-Cu-(Au-Co) deposit, SW China: Implications for fluid evolution and Co enrichment in IOCG systems. Ore Geol. Rev. 2023, 157, 105401. [Google Scholar] [CrossRef]
- Shi, W.J. The Late Mesozoic Tectonic-magematic Evolution Process in the Yishu Fault Zone and Adjacent Regions, Shandong Province: Implication for Gold Mineralization. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2014. (In Chinese with English Abstract). [Google Scholar]
- Qin, K.Z.; Wang, D.B.; Wang, Z.T.; Sun, S. Types, geological background, metallogenic provinces and ore-forming systematics of major copper deposits in eastern China. Mineral Depos. 1999, 18, 359–371, (In Chinese with English Abstract). [Google Scholar]
- Mao, J.W.; Xie, G.Q.; Yuan, S.D.; Liu, P.; Meng, X.Y.; Zhou, Z.H.; Zheng, W. Current research progress and future trends of porphyry-skarn copper and granite-related tin polymetallic deposits in the Circum Pacific metallogenic belts. Acta Petrol. Sinica 2018, 34, 2501–2517. [Google Scholar]
- Zhang, Z.Q.; Zhang, C.J.; Wang, S.J.; Liu, S.C.; Wang, L.M.; Du, S.X.; Song, Z.Y.; Zhang, S.K.; Yang, E.X.; Cheng, G.S.; et al. Views on Classification and Contrast of Tectonic Units in Strata in Shandong Province. Shandong Land Resour. 2014, 30, 1–23, (In Chinese with English Abstract). [Google Scholar]
- Li, X.W.; Shan, W.; Yu, X.F.; Li, D.P.; Xie, Y.H.; Zhang, G.K.; Chi, N.J.; Wang, W.L.; Zhang, Y.; Li, Z.S.; et al. Petrogenesis of Early Cretaceous Qibaoshan alkaline intrusive rocks in the Wulian area and its geological significance. Earth Sci. Front. 2022, 29, 438–463, (In Chinese with English Abstract). [Google Scholar]
- Wang, K.Y.; Wang, X.W.; Zhang, Z.J.; Wang, C.Y.; Yu, Q.; Li, J.F.; Han, Y.Q. Research Report on New Understanding of Copper and Polymetallic ore Mineralization and New Prospecting Methods in Qibaoshan Area, Wulian County, Shandong Province. In Scientific and Technological Report; The No. 8 Institute of Geology and Mineral Resources Exploration of Shandong Province: Rizhao, China, 2014; (In Chinese with English Abstract). [Google Scholar]
- Wang, X. The Borehole Histogram from the QBS2020ZK1 Drilling at the Qibaoshan Area, Wulian County. Scientific and Technological Report; The No. 8 Institute of Geology and Mineral Resources Exploration of Shandong Province: Rizhao, China, 2020; (In Chinese with English Abstract). [Google Scholar]
- Liu, S.A.; Teng, F.Z.; Li, S.G.; Wei, G.J.; Ma, J.L.; Li, D.D. Copper and iron isotope fractionation during weathering and pedogenesis: Insights from saprolite profiles. Geochim. Cosmochim. Acta 2014, 146, 59–75. [Google Scholar] [CrossRef]
- Liu, S.A.; Li, D.D.; Li, S.G.; Teng, F.Z.; Ke, S.; Hea, Y.S.; Lu, Y.H. High-precision copper and iron isotope analysis of igneous rock standards by MC-ICP-MS. J. Anal. Spectrom. 2014, 29, 122–133. [Google Scholar] [CrossRef]
- Li, D.D.; Liu, S.A.; Li, S.G. Copper isotope fractionation during adsorption onto kaolinite: Experimental approach and applications. Chem. Geol. 2015, 396, 74–82. [Google Scholar] [CrossRef]
- Maréchal, C.N.; Télouk, P.; Albarède, F. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chem. Geol. 1999, 156, 251–273. [Google Scholar] [CrossRef]
- Fu, J.; Hu, Z.; Zhang, W.; Yang, L.; Liu, Y.; Li, M.; Zong, K.; Gao, S.; Hu, S. In situ sulfur isotopes (δ34S and δ33S) analyses in sulfides and elemental sulfur using high sensitivity cones combined with the addition of nitrogen by laser ablation MC-ICPMS. Anal. Chim. Acta 2016, 911, 14–26. [Google Scholar] [CrossRef]
- Duan, J.L. Cu and Zn Isotopic Features of Typical Magma-Related Deposit Systems in Tibet and Their Geological Significances. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2018. (In Chinese with English Abstract). [Google Scholar]
- Mathur, R.; Munk, L.; Nguyen, M.; Gregogy, M.; Annell, H.; Lang, J. Modern and paleofluid pathways revealed by Cu isotope compositions in surface waters and ores of the Pebble porphyry Cu-Au-Mo deposit, Alaska. Econ. Geol. 2013, 108, 529–541. [Google Scholar] [CrossRef]
- Wu, L.Y.; Hu, R.Z.; Li, X.F.; Liu, S.A.; Tang, Y.W.; Tang, Y.Y. Copper isotopic compositions of the Zijinshan high-sulfidation epithermal Cu-Au deposit, South China: Implications for deposit origin. Ore Geol. Rev. 2017, 83, 191–199. [Google Scholar] [CrossRef]
- Li, W.Q.; Jackson, S.E.; Pearson, N.J.; Graham, S. Copper isotopic zonation in the Northparkes Cu-Au deposit, SE Australia. Geochim. Cosmochimica Acta 2010, 74, 4078–4096. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, Y.; Xue, C.J.; An, W.C.; Guo, X.D. Applications of Cu Isotopes in porphyry deposits. In Proceedings of the 9th National Symposium on Metallogenic Theory and Prospecting Methods, Nanjing, China, 13 December 201; pp. 521–522, (In Chinese with English Abstract).
- Richter, F.M.; Dauphas, N.; Teng, F.Z. Non-traditional fractionation of non-traditional isotopes: Evaporation, chemical diffusion and Soret diffusion. Chem. Geol. 2009, 258, 92–103. [Google Scholar] [CrossRef]
- Huang, F.; Lundstrom, C.C.; Glessner, J.; Ianno, A.; Boudreau, A.; Li, J.; Ferré, E.C.; Marshak, S.; DeFrates, J. Chemical and isotopic fractio nation of wet andesite in a temperature gradient: Experiments and models suggesting a new mechanism of magma differentiation. Geochim. Cosmochim. Acta 2009, 73, 729–749. [Google Scholar] [CrossRef]
- Çiçek, M.; Oyman, T.; Palmer, M.R. Variation of Cu, Fe, S and Pb isotopes in sulfides from hydrothermal mineralization from the Yenice region in Çanakkale, Biga Peninsula, NW Turkey. Ore Geol. Rev. 2021, 136, 104255. [Google Scholar] [CrossRef]
- Ohmoto, H.; Goldhaber, M.B. Sulfur and Carbon Isotopes. In Geochemistry of Hydrothermal Ore Deposits, 3rd ed.; Barnes, H.L., Ed.; John Wiley and Sons: New York, NY, USA, 1997. [Google Scholar]
- Bachinski, D.J. Bond Strength and Sulfur Isotopic Fractionation in Coexisting Sulfides: A Reply. Econ. Geol. 1969, 64, 56–65. [Google Scholar] [CrossRef]
- Seal, R.R. Sulfur Isotope Geochemistry of Sulfi de Minerals. Rev. Mineral Geochem. 2006, 61, 633–677. [Google Scholar] [CrossRef]
- Klein, E.L.; Moura, C.A.V.; Harris, C.; Giret, A. Reconnaissance stable isotope (C, O, H, S) study of paleoproterozoic gold deposits of the So Luis Craton and country rocks, Northern Brazil: Implications for gold metallogeny. Int. Geol. Rev. 2015, 11, 1131–1143. [Google Scholar]
- Scherbarth, N.L.; Spry, P.G. Mineralogical, petrological, stable isotope, and fluid inclusion characteristics of the Tuvatu gold-silver Telluride deposit, Fiji: Comparisons with the Emperor Deposit. Econ. Geol. 2006, 101, 135–158. [Google Scholar] [CrossRef]
- Oberthür, T.; Mumm, A.S.; Titley, S.; Vetter, U.; Simon, K.; Amanor, J. Gold Mineralization in the Ashanti Belt of Ghana: Genetic Constraints of the Stable Isotope Geochemis. Econ. Geol. 1996, 91, 289–301. [Google Scholar] [CrossRef]
- Shanks, W.C.P.; Slack, J.F.; Till, A.B.; Thurston, R.; Gemery-Hill, P. Sulfur and oxygen isotopic study of Paleozoic sediment-hosted Zn-Pb(-Ag-Au-Ba-F) deposits and associated hydrothermal alteration zones in the Nome Complex, Seward Peninsula, Alaska. Geol. Soc. Am. 2014, 506, 235–258. [Google Scholar]
- Li, S.R.; Santosh, M. Metallogeny and craton destruction: Records from the North China Craton. Ore Geol. Rev. 2014, 56, 376–414. [Google Scholar] [CrossRef]
- Yu, G.Y.; Li, S.-D.; Wang, Y.C.; Wang, K.Y. Fluid Evolution and Ore Genesis of the Qibaoshan Polymetallic Ore Field, Shandong Province, China: Constraints from Fluid Inclusions and H-O-S Isotopic Compositions. Minerals 2019, 9, 394. [Google Scholar] [CrossRef]
No. | Sample Number | Sample Lithology | Sampling Position and Elevation | δ65Cu (‰) | 2SD |
---|---|---|---|---|---|
1 | QBS-1 | Biotite diorite (wallrock) | Jinxiantou +10 m | 0.076 | 0.009 |
2 | QBS-3 | Carbonated-altered rock | 0.239 | 0.011 | |
3 | QBS-4 | Sericite-silicified altered rock | 0.223 | 0.013 | |
4 | QBS-7 | Volcanic breccia-type altered rock | 0.250 | 0.055 | |
5 | QBS-17 | Silicified-carbonated altered rock | Hongshigang +112 m | 0.252 | 0.035 |
6 | QBS2020ZK1-15 | Sericite-silicified structural breccia | Yaotou +24 m | 0.357 | 0.019 |
7 | QBS2020ZK1-38 | Sulfide-bearing altered rock | Yaotou −43 m | 0.279 | 0.027 |
8 | QBS2020ZK1-39 | Sulfide-bearing sericite-silicified structural breccia | Yaotou −43 m | 0.318 | 0.040 |
9 | QBS2020ZK1-40 | Carbonated-altered rock | Yaotou −44 m | 0.279 | 0.041 |
10 | QBS2020ZK1-59 | Carbonated-silicified altered rock | Yaotou −808 m | 0.284 | 0.026 |
11 | QBS2020ZK1-66 | Sericite-silicified altered rock | Yaotou −814 m | 0.169 | 0.015 |
Average value of δ65Cu | 0.265 |
No. | Sample Number | Sample Lithology | Sampling Position and Elevation | Sulfide | δ34SV-CDT (‰) | Average |
---|---|---|---|---|---|---|
1 | QBS-1 | Biotite diorite | Jinxiantou +10 m | Chalcopyrite | −6.81 | −4.92 (n = 2) |
2 | Chalcopyrite | −3.03 | ||||
3 | QBS-3 | Carbonated-altered rock | Chalcopyrite | 3.26 | 3.52 (n = 2) | |
4 | Chalcopyrite | 3.78 | ||||
5 | QBS-4 | Sericite-silicified altered rock | Chalcopyrite | 3.82 | 3.71 (n = 2) | |
6 | Chalcopyrite | 3.61 | ||||
7 | QBS-17 | Silicified-carbonated altered rock | Hongshigang +112 m | Chalcopyrite | 1.81 | 1.67 (n = 2) |
8 | Chalcopyrite | 1.52 | ||||
9 | QBS2020ZK1-15 | Sericite-silicified structural breccia rock | Yaotou +24 m | Pyrite | 2.71 | 2.67 (n = 2) |
10 | Pyrite | 2.63 | ||||
11 | QBS2020ZK1-39 | Sulfide-bearing sericite-silicified structural breccia rock | Yaotou −43 m | Pyrite | 1.35 | 1.35 |
12 | Chalcopyrite | −1.57 | −1.57 | |||
13 | QBS2020ZK1-40 | Carbonated-altered rock | Yaotou −44 m | Chalcopyrite | −2.07 | −2.07 |
14 | QBS2020ZK1-66 | Sericite-silicified altered rock | Yaotou −814 m | Chalcopyrite | −1.95 | −1.95 |
15 | Pyrite | −1.65 | −1.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Wang, X.; Zhang, Y.; Li, D.; Shan, W.; Geng, K.; Wei, P.; Liu, Q.; Xie, W.; Chi, N. Cu–S Isotopes of the Main Sulfides and Indicative Significance in the Qibaoshan Cu–Au Polymetallic Ore District, Wulian County, Shandong Province, North China Craton. Minerals 2023, 13, 723. https://doi.org/10.3390/min13060723
Sun Y, Wang X, Zhang Y, Li D, Shan W, Geng K, Wei P, Liu Q, Xie W, Chi N. Cu–S Isotopes of the Main Sulfides and Indicative Significance in the Qibaoshan Cu–Au Polymetallic Ore District, Wulian County, Shandong Province, North China Craton. Minerals. 2023; 13(6):723. https://doi.org/10.3390/min13060723
Chicago/Turabian StyleSun, Yuqin, Xin Wang, Yan Zhang, Dapeng Li, Wei Shan, Ke Geng, Pengfei Wei, Qiang Liu, Wei Xie, and Naijie Chi. 2023. "Cu–S Isotopes of the Main Sulfides and Indicative Significance in the Qibaoshan Cu–Au Polymetallic Ore District, Wulian County, Shandong Province, North China Craton" Minerals 13, no. 6: 723. https://doi.org/10.3390/min13060723
APA StyleSun, Y., Wang, X., Zhang, Y., Li, D., Shan, W., Geng, K., Wei, P., Liu, Q., Xie, W., & Chi, N. (2023). Cu–S Isotopes of the Main Sulfides and Indicative Significance in the Qibaoshan Cu–Au Polymetallic Ore District, Wulian County, Shandong Province, North China Craton. Minerals, 13(6), 723. https://doi.org/10.3390/min13060723