Hydrothermal Alteration in the Nevados de Chillán Geothermal System, Southern Andes: Multidisciplinary Analysis of a Fractured Reservoir
Abstract
:1. Introduction
2. Geological Background
3. Sampling and Analytical Methods
3.1. Characterization of Hydrothermal Minerals
3.2. Fluid Inclusion Microthermometry
3.3. Fluid Chemistry
3.4. Geochemical Modeling
4. Results
4.1. Mineral Paragenesis
4.2. Vertical Distribution and Characterization of Clay Minerals
4.3. Chemistry of Thermal Springs
4.4. Fluid Inclusion Measurements
5. Discussion
5.1. Mineral Paragenesis
5.2. Clay Minerals and Permeability Constraints
5.3. Characterization of Hydrothermal Fluids
5.3.1. Surface Manifestations
5.3.2. Deep-Seated Hydrothermal Fluids
5.4. Structural Control on the NChGS
5.5. Hydrothermal Evolution and Conceptual Model of the NChGS
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Henley, R.W.; Ellis, A.J. Geothermal systems ancient and modern: A geochemical review. Earth-Sci. Rev. 1983, 19, 1–50. [Google Scholar] [CrossRef]
- Stimac, J.; Goff, F.; Goff, C.J. Intrusion-Related Geothermal Systems. In The Encyclopedia of Volcanoes, 2nd ed.; Sigurdsson, H., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 799–822. [Google Scholar] [CrossRef]
- Moore, J.N.; Powell, T.S.; Heizler, M.T.; Norman, D.I. Mineralization and Hydrothermal History of the Tiwi Geothermal System, Philippines. Econ. Geol. 2000, 95, 1001–1023. [Google Scholar] [CrossRef]
- Moore, J.N.; Allis, R.G.; Nemčok, M.; Powell, T.S.; Bruton, C.J.; Wannamaker, P.E.; Raharjo, I.B.; Norman, D.I. The evolution of volcano-hosted geothermal systems based on deep wells from Karaha-Telaga Bodas, Indonesia. Am. J. Sci. 2008, 308, 1–48. [Google Scholar] [CrossRef]
- Sanchez-Alfaro, P.; Reich, M.; Arancibia, G.; Pérez-Flores, P.; Cembrano, J.; Driesner, T.; Lizama, M.; Rowland, J.; Morata, D.; Heinrich, C.A.; et al. Physical, chemical and mineralogical evolution of the Tolhuaca geothermal system, southern Andes, Chile: Insights into the interplay between hydrothermal alteration and brittle deformation. J. Volcanol. Geotherm. Res. 2016, 324, 88–104. [Google Scholar] [CrossRef]
- Simpson, M.P.; Mauk, J.L. Hydrothermal Alteration and Veins at the Epithermal Au-Ag Deposits and Prospects of the Waitekauri Area, Hauraki Goldfield, New Zealand. Econ. Geol. 2011, 106, 945–973. [Google Scholar] [CrossRef]
- Browne, P.R.L. Hydrothermal Alteration in Active Geothermal Fields. Annu. Rev. Earth Planet. Sci. 1978, 6, 229–250. [Google Scholar] [CrossRef]
- Hedenquist, J.; Reyes, A.G.; Simmons, S.F.; Taguchi, S. The thermal and geochemical structure of geothermal and epithermal systems: A framework for interpreting fluid inclusion data. Eur. J. Miner. 1992, 4, 989–1016. [Google Scholar] [CrossRef]
- Moncada, D.; Mutchler, S.; Nieto, A.; Reynolds, T.; Rimstidt, J.; Bodnar, R. Mineral textures and fluid inclusion petrography of the epithermal Ag–Au deposits at Guanajuato, Mexico: Application to exploration. J. Geochem. Explor. 2012, 114, 20–35. [Google Scholar] [CrossRef]
- Simmons, S.F.; Christenson, B.W. Origins of calcite in a boiling geothermal system. Am. J. Sci. 1994, 294, 361–400. [Google Scholar] [CrossRef]
- Rye, R.O. A review of the stable-isotope geochemistry of sulfate minerals in selected igneous environments and related hydrothermal systems. Chem. Geol. 2005, 215, 5–36. [Google Scholar] [CrossRef]
- Giggenbach, W.F. Chemical Techniques in Geothermal Exploration. In Application of Geochemistry in Geothermal Reservoir Development; D’Amore, F., Ed.; UNITAR/UNDP Centre on Small Energy Resources: New York, NY, USA, 1991; pp. 119–144. [Google Scholar]
- Giggenbach, W.; Minissale, A.; Scandiffio, G. Isotopic and chemical assessment of geothermal potential of the Colli Albani area, Latium region, Italy. Appl. Geochem. 1988, 3, 475–486. [Google Scholar] [CrossRef]
- Corrado, S.; Aldega, L.; Celano, A.S.; De Benedetti, A.A.; Giordano, G. Cap rock efficiency and fluid circulation of natural hydrothermal systems by means of XRD on clay minerals (Sutri, Northern Latium, Italy). Geothermics 2014, 50, 180–188. [Google Scholar] [CrossRef]
- Maffucci, R.; Corrado, S.; Aldega, L.; Bigi, S.; Chiodi, A.; Di Paolo, L.; Giordano, G.; Invernizzi, C. Cap rock efficiency of geothermal systems in fold-and-thrust belts: Evidence from paleo-thermal and structural analyses in Rosario de La Frontera geothermal area (NW Argentina). J. Volcanol. Geotherm. Res. 2016, 328, 84–95. [Google Scholar] [CrossRef]
- Maza, S.; Collo, G.; Morata, D.; Lizana, C.; Camus, E.; Taussi, M.; Renzulli, A.; Mattioli, M.; Godoy, B.; Alvear, B.; et al. Clay mineral associations in the clay cap from the Cerro Pabellón blind geothermal system, Andean Cordillera, Northern Chile. Clay Miner. 2018, 53, 117–141. [Google Scholar] [CrossRef]
- Heap, M.J.; Gravley, D.M.; Kennedy, B.M.; Gilg, H.A.; Bertolett, E.; Barker, S.L. Quantifying the role of hydrothermal alteration in creating geothermal and epithermal mineral resources: The Ohakuri ignimbrite (Taupō Volcanic Zone, New Zealand). J. Volcanol. Geotherm. Res. 2020, 390, 106703. [Google Scholar] [CrossRef]
- Hauser, A. Catastro y caracterización de las fuentes de aguas minerales y termales de Chile. Serv. Nac. Geol. y Mineria 1997, 50, 89. [Google Scholar]
- Sánchez, P.; Pérez-Flores, P.; Arancibia, G.; Cembrano, J.; Reich, M. Crustal deformation effects on the chemical evolution of geothermal systems: The intra-arc Liquiñe–Ofqui fault system, Southern Andes. Int. Geol. Rev. 2013, 55, 1384–1400. [Google Scholar] [CrossRef]
- Aravena, D.; Muñoz, M.; Morata, D.; Lahsen, A.; Parada, M.; Dobson, P. Assessment of high enthalpy geothermal resources and promising areas of Chile. Geothermics 2016, 59, 1–13. [Google Scholar] [CrossRef]
- Tardani, D.; Reich, M.; Roulleau, E.; Takahata, N.; Sano, Y.; Pérez-Flores, P.; Sánchez-Alfaro, P.; Cembrano, J.; Arancibia, G. Exploring the structural controls on helium, nitrogen and carbon isotope signatures in hydrothermal fluids along an intra-arc fault system. Geochim. Et Cosmochim. Acta 2016, 184, 193–211. [Google Scholar] [CrossRef]
- Wrage, J.; Tardani, D.; Reich, M.; Daniele, L.; Arancibia, G.; Cembrano, J.; Sánchez-Alfaro, P.; Morata, D.; Pérez-Moreno, R. Geochemistry of thermal waters in the Southern Volcanic Zone, Chile-Implications for structural controls on geothermal fluid composition. Chem. Geol. 2017, 466, 545–561. [Google Scholar] [CrossRef]
- Morata, D.; Aravena, D.; Lahsen, A.; Muñoz, M.; Valdenegro, P. Chile up-date: The first South American Geothermal Power Plant After One Century of Exploration. In Proceedings of the World Geothermal Congress 2020, Reykjavik, Iceland, 26 April–2 May 2020. [Google Scholar]
- Morata, D.; Alarcón, P.; Aravena, D.; Bravo, B.; García, K.; Hurtado, N.; Muñoz, M.; Pérez-Estay, N.; Valdenegro, P.; Vargas, S. The slow progress of geothermal development and future perspectives. In Proceedings of the World Geothermal Congress 2023, Beijing, China, 9–11 October 2023. [Google Scholar]
- Lahsen, A. Características geoquímicas y origen de las aguas de las termas de Chillán. Comunicaciones. Geol. Dep. Univ. Chile 1978, 24, 35–47. [Google Scholar]
- Lahsen, A.; Sepúlveda, F.; Rojas, J.; Palacios, C. Present Status of Geothermal Exploration in Chile. In Proceedings of the World Geothermal Congress 2005, Antalya, Turkey, 24–29 April 2005. [Google Scholar]
- Morata, D.; Maza, S.; López-Contreras, C.; Mura, V.; Robidoux, P.; Gallardo, R.; Arancibia, G. Surface Hydrothermal Alteration In the Nevados de Chillán Geothermal System (Andean Cordillera, Central Chile): Insights for A Better Understanding Fluid-Flow-Fracture Process. In Proceedings of the World Geothermal Congress 2023, Beijing, China, 9–11 October 2023. [Google Scholar]
- Somoza, R. Updated azca (Farallon)—South America relative motions during the last 40 My: Implications for mountain building in the central Andean region. J. South Am. Earth Sci. 1998, 11, 211–215. [Google Scholar] [CrossRef]
- Somoza, R.; Ghidella, M.E. Convergencia en el margen occidental de América del sur durante el Cenozoico: Subducción de las placas de Nazca, Farallón y Aluk. Rev. la Asoc. Geol. Argentina 2005, 60, 797–809. [Google Scholar]
- Charrier, R.; Pinto, L.; Rodríguez, M.P. Tectonostratigraphic evolution of the Andean Orogen in Chile. In The Geology of Chile; Moreno, T., Gibbons, W., Eds.; The Geological Society: London, UK, 2007; pp. 21–114. [Google Scholar]
- Farías, M.; Comte, D.; Charrier, R.; Martinod, J.; David, C.; Tassara, A.; Tapia, F.; Fock, A. Crustal-scale structural architecture in central Chile based on seismicity and surface geology: Implications for Andean mountain building. Tectonics 2010, 29, TC3006. [Google Scholar] [CrossRef]
- Stanton-Yonge, A.; Griffith, W.A.; Cembrano, J.; Julien, R.S.; Iturrieta, P. Tectonic role of margin-parallel and margin-transverse faults during oblique subduction in the Southern Volcanic Zone of the Andes: Insights from Boundary Element Modeling. Tectonics 2016, 35, 1990–2013. [Google Scholar] [CrossRef]
- Giambiagi, L.; Ramos, V.A. Structural evolution of the Andes between 33°30′ and 33°45′ S, above the transition zone between the flat and normal subduction segment, Argentina and Chile. J. South Am. Earth Sci. 2002, 15, 99–114. [Google Scholar] [CrossRef]
- Cembrano, J.; Lara, L. The link between volcanism and tectonics in the southern volcanic zone of the Chilean Andes: A review. Tectonophysics 2009, 471, 96–113. [Google Scholar] [CrossRef]
- Sielfeld, G.; Ruz, J.; Brogi, A.; Cembrano, J.; Stanton-Yonge, A.; Pérez-Flores, P.; Iturrieta, P. Oblique-slip tectonics in an active volcanic chain: A case study from the Southern Andes. Tectonophysics 2019, 770, 228221. [Google Scholar] [CrossRef]
- Jordan, T.E.; Burns, W.M.; Veiga, R.; Pángaro, F.; Copeland, P.; Kelley, S.; Mpodozis, C. Extension and basin formation in the southern Andes caused by increased convergence rate: A mid-Cenozoic trigger for the Andes. Tectonics 2001, 20, 308–324. [Google Scholar] [CrossRef]
- Lange, D.; Cembrano, J.; Rietbrock, A.; Haberland, C.; Dahm, T.; Bataille, K. First seismic record for intra-arc strike-slip tectonics along the Liquiñe-Ofqui fault zone at the obliquely convergent plate margin of the southern Andes. Tectonophysics 2008, 455, 14–24. [Google Scholar] [CrossRef]
- Melnick, D.; Charlet, F.; Echtler, H.P.; De Batist, M. Incipient axial collapse of the Main Cordillera and strain partitioning gradient between the central and Patagonian Andes, Lago Laja, Chile. Tectonics 2006, 25, TC5004. [Google Scholar] [CrossRef]
- López Escobar, Á.; Cembrano, J.; Moreno, H. Geochemistry and tectonics of the Chilean Southern Andes basaltic Quaternary volcanism (37–46° S). Rev. Geológica Chile 1995, 22, 219–234. [Google Scholar]
- Lupi, M.; Trippanera, D.; Gonzalez, D.; D’amico, S.; Acocella, V.; Cabello, C.; Stef, M.M.; Tassara, A. Transient tectonic regimes imposed by megathrust earthquakes and the growth of NW-trending volcanic systems in the Southern Andes. Tectonophysics 2020, 774, 228204. [Google Scholar] [CrossRef]
- Farías, C.; Lupi, M.; Fuchs, F.; Miller, S.A. Seismic activity of the Nevados de Chillán volcanic complex after the 2010 Mw8.8 Maule, Chile, earthquake. J. Volcanol. Geotherm. Res. 2014, 283, 116–126. [Google Scholar] [CrossRef]
- Pérez-Flores, P.; Veloso, E.; Cembrano, J.; Sánchez-Alfaro, P.; Lizama, M.; Arancibia, G. Fracture network, fluid pathways and paleostress at the Tolhuaca geothermal field. J. Struct. Geol. 2017, 96, 134–148. [Google Scholar] [CrossRef]
- Pérez-Flores, P.; Wang, G.; Mitchell, T.; Meredith, P.; Nara, Y.; Sarkar, V.; Cembrano, J. The effect of offset on fracture permeability of rocks from the Southern Andes Volcanic Zone, Chile. J. Struct. Geol. 2017, 104, 142–158. [Google Scholar] [CrossRef]
- Muñoz, J.; Niemeyer, H. Hoja Laguna del Maule: Regiones del Maule y del Bío Bío, escala 1:250,000. Serv. Nac. De Geol. Y Min. Carta Geológica 1984, 64, 98. [Google Scholar]
- Naranjo, J.A.; Gilbert, J.; Sparks, R.S. Geología del complejo volcánico Nevados de Chillán, Región del Biobío. Cart. Geológica Chile Ser. Geol. Básica 2008, 114, 32. [Google Scholar]
- Stern, C.R. Active Andean volcanism: Its geologic and tectonic setting. Rev. Geológica de Chile 2004, 31, 161–206. [Google Scholar] [CrossRef]
- Oyarzún, A.; Lara, L.E.; Tassara, A. Decoding the plumbing system of Nevados de Chillán Volcanic complex, Southern Andes. J. Volcanol. Geotherm. Res. 2022, 422, 107455. [Google Scholar] [CrossRef]
- Dixon, H.J.; Murphy, M.D.; Sparks, S.J.; Chávez, R.; Naranjo, J.A.; Dunkley, P.N.; Young, S.R.; Gilbert, J.; Pringle, M.R. The geology of Nevados de Chillán volcano, Chile. Rev. Geológica Chile 1999, 26, 227–253. [Google Scholar] [CrossRef]
- Déruelle, B.; López-Escobar, L. Basaltes, andésites, dacites et rhyolites des strato-volcans des Nevados de Chillán et de l’Antuco (Andes méridionales): La remarquable illustration d’une différenciation par cristallisation fractionnée. Comptes Rendus L’académie Sci. Paris Sci. Terre Planètes 1999, 329, 337–344. [Google Scholar]
- Cardona, C.; Gil-Cruz, F.; Franco-Marín, L.; Martín, J.S.; Valderrama, O.; Lazo, J.; Cartes, C.; Morales, S.; Hernández, E.; Quijada, J.; et al. Volcanic activity accompanying the emplacement of dacitic lava domes and effusion of lava flows at Nevados de Chillán Volcanic Complex—Chilean Andes (2012 to 2020). J. Volcanol. Geotherm. Res. 2021, 420, 107409. [Google Scholar] [CrossRef]
- Déruelle, B.; Deruelle, J. Géologie des volcans quaternaires des Nevados de Chillán (Chili). Bull. Volcanol. 1974, 38, 425–444. [Google Scholar] [CrossRef]
- Orozco, G.; Jara, G.; Bertin, D. Peligros del Complejo Volcánico Nevados de Chillán, Región del Biobío. Cart. Geológica Chile Ser. Geol. Ambient. 2016, 28, 34. [Google Scholar]
- Radic, J.P. Las cuencas cenozoicas y su control en el volcanismo de los Complejos Nevados de Chillan y Copahue-Callaqui (Andes del Sur, 36–39° S). Andean Geol. 2010, 37, 220–246. [Google Scholar] [CrossRef]
- Ramos, V.A.; Barbieri, M. El volcanismo Cenozoico de Huantraico: Edad y relaciones isotópicas iniciales, provincia del Neuquén. Rev. Asoc. Geol. Argentina 1989, 43, 210–223. [Google Scholar]
- Ramos, V.A.; Folguera, A. Tectonic evolution of the Andes of Neuquén: Constraints derived from the magmatic arc and foreland deformation. Geol. Soc. London, Spéc. Publ. 2005, 252, 15–35. [Google Scholar] [CrossRef]
- Ramos, V.A.; Kay, S.M. Overview of the tectonic evolution of the southern Central Andes of Mendoza and Neuquén (35°–39° S latitude). In Evolution of an Andean Margin: A Tectonic and Magmatic View from the Andes to the Neuquén Basin (35°–39° S lat); Geological Society of America: Boulder, CO, USA, 2006; Volume 407, pp. 1–18. [Google Scholar] [CrossRef]
- Radic, J.P. Anisotropías de Basamento como control estructural del volcanismo en el Complejo Volcánico Chillán (Andes del Sur, 36° S). In Proceedings of the XI Congreso Geológico Chile, Antofagasta, Chile, 7–11 August 2006; pp. 295–298. [Google Scholar]
- Meulle-Stef, M. Modelo Estructural y Régimen de Paleo-Esfuerzos para el Complejo Volcánico Nevados de Chillán, Región del Bio Bio, Chile Memoria de Título; Departamento de Geología Universidad de Concepción: Concepción, Chile, 2017; p. 105. [Google Scholar]
- Graveleau, F.; Strak, V.; Dominguez, S.; Malavieille, J.; Chatton, M.; Manighetti, I.; Petit, C. Experimental modelling of tectonics– erosion–sedimentation interactions in compressional, extensional, and strike–slip settings. Geomorphology 2015, 244, 146–168. [Google Scholar] [CrossRef]
- Sepúlveda, F.; Lahsen, A. Geothermal exploration in central southern Chile (33°–42° S). Geotherm. Resour. Counc. Trans. 2003, 27, 635–638. [Google Scholar]
- Salgado, G.; Raasch, G. Chile: Prospects, market, and regulation in the geothermal industry. In Proceedings of the 24th New Zealand Geothermal Workshop; University of Auckland: Auckland, New Zealand, 2002; pp. 23–28. [Google Scholar]
- Moore, D.M.; Reynolds, R.C. X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed.; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Beaufort, D.; Baronnet, A.; Lanson, B.; Meunier, A. Corrensite; a single phase or a mixed-layer phyllosilicate in saponite-to-chlorite conversion series? A case study of Sancerre-Couy deep drill hole (France). Am. Miner. 1997, 82, 109–124. [Google Scholar] [CrossRef]
- Bodnar, R. Introduction to Fluid Inclusions. In Fluid Inclusions: Analysis and Interpretation; Samson, I., Anderson, A., Marshall, D., Eds.; Mineral Association of Canada: Quebec, QC, Canada, 2003; p. 374. [Google Scholar]
- Goldstein, R.H. Petrographic Analysis of Fluid Inclusions. In Fluid Inclusions: Analysis and Interpretation; Samson, I., Anderson, A., Marshall, D., Eds.; Mineral Association of Canada: Quebec, QC, Canada, 2003; pp. 9–53. [Google Scholar]
- Bodnar, R. Revised equation and table for determining the freezing point depression of H2O-Nacl solutions. Geochim. et Cosmochim. Acta 1993, 57, 683–684. [Google Scholar] [CrossRef]
- Giggenbach, W.F.; Goguel, R.L. Collection and analysis of geothermal and volcanic water and gas samples. Dep. Sci. Ind. Res. Chem. Div. 1989, 2401, 81. [Google Scholar]
- Bethke, C.M.; Brian, F.; Yeakel, S. The Geochemist’s Workbench, GWB Essentials Guide, 12th ed.; University of Illinois: Champaign-Urbana, IL, USA, 2019. [Google Scholar]
- Gifkins, C.; Herrmann, W.; Large, R. Altered volcanic rocks. In A Guide to Description and Interpretation; Centre for Ore Deposit Research, University of Tasmania: Tasmania, Australia, 2005. [Google Scholar]
- Giorgetti, G.; Mata, M.P.; Peacor, D.R. Evolution of mineral assemblages and textures from sediment through hornfels in the Salton Sea Geothermal Field: Direct crystallization of phyllosilicates in a hydrothermal-metamorphic system. Clay Miner. 2003, 38, 113–126. [Google Scholar] [CrossRef]
- Yau, Y.C.; Peacor, D.R.; Beane, R.E.; Essene, E.J.; McDowell, S.D. Microstructures, Formation Mechanisms, and Depth-Zoning of Phyllosilicates in Geothermally Altered Shales, Salton Sea, California1. Clays Clay Miner. 1988, 36, 1–10. [Google Scholar] [CrossRef]
- Yoneda, T.; Watanabe, T.; Sato, T. Mineralogical aspects of interstratified chlorite-smectite associated with epithermal ore veins: A case study of the Todoroki Au-Ag ore deposit, Japan. Clay Miner. 2016, 51, 653–674. [Google Scholar] [CrossRef]
- Bauluz, B.; Peacor, D.R.; Ylagan, R.F. Transmission Electron Microscopy Study of Smectite Illitization During Hydrothermal Alteration of a Rhyolitic Hyaloclastite from Ponza, Italy. Clays Clay Miner. 2002, 50, 157–173. [Google Scholar] [CrossRef]
- Giorgetti, G.; Mata, M.; Peacor, D.R. TEM study of the mechanism of transformation of detrital kaolinite and muscovite to illite/smectite in sediments of the Salton Sea Geothermal Field. Eur. J. Miner. 2000, 12, 923–934. [Google Scholar] [CrossRef]
- Pollastro, R.M. Mineralogical and Morphological Evidence for the Formation of Illite at the Expense of Illite/Smectite. Clays Clay Miner. 1985, 33, 265–274. [Google Scholar] [CrossRef]
- Vazquez, M.; Bauluz, B.; Nieto, F.; Morata, D. Illitization sequence controlled by temperature in volcanic geothermal systems: The Tinguiririca geothermal field, Andean Cordillera, Central Chile. Appl. Clay Sci. 2016, 134, 221–234. [Google Scholar] [CrossRef]
- Nordstrom, D.K.; McCleskey, R.B.; Ball, J.W. Challenges in the Analysis and Interpretation of Acidic Waters. In International Mine Water Association; Wolkersdorfer, C., Freund, A., Eds.; Cape Breton University Press: Sydney, NS, Canada, 2010; pp. 379–383. [Google Scholar]
- Berger, B.R.; Bethke, P.M.; Henley, R.W.; Brown, K.L.; Fournier, R.O.; Bodnar, R.J.; Reynolds, T.J.; Kuehn, C.A.; Field, C.W.; Fifarek, R.H.; et al. Fluid-Inclusion Systematics in Epithermal Systems. In Geology and Geochemistry of Epithermal Systems; Berger, B.R., Bethke, P.M., Eds.; Society of Economic Geologists: Littleton, CO, USA, 1985; pp. 73–97. [Google Scholar] [CrossRef]
- Goldstein, R.H.; Reynolds, T.J. Systematics of Fluid Inclusions in Diagenetic Minerals. In Society for Sedimentary Geology, 31st ed.; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 1994. [Google Scholar] [CrossRef]
- Hedenquist, J.; Henley, R.W. The importance of CO2 on freezing point measurements of fluid inclusions; evidence from active geothermal systems and implications for epithermal ore deposition. Econ. Geol. 1985, 80, 1379–1406. [Google Scholar] [CrossRef]
- Vanko, D.A.; Bach, W. Heating and freezing experiments on aqueous fluid inclusions in anhydrite: Recognition and effects of stretching and the low-temperature formation of gypsum. Chem. Geol. 2005, 223, 35–45. [Google Scholar] [CrossRef]
- Haas, J.L. The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure. Econ. Geol. 1971, 66, 940–946. [Google Scholar] [CrossRef]
- Dong, G.; Morrison, G.; Jaireth, S. Quartz textures in epithermal veins, Queensland; classification, origin and implication. Econ. Geol. 1995, 90, 1841–1856. [Google Scholar] [CrossRef]
- Fournier, R. The Behavior of Silica in Hydrothermal Solutions. In Geology and Geochemistry of Epithermal Systems; Berger, B.R., Bethke, P.M., Eds.; Society of Economic Geologists: Littleton, CO, USA, 1985; pp. 45–61. [Google Scholar] [CrossRef]
- Shimizu, T. Reinterpretation of Quartz Textures in Terms of Hydrothermal Fluid Evolution at the Koryu Au-Ag Deposit, Japan. Econ. Geol. 2014, 109, 2051–2065. [Google Scholar] [CrossRef]
- Marks, N.; Schiffman, P.; Zierenberg, R.A.; Franzson, H.; Fridleifsson, G. Hydrothermal alteration in the Reykjanes geothermal system: Insights from Iceland deep drilling program well RN-17. J. Volcanol. Geotherm. Res. 2010, 189, 172–190. [Google Scholar] [CrossRef]
- Moore, J.N.; Allis, R.; Renner, J.L.; Mildenhall, D.; McCulloch, J. Petrologic Evidence for Boiling To Dryness in the Karaha-Telaga Bodas Geothermal System, Indonesia. In Proceedings of the 27th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, USA, 28–30 January 2002; pp. 98–108. [Google Scholar]
- Ruggieri, G.; Gianelli, G. Multi-stage fluid circulation in a hydraulic fracture breccia of the Larderello geothermal field (Italy). J. Volcanol. Geotherm. Res. 1999, 90, 241–261. [Google Scholar] [CrossRef]
- Hemley, J.J.; Montoya, J.W.; Marinenko, J.W.; Luce, R.W. Equilibria in the system Al2O3-SiO2-H2O and some general implications for alteration/mineralization processes. Econ. Geol. 1980, 75, 210–228. [Google Scholar] [CrossRef]
- Rye, R.O.; Bethke, P.M.; Wasserman, M.D. The stable isotope geochemistry of acid sulfate alteration. Econ. Geol. 1992, 87, 225–262. [Google Scholar] [CrossRef]
- Giggenbach, W.F. Mass transfer in hydrothermal alteration systems—A conceptual approach. Geochim. Et Cosmochim. Acta 1984, 48, 2693–2711. [Google Scholar] [CrossRef]
- Reyes, A.G. Petrology of Philippine geothermal systems and the application of alteration mineralogy to their assessment. J. Volcanol. Geotherm. Res. 1990, 43, 279–309. [Google Scholar] [CrossRef]
- Simmons, S.F.; Browne, P.R.L. Hydrothermal Minerals and Precious Metals in the Broadlands-Ohaaki Geothermal System: Implications for Understanding Low-Sulfidation Epithermal Environments. Econ. Geol. 2000, 95, 971–999. [Google Scholar] [CrossRef]
- Kübler, B.; Goy-Eggenberger, D. La cristallinité de l’illite revisitée: Un bilan des connaissances acquises ces trente dernières années. Clay Miner. 2001, 36, 143–157. [Google Scholar] [CrossRef]
- Bird, D.K.; Schiffman, P.; Elders, W.A.; Williams, A.E.; McDowell, S.D. Calc-silicate mineralization in active geothermal systems. Econ. Geol. 1984, 79, 671–695. [Google Scholar] [CrossRef]
- Reyes, A.G.; Giggenbach, W.F.; Saleras, J.R.; Salonga, N.D.; Vergara, M.C. Petrology and geochemistry of alto peak, a vapor-cored hydrothermal system, Leyte province, Philippines. Geothermics 1993, 22, 479–519. [Google Scholar] [CrossRef]
- Akaku, K. Geochemical study on mineral precipitation from geothermal waters at the fushime field, Kyushu, Japan. Geothermics 1990, 19, 455–467. [Google Scholar] [CrossRef]
- Blounot, C.; Dickson, F. The solubility of anhydrite (CaSO4) in NaCl-H2O from 100 to 450 °C and 1 to 1000 bars. Geochim. et Cosmochim. Acta 1969, 33, 227–245. [Google Scholar] [CrossRef]
- Ellis, A.J. The solubility of calcite in carbon dioxide solutions. Am. J. Sci. 1959, 257, 354–365. [Google Scholar] [CrossRef]
- Gherardi, F.; Panichi, C.; Yock, A.; Gerardo-Abaya, J. Geochemistry of the surface and deep fluids of the Miravalles volcano geothermal system (Costa Rica). Geothermics 2002, 31, 91–128. [Google Scholar] [CrossRef]
- Caracausi, A.; Ditta, M.; Italiano, F.; Longo, M.; Nuccio, P.; Paonita, A.; Rizzo, A. Changes in fluid geochemistry and physico-chemical conditions of geothermal systems caused by magmatic input: The recent abrupt outgassing off the island of Panarea (Aeolian Islands, Italy). Geochim. et Cosmochim. Acta 2005, 69, 3045–3059. [Google Scholar] [CrossRef]
- Inoue, A. Formation of Clay Minerals in Hydrothermal Environments. In Origin and Mineralogy of Clays; Velde, B., Ed.; Springer: New York, NY, USA, 1995. [Google Scholar] [CrossRef]
- Meunier, A. Hydrothermal process-Thermal metamorphism. In Clays; Meunier, A., Ed.; Springer: New York, NY, USA, 2005; pp. 379–410. [Google Scholar]
- Inoue, A.; Utada, M. Smectite-to-chlorite transformation in thermally metamorphosed volcanoclastic rocks in the Kamikita area, northern Honshu, Japan. Am. Mineral. 1991, 76, 628–640. [Google Scholar]
- Inoue, A.; Utada, M.; Wakita, K. Smectite-to-illite conversion in natural hydrothermal systems. Appl. Clay Sci. 1992, 7, 131–145. [Google Scholar] [CrossRef]
- Mas, A.; Guisseau, D.; Mas, P.P.; Beaufort, D.; Genter, A.; Sanjuan, B.; Girard, J. Clay minerals related to the hydrothermal activity of the Bouillante geothermal field (Guadeloupe). J. Volcanol. Geotherm. Res. 2006, 158, 380–400. [Google Scholar] [CrossRef]
- Kristmannsdottir, H. Alteration of Basaltic Rocks by Hydrothermal-Activity at 100–300 °C. In Developments in Sedimentology; Mortland, M., Farmer, V., Eds.; Elsevier: Amsterdam, The Netherlands, 1979; pp. 359–367. [Google Scholar] [CrossRef]
- Robinson, D.; De Zamora, A.S. The smectite to chlorite transition in the Chipilapa geothermal system, El Salvador. Am. Miner. 1999, 84, 607–619. [Google Scholar] [CrossRef]
- Schiffman, P.; Fridleifsson, G.O. The smectite?chlorite transition in drillhole NJ-15, Nesjavellir geothermal field, Iceland: XRD, BSE and electron microprobe investigations. J. Metamorph. Geol. 1991, 9, 679–696. [Google Scholar] [CrossRef]
- Robinson, D.; Schmidt, S.T.; De Zamora, A.S. Reaction pathways and reaction progress for the smectite-to-chlorite transformation: Evidence from hydrothermally altered metabasites. J. Metamorph. Geol. 2002, 20, 167–174. [Google Scholar] [CrossRef]
- Schmidt, S.T.; Robinson, D. Metamorphic grade and porosity and permeability controls on mafic phyllosilicate distributions in a regional zeolite to greenschist facies transition of the North Shore Volcanic Group, Minnesota. Bull. Geol. Soc. Am. 1997, 109, 683–697. [Google Scholar] [CrossRef]
- Kristmannsdóttir, H. Alteration in the IRDP drill hole compared with other drill holes in Iceland. J. Geophys. Res. Solid Earth 1982, 87, 6525–6531. [Google Scholar] [CrossRef]
- LaVerne, C.; Vanko, D.; Tartarotti, P.; Alt, J. Chemistry and Geothermometry of Secondary Minerals from the Deep Sheeted Dike Complex, Hole 504B. Proc. Ocean. Drill. Program Sci. Results 1995, 137, 167–189. [Google Scholar] [CrossRef]
- Shau, Y.-H.; Peacor, D.R. Phyllosilicates in hydrothermally altered basalts from DSDP Hole 504B, Leg 83? A TEM and AEM study. Contrib. Miner. Pet. 1992, 112, 119–133. [Google Scholar] [CrossRef]
- Schiffman, P. Low grade metamorphism of mafic rocks. Rev. Geophys. 1995, 33, 81–86. [Google Scholar] [CrossRef]
- Altaner, S.P.; Ylagan, R.F. Comparison of structural models of mixed-layer illite/smectite and reaction mechanisms of smectite illitization. Clays Clay Miner. 1997, 45, 517–533. [Google Scholar] [CrossRef]
- Beaufort, D.; Patrier, P.; Meunier, A.; Ottaviani, M.M. Chemical variations in assemblages including epidote and/or chlorite in the fossil hydrothermal system of Saint Martin (Lesser Antilles). J. Volcanol. Geotherm. Res. 1992, 51, 95–114. [Google Scholar] [CrossRef]
- Essene, E.J. Clay Mineral Thermometry—A Critical Perspective1. Clays Clay Miner. 1995, 43, 540–553. [Google Scholar] [CrossRef]
- Ylagan, R.F.; Altaner, S.P.; Pozzuoli, A. Reaction mechanisms of smectite illitization associated with hydrothermal alteration from Ponza Island, Italy. Clays Clay Miner. 2000, 48, 610–631. [Google Scholar] [CrossRef]
- Inoue, A.; Meunier, A.; Beaufort, D. Illite-smectite Mixed-layer Minerals in Felsic Volcaniclastic Rocks from Drill Cores, Kakkonda, Japan. Clays Clay Miner. 2004, 52, 66–84. [Google Scholar] [CrossRef]
- Vázquez, M.; Nieto, F.; Morata, D.; Droguett, B.; Carrillo-Rosua, F.; Morales, S. Evolution of clay mineral assemblages in the Tinguiririca geothermal field, Andean Cordillera of central Chile: An XRD and HRTEM-AEM study. J. Volcanol. Geotherm. Res. 2014, 282, 43–59. [Google Scholar] [CrossRef]
- Whitney, G. Role of Water in the Smectite-to-Illite Reaction. Clays Clay Miner. 1990, 38, 343–350. [Google Scholar] [CrossRef]
- Inoue, A.; Utada, M. Further Investigations of a Conversion Series of Dioctahedral Mica/Smectites in the Shinzan Hydrothermal Alteration Area, Northeast Japan. Clays Clay Miner. 1983, 31, 401–412. [Google Scholar] [CrossRef]
- Minissale, A.; Magro, G.; Vaselli, O.; Verrucchi, C.; Perticone, I. Geochemistry of water and gas discharges from the Mt. Amiata silicic complex and surrounding areas (central Italy). J. Volcanol. Geotherm. Res. 1997, 79, 223–251. [Google Scholar] [CrossRef]
- Pope, J.; Brown, K. Geochemistry of discharge at Waiotapu geothermal area, New Zealand—Trace elements and temporal changes. Geothermics 2014, 51, 253–269. [Google Scholar] [CrossRef]
- Kerkhof, A.M.V.D.; Hein, U.F. Fluid inclusion petrography. Lithos 2001, 55, 27–47. [Google Scholar] [CrossRef]
- Cruz-Pérez, M.A.; Canet, C.; Franco, S.I.; Camprubí, A.; González-Partida, E.; Rajabi, A. Boiling and depth calculations in active and fossil hydrothermal systems: A comparative approach based on fluid inclusion case studies from Mexico. Ore Geol. Rev. 2016, 72, 603–611. [Google Scholar] [CrossRef]
- Drummond, S.E.; Ohmoto, H. Chemical evolution and mineral deposition in boiling hydrothermal systems. Econ. Geol. 1985, 80, 126–147. [Google Scholar] [CrossRef]
- Schmidt, K.; Garbe-Schönberg, D.; Hannington, M.D.; Anderson, M.O.; Bühring, B.; Haase, K.; Haruel, C.; Lupton, J.; Koschinsky, A. Boiling vapour-type fluids from the Nifonea vent field (New Hebrides Back-Arc, Vanuatu, SW Pacific): Geochemistry of an early-stage, post-eruptive hydrothermal system. Geochim. Et Cosmochim. Acta 2017, 207, 185–209. [Google Scholar] [CrossRef]
- Hedenquist, J.W. The thermal and geochemical structure of the broadlands-ohaaki geothermal system, New Zealand. Geothermics 1990, 19, 151–185. [Google Scholar] [CrossRef]
- Milicich, S.; Chambefort, I.; Wilson, C.; Charlier, B.; Tepley, F. The hydrothermal evolution of the Kawerau geothermal system, New Zealand. J. Volcanol. Geotherm. Res. 2018, 353, 114–131. [Google Scholar] [CrossRef]
Samples | T (°C) | pH | Major Elements (ppm) | Balance (%) | Water Classification | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cl− (0.01) | SO42− (0.01) | HCO3− (0.01) | Na+ (0.005) | K+ (0.001) | Ca2+ (0.005) | Mg2+ (0.0002) | SiO2 (0.01) | Major Anions | Cl−-SO42−-HCO3− Ternary Diagram | ||||
NCh-03 | 89.4 | 3.7 | 0.5 | 333.6 | b.d.l. | 88.9 | 13.2 | 121.9 | 54.1 | 180 | 42.6 | acid-sulfate | steam-heated |
NCh-04 | 88.3 | 5.9 | 0.6 | 374.8 | b.d.l. | 39.6 | 8.1 | 68.5 | 29.5 | 184 | –0.3 | acid-sulfate | steam-heated |
RV δ | 68.0 | 3.9 | 0.3 | 552.0 | 18.0 | 56.0 | 21.5 | 105.4 | 33.1 | 370 | –1.3 | acid-sulfate | steam-heated |
CR δ | 82.0 | 2.6 | 16.6 | 293.8 | b.d.l. | 20.0 | 4.4 | 10.0 | 6.2 | 178 | –1.8 | acid-sulfate | steam-heated |
OM δ | 91.0 | 2.4 | 11.8 | 881.8 | - | 58.1 | 26.6 | 81.3 | 52.0 | 290 | –13.5 | acid-sulfate | steam-heated |
Ch.1 § | 92.0 | 2.4 | 3.0 | 206.0 | 0 | 58.0 | 19.0 | 140.0 | 65.0 | 339 | 78.3 | acid-sulfate | steam-heated |
Ch.2 § | 85.0 | 2.9 | 1.3 | 335.0 | 0 | 40.0 | 8.3 | 29.0 | 6.3 | 201 | –3.0 | acid-sulfate | steam-heated |
Ch.3 § | 88.0 | 5.9 | 1.5 | 450.0 | 0 | 55.0 | 16.0 | 86.0 | 28.0 | 215 | –0.1 | acid-sulfate | steam-heated |
Ch.4 § | 89.0 | 3.1 | 1.1 | 373.0 | 0 | 31.0 | 8.4 | 68.0 | 18.0 | 130 | 6.1 | acid-sulfate | steam-heated |
Sample | FIA ID | N | Host Crystal | Stage | Th (°C) | Tm (°C) | Salinity/wt.% NaCl eq. | Comments | ||
---|---|---|---|---|---|---|---|---|---|---|
Range | Average | Range | Average | |||||||
NB 160.00 | C2.A | 5 | CalcRBC | STG 2 | 231.8 to 241.6 | 235.4 | –1.5 to –1.3 | –1.4 | 2.5 | Crystal core |
C2.B-2 | 8 | CalcRBC | STG 2 | 232.9 to 246.9 | 236.9 | –1.05 | –1.05 | 1.8 | Crystal rim | |
C2.B-1 | 3 | CalcRBC | STG 2 | 227.1 to 246.6 | 239 | –1.05 | –1.05 | 1.8 | Crystal rim | |
2AD | 6 | CalcRBC | STG 2 | 229.9 to 241.4 | 234.4 | –0.56 | –0.56 | 0.9 | ||
C3 | 3 | CalcRBC | STG 2 | 236.5 to 241.2 | 239.5 | –0.47 | –0.47 | 0.8 | ||
C4 | 3 | CalcRBC | STG 2 | 243.7 to 245.1 | 244.4 | –1.1 | –1.1 | 1.9 | ||
C5 | 7 | CalcRBC | STG 2 | 228.5 to 240.4 | 233.1 | –1.3 | –1.3 | 2.3 | ||
NB 193.75 | C4 | 5 | CalcBLD | STG 2 | 138.5 to 143.2 | 140.3 | -0.09 | -0.09 | 0.1 | |
NB 227.40 | C7 | 2 | CalcRBC | STG 2 | 193.0 to 193.2 | 193.1 | –1.3 | –1.3 | 2.3 | |
C8.E-1 | 2 | CalcRBC | STG 2 | 182.6 to 186.7 | 184.6 | –1.2 to –1.1 | –1.1 | 1.9 | ||
C20 | 3 | CalcRBC | STG 2 | 197.8 to 199.2 | 198.6 | –1.8 | –1.8 | 3.1 | Crystal core | |
C20.E1 | 5 | CalcRBC | STG 2 | 173.8 to 178.0 | 175.5 | –2.2 to –1.8 | –1.8 | 3.1 | Crystal rim | |
C28.I | 4 | CalcRBC | STG 2 | 179.9 to 194.0 | 186.9 | –1.5 to –1.4 | –1.5 | 2.6 | ||
C28.II | 6 | CalcRBC | STG 2 | 131.7 to 195.4 | 175.7 | –1.6 | –1.6 | 2.8 | Th not valid | |
NB 348.20 | C3 | 8 | Qtz | STG 2 | 232. to 251.5 | 243.1 | –0.8 to –0.7 | –0.8 | 1.4 | |
NB 440.45 | C3.I | 3 | CalcRBC | STG 3 | 159.8 | 159.8 | –1.1 | –1.1 | 2 | |
C3.III | 3 | CalcRBC | STG 3 | 157.3 to 161.9 | 160.2 | –1.0 to –0.9 | –1 | 1.7 | ||
C3.E-1 | 3 | CalcRBC | STG 3 | 151.4 to 160.7 | 155.3 | –1.0 to –0.9 | –1 | 1.7 | ||
C3.E-2 | 5 | CalcRBC | STG 3 | 150.1 to 160.1 | 156.1 | –0.8 | –0.8 | 1.5 | ||
C3.E-3 | 3 | CalcRBC | STG 3 | 159.5 to 160.0 | 160 | –0.9 | –0.9 | 1.6 | ||
NB 456.60 | C1 | 5 | CalcRBC | STG 2 | 253.5 to 254.5 | 254 | –1.2 to –1.1 | –1.1 | 1.9 | |
NB 947.60 | C2 | 5 | Anh | STG 3 | 176.8 to 202.7 | 193.8 | –0.9 | –0.9 | 1.5 | |
C3 | 5 | Anh | STG 3 | 198.3 to 204.1 | 200.6 | –0.1 | –0.1 | 0.2 | ||
C7.5 | 4 | Anh | STG 3 | 205.7 to 209.2 | 207.7 | –0.9 | –0.9 | 1.5 | ||
C9-UP | 7 | Anh | STG 3 | 196.0 to 218.0 | 208.1 | –0.4 to –0.1 | –0.2 | 0.3 | ||
C9-DP | 8 | Anh | STG 3 | 207.2 to 211.1 | 209.9 | –0.2 | –0.2 | 0.4 | ||
C10 | 8 | Anh | STG 3 | 203.2 to 207.6 | 205.1 | –1.2 to –1.0 | –1 | 1.8 | ||
NB 961.00 | C3 | 7 | Anh | STG 3 | 211.9 to 217.6 | 215.3 | –2.5 | –2.5 | 4.2 | |
C4 | 6 | Anh | STG 3 | 206.8 to 224.2 | 214.4 | –2.3 | –2.3 | 3.8 | ||
C5.A | 3 | Anh | STG 3 | 197.8 to 212.4 | 205.3 | –1.4 | –1.4 | 2.4 | ||
C5.B | 5 | Anh | STG 3 | 201.5 to 208.2 | 205.3 | –1.7 | –1.7 | 2.9 | ||
C6 | 6 | Anh | STG 3 | 201.8 to 215.1 | 210.2 | –1.6 to –1.5 | –1.5 | 2.5 | ||
C6.C | 3 | Anh | STG 3 | 204.9 to 208.9 | 206.6 | –1.2 to –1.1 | –1.1 | 1.9 | ||
C8 | 4 | Anh | STG 3 | 225.5 to 230.5 | 228.2 | –3.9 | –3.9 | 6.4 | ||
C10 | 3 | Anh | STG 3 | 201.3 to 207.9 | 204.7 | –1.2 to –0.9 | –1.1 | 1.9 | ||
C7-L | 3 | Anh | STG 3 | 207.0 to 208.3 | 208.2 | –1.2 to –1.1 | –1.2 | 2.1 | Secondary | |
C7-B | 6 | Anh | STG 3 | 239.0 to 239.2 | 239.1 | –1.2 to –1.1 | –1.2 | 2.1 | Pseudo sec |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morata, D.; Gallardo, R.; Maza, S.; Arancibia, G.; López-Contreras, C.; Mura, V.; Cannatelli, C.; Reich, M. Hydrothermal Alteration in the Nevados de Chillán Geothermal System, Southern Andes: Multidisciplinary Analysis of a Fractured Reservoir. Minerals 2023, 13, 722. https://doi.org/10.3390/min13060722
Morata D, Gallardo R, Maza S, Arancibia G, López-Contreras C, Mura V, Cannatelli C, Reich M. Hydrothermal Alteration in the Nevados de Chillán Geothermal System, Southern Andes: Multidisciplinary Analysis of a Fractured Reservoir. Minerals. 2023; 13(6):722. https://doi.org/10.3390/min13060722
Chicago/Turabian StyleMorata, Diego, Romina Gallardo, Santiago Maza, Gloria Arancibia, Camila López-Contreras, Valentina Mura, Claudia Cannatelli, and Martin Reich. 2023. "Hydrothermal Alteration in the Nevados de Chillán Geothermal System, Southern Andes: Multidisciplinary Analysis of a Fractured Reservoir" Minerals 13, no. 6: 722. https://doi.org/10.3390/min13060722
APA StyleMorata, D., Gallardo, R., Maza, S., Arancibia, G., López-Contreras, C., Mura, V., Cannatelli, C., & Reich, M. (2023). Hydrothermal Alteration in the Nevados de Chillán Geothermal System, Southern Andes: Multidisciplinary Analysis of a Fractured Reservoir. Minerals, 13(6), 722. https://doi.org/10.3390/min13060722