Metallogenesis and Formation of the Maliping Pb-Zn Deposit in Northeastern Yunnan: Constraints from H-O Isotopes, Fluid Inclusions, and Trace Elements
Abstract
:1. Introduction
2. Metallogenic Geological Background
3. Research Methods
3.1. Sample Collection
3.2. Analytical Methods
4. Analytical Results
4.1. Petrographic Characteristics of Fluid Inclusions
4.2. Microthermometry Results of Fluid Inclusions
4.3. Laser Raman Spectroscopic Analysis
4.4. Trace Elements
4.4.1. Trace Element Contents
- (1)
- Sphalerite is rich in Cd and Cu. The content of Cd is relatively higher than that of Cu, and there is a slight variation in Cd, at 1570 × 10−6–2160 × 10−6 (mean 1933.3 × 10−6, n = 6). In contrast, the stability of Cu is low, with a large range of variation, at 498 × 10−6–1860 × 10−6 (mean 925.3 × 10−6, n = 6).
- (2)
- Sphalerite is also relatively enriched in Pb, Sb, Hg, Ga, Ge, Ti, and Ba. The content of Pb varies greatly, at 17.7 × 10−6–3760 × 10−6 (mean 833.6 × 10−6, n = 6), while the contents of Ga and Ge are relatively stable, 93.8 × 10−6–185 × 10−6 (mean 138.9 × 10−6, n = 6) and 45.9 × 10−6–68.8 × 10−6 (mean 57.1 × 10−6, n = 6), respectively.
- (3)
- The Ni, Co, As, Sn, Ag, Cr, and Mn contents are relatively low. The contents of Co and Mn are 4.77 × 10−6–18.4 × 10−6 (mean 14.4 × 10−6, n = 6) and 12.9 × 10−6–73.3 × 10−6 (mean 42.1 × 10−6, n = 6), respectively.
- (4)
- The contents of Li, Rb, W, Mo, Sr, Sc, Nb, Zr, Hf, Tl, U, and Th are the lowest, below 5.0 × 10−6.
Element/Sample Number | MLP-1 | MLP-2 | MLP-3 | MLP-5 | MLP-6 | MLP-7 |
---|---|---|---|---|---|---|
Cu | 498 | 664 | 868 | 1100 | 1860 | 562 |
Pb | 17.7 | 251 | 755 | 106 | 3760 | 112 |
Ni | 3.41 | 1.78 | 4.72 | 9.11 | 12.3 | 3.65 |
Co | 14.2 | 18.4 | 16.2 | 17.6 | 15.4 | 4.77 |
Cd | 1630 | 2070 | 2080 | 2090 | 2160 | 1570 |
Li | 0.018 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Rb | 0.6 | 0.75 | 0.67 | 0.73 | 1.96 | 1.24 |
W | 0.035 | 0.12 | 0.41 | 0.35 | 1.13 | 3.04 |
Mo | 0.11 | 0.14 | 0.18 | 0.14 | 2.55 | 0.68 |
As | 16.1 | 14.3 | 28.9 | 25.3 | 22.7 | 19.6 |
Sb | 157 | 305 | 386 | 411 | 602 | 295 |
Hg | 73.9 | 275 | 198 | 147 | 212 | 160 |
Sr | 0.89 | 1.26 | 12.1 | 1.64 | 3.72 | 2.19 |
Sc | 0.31 | 0.28 | 0.26 | 0.2 | 0.44 | 0.35 |
Nb | <0.05 | 0.057 | 0.28 | 0.22 | 0.6 | 0.051 |
Zr | 0.3 | 0.57 | 1.38 | 1.53 | 1.11 | 1 |
Hf | <0.01 | 0.013 | 0.043 | 0.046 | 0.043 | 0.025 |
Ga | 97.7 | 142 | 185 | 154 | 161 | 93.8 |
Sn | 12.6 | 33.3 | 31.7 | 37.8 | 18.9 | 5.43 |
Ge | 60.8 | 45.9 | 55.5 | 52.8 | 58.7 | 68.8 |
Tl | 0.06 | 0.17 | 0.33 | 0.1 | 0.17 | 0.05 |
Ag | 6.18 | 20.4 | 44.2 | 16.2 | 44.4 | 17.4 |
U | 0.036 | 0.01 | 0.035 | 0.036 | 0.82 | 0.08 |
Th | 0.098 | 0.095 | 0.14 | 0.082 | 0.4 | 0.23 |
Ti | 5.01 | 14.7 | 644 | 361 | 240 | 18.9 |
Mn | 12.9 | 73.3 | 60.1 | 40.3 | 52.2 | 14 |
Cr | 2.77 | 2.99 | 3.57 | 3.84 | 18.08 | 7 |
Ba | 6.29 | 49.64 | 77.04 | 27.13 | 504.86 | 47.57 |
4.4.2. REE Contents
4.5. H and O Isotopes
4.6. EPMA-Mapping
5. Discussion
5.1. Properties and Sources of Ore-Forming Fluids
5.1.1. Properties of Ore-Forming Fluids
- (1)
- Fluid density
- (2)
- Ore-forming pressure
- (3)
- Ore-forming depth
5.1.2. Sources of Ore-Forming Fluids
5.2. Sources of Ore-Forming Materials
5.3. Deposit Genesis
Deposit Name | Deposit Type | Element | Sample Quantity | Range | Mean | Source |
---|---|---|---|---|---|---|
Upper Mississippi Valley district | Typical MVT | Mn | 6 | 2.00~140.00 | 48.50 | [74] |
Ag | 6 | 2.00~46.00 | 21.33 | |||
Co | 6 | 8.00~29.00 | 15.33 | |||
Cd | 6 | 390.00~4000.00 | 1678.33 | |||
Cu | 6 | 10.00~150.00 | 75.50 | |||
Ga | 6 | 10.00~250.00 | 95.00 | |||
Ge | 6 | 20.00~250.00 | 101.70 | |||
Xiangxi Huayuan | Typical MVT | Mn | 46 | 0.67~1305.74 | 132.02 | [78] |
Ag | 46 | 0.79~4.28 | 2.10 | |||
Co | 38 | 0.00~5.03 | 0.50 | |||
Cd | 46 | 813.00~15,964.00 | 7609.67 | |||
Cu | 46 | 1.00~485.00 | 163.59 | |||
Ga | 46 | 1.37~172.21 | 34.28 | |||
Ge | 46 | 2.04~245.63 | 29.42 | |||
Huize | Typical HZT | Mn | 20 | 0.46~20.82 | 9.31 | [21] |
Ag | 20 | 1.39~27.39 | 7.06 | |||
Co | 20 | 0.03~1.33 | 0.31 | |||
Cd | 20 | 1053.97~3518.87 | 1881.32 | |||
Cu | 20 | 7.46~319.13 | 137.14 | |||
Ga | 20 | 0.12~65.16 | 11.63 | |||
Ge | 20 | 3.06~231.15 | 80.55 | |||
Maoping | Typical HZT | Mn | 20 | 5.08~19.68 | 12.67 | [21] |
Ag | 20 | 2.29~17.10 | 6.76 | |||
Co | 20 | 0.03~0.05 | 0.04 | |||
Cd | 20 | 811.21~1809.66 | 1315.96 | |||
Cu | 20 | 5.48~782.08 | 169.94 | |||
Ga | 20 | 0.14~8.69 | 1.80 | |||
Ge | 20 | 0.63~814.31 | 146.77 | |||
Lehong | Typical HZT | Mn | 9 | 19.13~30.86 | 24.19 | [21] |
Ag | 9 | 30.50~57.24 | 41.36 | |||
Co | 9 | 0.41~41.2 | 7.43 | |||
Cd | 9 | 1900.00~3830.00 | 3081.89 | |||
Cu | 9 | 110.00~2480.00 | 658.33 | |||
Ga | 9 | 9.30~158.00 | 51.91 | |||
Ge | 5 | 11.30~59.20 | 34.71 | |||
Maliping | Mn | 6 | 12.90~73.3 | 42.13 | This study | |
Ag | 6 | 6.18~44.40 | 24.80 | |||
Co | 6 | 4.77~18.40 | 14.43 | |||
Cd | 6 | 1570.00~2160.00 | 1933.33 | |||
Cu | 6 | 498.00~1860.00 | 925.33 | |||
Ga | 6 | 93.80~185.00 | 138.92 | |||
Ge | 6 | 45.90~68.80 | 57.08 |
5.4. Metallogenic Mechanism and Ore Prospecting Indicative Significance
5.4.1. Metallogenic Mechanism
5.4.2. Ore Prospecting Indicative Significance
6. Conclusions
- (1)
- The ore-forming fluids of the Maliping Pb-Zn deposit were a medium-low temperature, medium-low salinity, medium-low density, and deep source reducing fluid, mainly derived from the mixing of deep source fluid flowing through the deep folded basement (Kunyang Group) and organic-containing basin brine. The ore-forming materials were mainly derived from the basement rocks (Kunyang Group).
- (2)
- The deposit is a transitional type between two sub-type members of the typical MVT and HZT Pb-Zn deposits and is more similar to the latter. Thus, it is an HZT-like deposit, and it is suitable to use a large-scale “four step style” deep ore prospecting method to delineate the deep and peripheral ore prospecting target areas of the deposit.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, L.J.; Han, R.S.; Zhang, Y.; Wu, J.B.; Feng, Z.X. Trace element signatures of sphalerite in the Sichuan Daliangzi Ge-rich Pb-Zn deposit and its implications for deep ore prospecting. Front. Earth Sci. 2022, 10. [Google Scholar] [CrossRef]
- Li, Z.L.; Ye, L.; Hu, Y.S.; Huang, Z.L. Geological significance of nickeliferous minerals in the Fule Pb-Zn deposit, Yunnan Province, China. Acta Geochim. 2018, 37, 684–690. [Google Scholar] [CrossRef]
- Tu, G.Z.; Hu, R.Z. Characteristic features of the vast low-temperature mineralization province in Southwest China. Chin. Sci. Bull. 1999, 44, 260. [Google Scholar]
- Tan, S.C.; Zhou, J.X.; Luo, K.; Xiang, Z.Z.; He, X.H.; Zhang, Y.H. The sources of ore-forming elements of the Maoping large-scale Pb-Zn deposit, Yunnan Province: Constrains from in-situ S and Pb isotopes. Acta Petrol. Sin. 2019, 35, 3461–3476. [Google Scholar]
- Jian, L.; Gao, J.G.; Dao, Y.; Tan, Q.L. Wallrock Alteration and Metallogenic Stages of Pb-Zn Deposits in the Sichuan-Yunnan-Guizhou Border Area Southwest China. Adv. Mater. Res. 2013, 2695, 2120–2124. [Google Scholar] [CrossRef]
- Ren, T.; Zhou, J.X.; Wang, D.; Yang, G.S.; Lv, C.L. Trace elemental and S-Pb isotopic geochemistry of the Fule Pb-Zn deposit, NE Yunnan Province. Acta Petrol. Sin. 2019, 35, 3493–3505. [Google Scholar]
- Zhang, C.Q.; Wu, Y.; Hou, L.; Mao, J.W. Geodynamic setting of mineralization of Mississippi Valley-type deposits in world-class Sichuan-Yunnan-Guizhou Zn-Pb triangle, southwest China: Implications from age-dating studies in the past decade and the Sm-Nd age of Jinshachang deposit. J. Asian Earth Sci. 2015, 103, 103–114. [Google Scholar] [CrossRef]
- Liang, X.Y.; Li, B.; Zhang, C.N.; Qin, H.K.; Li, G.; Zhang, X.Y. Mineralogical and Geochemical Characteristics of Carbonates and Their Geological Significance to the Fuli Pb-Zn Deposit, Yunnan Province. Minerals 2022, 12, 1317. [Google Scholar] [CrossRef]
- Zhao, D.; Han, R.S.; Wang, L.; Ren, T.; Wang, J.S.; Zhang, X.P.; Cui, J.H.; Ding, J.J. Genesis of the Lehong Large Zinc–Lead Deposit in Northeastern Yunnan, China: Evidence from Geological Characteristics and C–H–O–S–Pb Isotopic Compositions. Ore Geol. Rev. 2021, 135, 104219. [Google Scholar] [CrossRef]
- Zhu, C.W.; Wang, J.; Zhang, J.W.; Chen, X.C.; Fan, H.F.; Zhang, Y.X.; Yang, T.; Wen, H.J. Isotope geochemistry of Zn, Pb and S in the Ediacaran strata hosted Zn-Pb deposits in Southwest China. Ore Geol. Rev. 2020, 117, 103274. [Google Scholar] [CrossRef]
- He, Z.W.; Li, B.; Wang, X.F.; Xiao, X.G.; Wan, X.; Wei, Q.X. The Origin of Carbonate Components in Carbonate Hosted Pb-Zn Deposit in the Sichuan-Yunnan-Guizhou Pb-Zn Metallogenic Province and Southwest China: Take Lekai Pb-Zn Deposit as an Example. Minerals 2022, 12, 1615. [Google Scholar] [CrossRef]
- Zhu, C.W.; Wen, H.J.; Zhang, Y.X.; Huang, Z.L.; Cloquet, C.; Luais, B.; Yang, T. Cadmium isotopic constraints on metal sources in the Huize Zn–Pb deposit, SW China. Geosci. Front. 2021, 12, 101241. [Google Scholar] [CrossRef]
- Shen, L.; Rao, X.H.; Wei, W.B.; Zhang, M.H.; Tao, Y.L. Geological characteristics and its genesis of Guanyingyan ore section in Maliping Pb-Zn deposit, Huize, Yunnan. Sci. Technol. Eng. 2014, 14, 149–155+172. [Google Scholar]
- He, S.H.; Chen, X.S.; Rong, H.F. Geological characteristics and genesis of the Maliping lead-zinc deposit in Huize County, Yunnan Province. China Min. Mag. 2014, 23, 80–87. [Google Scholar]
- Luo, K.; Zhou, J.X.; Huang, Z.L.; Cui, Y.L.; Jin, Z.G. Geochemistry and genesis of the Maliping lead-zinc deposit in Dongchuan, Yunnan. In Proceedings of the 8th National Colloquium on Mineralization Theory and Prospecting Methods, Nanchang, China, 9–12 December 2017; p. 145. (In Chinese). [Google Scholar]
- Hu, Y.S.; Ye, L.; Huang, Z.L.; Li, Z.L.; Wei, C.; Danyushevsky, L. Distribution and existing forms of trace elements from Maliping Pb-Zn deposit in Northeastern Yunnan, China: A LA-ICPMS study. Acta Petrol. Sin. 2019, 35, 3477–3492. [Google Scholar]
- Luo, K.; Zhou, J.X.; Huang, Z.L.; Wang, X.C.; Wilde, S.A.; Zhou, W.; Tian, L.Y. New insights into the origin of early Cambrian carbonate-hosted Pb-Zn deposits in South China: A case study of the Maliping Pb-Zn deposit. Gondwana Res. 2019, 70, 88–103. [Google Scholar] [CrossRef]
- Liu, H.C.; Lin, W.D. Regularity Research of Pb-Zn-Ag Ore Deposits Northeastern Yunnan; Yunnan University Press: Kunming, China, 1999; pp. 1–468. (In Chinese) [Google Scholar]
- Yang, Q.; Liu, W.H.; Zhang, J.; Wang, J.; Zhang, X.J. Formation of Pb–Zn deposits in the Sichuan–Yunnan–Guizhou triangle linked to the Youjiang foreland basin: Evidence from Rb–Sr age and in situ sulfur isotope analysis of the Maoping Pb–Zn deposit in northeastern Yunnan Province, southeast China. Ore Geol. Rev. 2019, 107, 780–800. [Google Scholar] [CrossRef]
- Han, R.S.; Wang, F.; Hu, Y.Z.; Wang, X.K.; Ren, T.; Qiu, W.L.; Zhong, K.H. Metallogenic tectonic dynamics and chronology constrains on the Huize-type (HZT) Germanium-rich Silver-Zinc-Lead deposits. Geotecton. Metallog. 2014, 38, 758–771. [Google Scholar]
- Han, R.S.; Zhang, Y.; Wang, F.; Wu, P.; Qiu, W.L.; Li, W.Y. The Metallogenic Mechanism of the Germanium-Rich Lead-Zinc Deposit and Prediction of Concealed Ore Location in the Ore Concentration Area of Northeastern Yunnan; Science Press: Beijing, China, 2019; pp. 1–510. (In Chinese) [Google Scholar]
- Gong, B.; Zheng, Y.F.; Chen, R.X. An online method combining a thermal conversion elemental analyzer with isotope ratio mass spectrometry for the determination of hydrogen isotope composition and water concentration in geological samples. Rapid Commun. Mass Spectrom. RCM 2007, 21, 1386–1392. [Google Scholar] [CrossRef]
- Clayton, R.N.; Mayeda, T.K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta 1963, 27, 43–52. [Google Scholar] [CrossRef]
- Qi, L.; Hu, J.; Gregoire, D.C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta 2000, 51, 507–513. [Google Scholar]
- Goldstein, R.H.; Reynolds, T.J. Systematics of Fluid Inclusions in Diagenetic Minerals; Society for Sedimentary Geology: Tulsa, OK, USA, 1994; pp. 1–199. [Google Scholar]
- Clayton, R.N.; O’Neil, J.R.; Mayeda, T.K. Oxygen isotope exchange between quartz and water. J. Geophys. Res. 1972, 77, 3057–3067. [Google Scholar] [CrossRef]
- Liu, B.; Duan, G.X. The density and isochoric formulae for Nacl-H2O fluid inclusions (salinity ≤ 25 wt%) and their applications. Acta Mineral. Sin. 1987, 7, 345–352. [Google Scholar]
- Shao, J.L.; Mei, J.M. On the study of typomorphic characteristics of mineral inclusion in the gold deposits from volcanic terrain in Zhejiang and its genetic and prospecting significance. Mineral. Petrol. 1986, 6, 103–111. [Google Scholar]
- Zhou, M.F.; Malpas, J.; Song, X.Y.; Robinson, P.T.; Sun, M.; Kennedy, A.K.; Lesher, C.M.; Keays, R.R. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction. Earth Planet. Sci. Lett. 2002, 196, 113–122. [Google Scholar] [CrossRef]
- Meng, F.C.; Tian, Y.L.; Kerr, A.C.; Wang, W.; Wu, Z.P.; Xu, Q.; Du, Q.; Zhou, Y.Q.; Liu, J.Q. Geochemistry and petrogenesis of Late Permian basalts from the Sichuan Basin, SW China: Implications for the geodynamics of the Emeishan mantle plume. J. Asian Earth Sci. 2023, 241, 105477. [Google Scholar] [CrossRef]
- Shellnutt, J.G.; Denyszyn, S.W.; Mundil, R. Precise age determination of mafic and felsic intrusive rocks from the Permian Emeishan large igneous province (SW China). Gondwana Res. 2012, 22, 118–126. [Google Scholar] [CrossRef]
- Shellnutt, J.G. The Emeishan large igneous province: A synthesis. Geosci. Front. 2014, 5, 369–394. [Google Scholar] [CrossRef] [Green Version]
- Ali, J.R.; Thompson, G.M.; Zhou, M.F.; Song, X.Y. Emeishan large igneous province, SW China. Lithos 2005, 79, 475–489. [Google Scholar] [CrossRef]
- Saunders, A.D.; Jones, S.M.; Morgan, L.A.; Pierce, K.L.; Widdowson, M.; Xu, Y.G. Regional uplift associated with continental large igneous provinces: The roles of mantle plumes and the lithosphere. Chem. Geol. 2007, 241, 282–318. [Google Scholar] [CrossRef]
- Tang, Y.Y.; Bi, X.W.; Zhou, J.X.; Liang, F.; Qi, Y.Q.; Leng, C.B.; Zhang, X.C.; Zhang, H. Rb-Sr isotopic age, S-Pb-Sr isotopic compositions and genesis of the ca. 200 Ma Yunluheba Pb-Zn deposit in NW Guizhou Province, SW China. J. Asian Earth Sci. 2019, 185, 104054. [Google Scholar] [CrossRef]
- Bao, M.; Zhou, J.X.; Huang, Z.L.; Jin, Z.G. Dating methods for Pb-Zn deposits and chronology research progress of Sichuan-Yunnan-Guizhou Pb-Zn metallogenic province: A review. Acta Mineral. Sin. 2011, 31, 391–396. [Google Scholar]
- Zhou, J.X.; Bai, J.H.; Huang, Z.L.; Zhu, D.; Yan, Z.F.; Lv, Z.C. Geology, isotope geochemistry and geochronology of the Jinshachang carbonate-hosted Pb–Zn deposit, southwest China. J. Asian Earth Sci. 2015, 98, 272–284. [Google Scholar] [CrossRef]
- Wu, Y. The Age and Ore-Forming Process of MVT Deposits in the Boundary Area of Sichuan-Yunnan-Guizhou Provinces, Southwest China. Ph.D. Thesis, China University of Geosciences Beijing, Beijing, China, 2013. [Google Scholar]
- Wu, Y.; Zhang, C.Q.; Mao, J.W.; Ouyang, H.G.; Sun, J. The genetic relationship between hydrocarbon systems and Mississippi Valley-type Zn–Pb deposits along the SW margin of Sichuan Basin, China. Int. Geol. Rev. 2013, 55, 941–957. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Li, S.Z.; Li, D.; Guo, L.L.; Dai, L.M.; Tao, J.L. Rare earth element geochemistry of carbonate and its paleoenvironmental implications. Geotecton. Metallog. 2019, 43, 141–167. [Google Scholar]
- Li, W.B.; Huang, Z.L.; Zhang, G. Sources of the ore metals of the Huize ore field in Yunnan Province: Constraints from Pb, S, C, H, O and Sr isotope geochemistry. Acta Petrol. Sin. 2006, 22, 2567–2580. [Google Scholar]
- Guo, X. Mineralization and Metallogenic Pattern of Lead-Zinc Deposits in Northeast Yunnan. Ph.D. Thesis, China University of Geosciences Beijing, Beijing, China, 2011. [Google Scholar]
- Zhou, J.X.; Gao, J.G.; Chen, D.; Liu, X.K. Ore genesis of the Tianbaoshan carbonate-hosted Pb–Zn deposit, Southwest China: Geologic and isotopic (C–H–O–S–Pb) evidence. Int. Geol. Rev. 2013, 55, 1300–1310. [Google Scholar] [CrossRef]
- Wang, X.C. Genesis analysis of the Tianbaoshan Pb-Zn deposit. J. Chengdu Coll. Geol. 1992, 19, 10–20. [Google Scholar]
- Que, M.Y.; Luo, A.P.; Zhang, L.S. Upper Sinian and Lower Cambrian Stratified Lead-Zinc Deposits in Northeastern Yunnan; Chengdu University of Science and Technology Press: Chengdu, China, 1993; pp. 1–169. (In Chinese) [Google Scholar]
- Yang, Y.X.; Ke, C.X.; Lin, F.C. Metallogeny of lead-Zinc Deposit the Eastern Margin of Kangdian Axis; Sichuan Science and Technology Publishing House: Chengdu, China, 1994; pp. 1–175. (In Chinese) [Google Scholar]
- Han, R.S.; Zou, H.J.; Hu, B.; Hu, Y.Z.; Xue, C.D. Features of fluid inclusions and sources of ore-forming fluid in the Maoping carbonate-hosted Zn-Pb-(Ag-Ge) deposit, Yunnan, China. Acta Petrol. Sin. 2007, 23, 2109–2118. [Google Scholar]
- Gong, H.S.; Han, R.S.; Wu, P.; Ma, L.; Chen, G. Constraints of fluid inclusion and H-O-S-Pb isotope compositions on metallogenic model of Jinniuchang Pb-Zn deposit, SW China. Chin. J. Nonferrous Met. 2022, 32, 3206–3226. [Google Scholar]
- Kesler, S.E.; Vennemann, T.W.; Frederickson, C.; Breithaupt, A.; Vazquez, R.; Furman, F.C. Hydrogen and oxygen isotope evidence for origin of MVT-forming brines, southern Appalachians. Geochim. Cosmochim. Acta 1997, 61, 1513–1523. [Google Scholar] [CrossRef]
- Hanson, G.N. Rare earth elements in petrogenetic studies of igneous systems. Annu. Rev. Earth Planet. Sci. 1980, 8, 371–406. [Google Scholar] [CrossRef]
- Lottermoser, B.G. Rare earth elements and hydrothermal ore formation processes. Ore Geol. Rev. 1992, 7, 25–41. [Google Scholar] [CrossRef]
- Huang, Z.L.; Li, W.B.; Chen, J.X.; Han, R.S.; Liu, C.Q.; Xu, C.; Guan, T. Carbon and oxygen isotope constraints on mantle fluid involvement in the mineralization of the Huize super-large Pb-Zn deposits, Yunnan Province, China. J. Geochem. Explor. 2003, 78, 637–642. [Google Scholar] [CrossRef]
- Shen, X.L.; Lin, H.H.; Zhang, B.L.; Du, Q.X. The genesis of Guanting Pb–Zn deposits in the Jianshui area, Yunnan Province, SW China: Constraints from geochronology, S isotopes and trace elements. Mineral. Petrol. 2021, 116, 47–69. [Google Scholar] [CrossRef]
- He, Y.F.; Wu, T.; Huang, Z.L.; Ye, L.; Deng, P.; Xiang, Z.Z. Genesis of the Maoping carbonate-hosted Pb–Zn deposit, northeastern Yunnan Province, China: Evidences from geology and C–O–S–Pb isotopes. Acta Geochim. 2020, 39, 782–796. [Google Scholar] [CrossRef]
- Zhou, J.X.; Huang, Z.L.; Zhou, M.F.; Li, X.B.; Jin, Z.G. Constraints of C–O–S–Pb isotope compositions and Rb–Sr isotopic age on the origin of the Tianqiao carbonate-hosted Pb–Zn deposit, SW China. Ore Geol. Rev. 2013, 53, 77–92. [Google Scholar] [CrossRef]
- Bao, Z.W.; Li, Q.; Wang, C.Y. Metal source of giant Huize Zn-Pb deposit in SW China: New constraints from in situ Pb isotopic compositions of galena. Ore Geol. Rev. 2017, 91, 824–836. [Google Scholar] [CrossRef]
- Zhou, C.X.; Wei, C.S.; Guo, J.Y.; Li, C.Y. The source of metals in the Qilinchang Zn-Pb deposit, Northeastern Yunnan, China: Pb-Sr isotope constraints. Econ. Geol. Bull. Soc. Econ. Geol. 2001, 96, 583–598. [Google Scholar] [CrossRef]
- Zhou, J.X.; Huang, Z.L.; Yan, Z.F. The origin of the Maozu carbonate-hosted Pb-Zn deposit, southwest China: Constrained by C-O-S-Pb isotopic compositions and Sm-Nd isotopic age. J. Asian Earth Sci. 2013, 73, 39–47. [Google Scholar] [CrossRef]
- Oyebamiji, A.; Falae, P.; Zafar, T.; Rehman, H.U.; Oguntuase, M. Genesis of the Qilinchang Pb–Zn deposit, southwestern China: Evidence from mineralogy, trace elements systematics and S–Pb isotopic characteristics of sphalerite. Appl. Geochem. 2023, 148, 105545. [Google Scholar] [CrossRef]
- Qi, X.X.; Li, T.F.; Yu, C.L. Rare earth element and trace element Geochemistry of Shalagang antimony deposit in the southern Tibet and its tracing significance for the origin of metallogenic elements. Geoscience 2008, 22, 162–172. [Google Scholar]
- Luo, K. Metallogenesis of Pb-Zn Deposits in the Upper Ediacaran to Lower Cambrian in the Sichuan-Yunnan-Guizhou Pb-Zn Metallogenic Province: A Case Study of the Wusihe and Maliping Deposits. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2019. [Google Scholar]
- Kong, Z.G.; Wu, Y.; Liang, T.; Zhang, F.; Meng, X.Y.; Lu, L. Sources of ore-forming material for Pb-Zn deposits in the Sichuan-Yunnan-Guizhou triangle area: Multiple constraints from C-H-O-S-Pb-Sr isotopic compositions. Geol. J. 2018, 53, 159–177. [Google Scholar] [CrossRef]
- Gong, W.M. Research of Characteristics and Petrogenesis of Emeishan Basalt in Huize Area of Yunan. Master’s Thesis, East China University of Technology, Nanchang, China, 2017. [Google Scholar]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. Treatise Geochem. 2003, 3, 1–64. [Google Scholar]
- Miao, Y.; Wei, S.G.; Lü, X.C.; Song, W.T.; Wan, L.W. Geochemical characteristics and formation environment of metamorphic rocks in Etouchang formation of middle proterozoic lower Kunyang Group in Northeastern Yunnan. Geol. Bull. China 2020, 39, 1538–1548. [Google Scholar]
- Han, R.S.; Chen, J.; Huang, Z.L.; Ma, D.Y.; Xue, C.D.; Li, Y.; Zou, H.J.; Li, B.; Hu, Y.Z.; Ma, G.S.; et al. Dynamics of Tectonic Ore-Forming Processes and Localization-Prognosis of Concealed Orebodies—As Exemplified by the Huize Super-large Zn-Pb-(Ag-Ge) District, Yunnan; Science Press: Beijing, China, 2006; pp. 1–200. [Google Scholar]
- Zhang, Q. Trace elements in galena and sphalerite and their geochemical significance in distinguishing the genetic types of Pb-Zn ore deposits. Chin. J. Geochem. 1987, 6, 177–190. [Google Scholar]
- Ye, L.; Cook, N.J.; Ciobanu, C.L.; Liu, Y.P.; Zhang, Q.; Liu, T.G.; Gao, W.; Yang, Y.L.; Danyushevskiy, L. Trace and minor elements in sphalerite from base metal deposits in South China: A LA-ICPMS study. Ore Geol. Rev. 2011, 39, 188–217. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Pring, A.; Skinner, W.; Danyushevsky, L.; Shimizu, M.; SainiEidukat, B.; Melcher, F. Trace and minor elements in sphalerite: A LA-ICPMS study. Geochim. Cosmochim. Acta 2009, 73, 4761–4791. [Google Scholar] [CrossRef]
- Belissont, R.; Boiron, M.C.; Luais, B.; Cathelineau, M. LA-ICP-MS analyses of minor and trace elements and bulk Ge isotopes in zoned Ge-rich sphalerites from the Noailhac—Saint-Salvy deposit (France): Insights into incorporation mechanisms and ore deposition processes. Geochim. Cosmochim. Acta 2014, 126, 518–540. [Google Scholar] [CrossRef]
- Frenzel, M.; Hirsch, T.; Gutzmer, J. Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type—A meta-analysis. Ore Geol. Rev. 2016, 76, 52–78. [Google Scholar] [CrossRef]
- Mishra, B.P.; Pati, P.; Dora, M.L.; Baswani, S.R.; Meshram, T.; Shareef, M.; Pattanayak, R.S.; Suryavanshi, H.; Mishra, M.; Raza, M.A. Trace-element systematics and isotopic characteristics of sphalerite-pyrite from Volcanogenic Massive Sulfide deposits of Betul belt, Central Indian Tectonic Zone: Insight of ore genesis to exploration. Ore Geol. Rev. 2021, 134, 104149. [Google Scholar] [CrossRef]
- Wang, R.K. Earth and Cosmogenic Mineralogy; Anhui Publishing House: Hefei, China, 1989; pp. 100–108. (In Chinese) [Google Scholar]
- Hall, W.E.; Heyl, A.V. Distribution of minor elements in ore and host rock, Illinois-Kentucky fluorite district and Upper Mississippi Valley zinc-lead district. Econ. Geol. 1968, 63, 655–670. [Google Scholar] [CrossRef]
- Gong, H.S. Structural Ore-Controlling Characteristics and Metallogenic Mechanism of Lead-Zinc Deposits Clastic Rocks-Hosted in the Dahai Mining Area, Northeast Yunnan. Ph.D. Thesis, Kunming University of Science and Technology, Kunming, China, 2022. [Google Scholar]
- Leach, D.L.; Sangster, D.F. Mississippi valley-type lead-zinc deposits. Geol. Assoc. Can. Spec. Pap. 1993, 40, 289–314. [Google Scholar]
- John, R. Mississippi Valley-Type Deposits. Rocks Miner. 2006, 81, 69–71. [Google Scholar]
- Wei, H.T.; Shao, Y.J.; Ye, Z.; Zhou, H.D. Geochemical characteristics of trace elements of sphalerite from Huayuan Pb-Zn ore field, Western Hunan, China. J. Chengdu Univ. Technol. 2021, 48, 142–153. [Google Scholar]
- Wu, Y.; Kong, Z.G.; Chen, M.H.; Zhang, C.Q.; Cao, L.; Tang, Y.J.; Yuan, X.; Zhang, P. Trace elements in sphalerites from the Mississippi Valley-type lead-zinc deposits around the margins of Yangtze Block and its geological implications: A LAICPMS study. Acta Petrol. Sin. 2019, 35, 3443–3460. [Google Scholar]
Element/Sample Number | MLP-1 | MLP-3 | MLP-5 | MLP-6 |
---|---|---|---|---|
La | 0.05204519 | 0.15922395 | 0.0811368 | 0.11615857 |
Ce | 0.08870712 | 0.21635529 | 0.09672696 | 0.11322446 |
Pr | 0.01013269 | 0.03578948 | 0.0178416 | 0.0209005 |
Nd | 0.04651827 | 0.17652377 | 0.0845352 | 0.09606193 |
Sm | 0.00967212 | 0.04376188 | 0.0225144 | 0.02250824 |
Eu | 0.00414519 | 0.03122491 | 0.01062 | 0.01487151 |
Gd | 0.01059327 | 0.04116564 | 0.0161424 | 0.01969471 |
Tb | 0.00138173 | 0.00600775 | 0.002124 | 0.00281353 |
Dy | 0.00782981 | 0.03041702 | 0.0101952 | 0.01406765 |
Ho | 0.00230288 | 0.00644108 | 0.002124 | 0.00361739 |
Er | 0.00644808 | 0.01681144 | 0.0033984 | 0.00683286 |
Tm | 0.00046058 | 0.00216661 | 0.0004248 | 0.00080387 |
Yb | 0.00368462 | 0.01216241 | 0.002124 | 0.00643092 |
Lu | 0.00046058 | 0.00173329 | 0.0004248 | 0.00080387 |
Y | 0.05158462 | 0.23143821 | 0.0458784 | 0.07877882 |
ΣREE | 0.24 | 0.78 | 0.35 | 0.44 |
LREE | 0.21 | 0.66 | 0.31 | 0.38 |
HREE | 0.03 | 0.12 | 0.04 | 0.06 |
LREE/HREE | 6.37 | 5.67 | 8.48 | 6.97 |
(La/Yb)N | 10.13 | 9.39 | 27.4 | 12.96 |
(La/Sm)N | 3.47 | 2.35 | 2.33 | 3.33 |
(Gd/Yb)N | 2.38 | 2.8 | 6.29 | 2.53 |
δEu | 1.25 | 2.25 | 1.7 | 2.16 |
δCe | 0.95 | 0.7 | 0.62 | 0.56 |
Sample Number | δD‰ | δ18OQuartz‰ | δ18OH2O‰ |
---|---|---|---|
MLP-1-3 | −67.4 | 19.79 | 11.03 |
MLP-3-3 | −81.3 | 18.52 | 9.76 |
MLP-4-3 | −73.0 | 18.27 | 9.51 |
MLP-5-3 | −86.5 | 18.37 | 9.61 |
MLP-6-3 | −98.2 | 18.23 | 9.47 |
MLP-7-3 | −57.8 | 19.28 | 10.52 |
MLP-8-3 | −89.5 | 14.99 | 6.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Y.; Gong, H.; Han, R.; Zhang, C.; Wu, P.; Chen, G. Metallogenesis and Formation of the Maliping Pb-Zn Deposit in Northeastern Yunnan: Constraints from H-O Isotopes, Fluid Inclusions, and Trace Elements. Minerals 2023, 13, 780. https://doi.org/10.3390/min13060780
Yao Y, Gong H, Han R, Zhang C, Wu P, Chen G. Metallogenesis and Formation of the Maliping Pb-Zn Deposit in Northeastern Yunnan: Constraints from H-O Isotopes, Fluid Inclusions, and Trace Elements. Minerals. 2023; 13(6):780. https://doi.org/10.3390/min13060780
Chicago/Turabian StyleYao, Yongsheng, Hongsheng Gong, Runsheng Han, Changqing Zhang, Peng Wu, and Gang Chen. 2023. "Metallogenesis and Formation of the Maliping Pb-Zn Deposit in Northeastern Yunnan: Constraints from H-O Isotopes, Fluid Inclusions, and Trace Elements" Minerals 13, no. 6: 780. https://doi.org/10.3390/min13060780
APA StyleYao, Y., Gong, H., Han, R., Zhang, C., Wu, P., & Chen, G. (2023). Metallogenesis and Formation of the Maliping Pb-Zn Deposit in Northeastern Yunnan: Constraints from H-O Isotopes, Fluid Inclusions, and Trace Elements. Minerals, 13(6), 780. https://doi.org/10.3390/min13060780