Spatiotemporal Evolution of Central Qilian Shan (Northwest China) Constrained by Fission-Track Ages of Detrital Grains from the Huangshui River
Abstract
:1. Introduction
2. Geological Setting
2.1. Qilian Shan
2.2. Daban Shan and Laji Shan
2.3. Xining Basin
2.4. Huangshui River
3. Methods and Materials
4. Results
5. Discussion
5.1. The Mesozoic Exhumation
5.2. Cenozoic Exhumation
6. Conclusions
- (1)
- Mesozoic exhumations (145 and 93 Ma) in the Huangshui River drainage are related to the subduction of the Neo-Tethys Ocean. The geomorphic framework of the northeastern margin of the Tibetan Plateau was initially established during the Mesozoic period.
- (2)
- The Central Qilian Shan responded to the collision between the Indian and Eurasian blocks during the Late Miocene (11 Ma), laying the foundation for the topographic features in the NE Tibetan Plateau.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yin, A.; Harrison, T.M. Geologic evolution of the Himalayan-Tibetan orogen. Annu. Rev. Earth Planet. Sci. 2000, 28, 211–280. [Google Scholar] [CrossRef] [Green Version]
- Liu-Zeng, J.; Tapponnier, P.; Gaudemer, Y.; Ding, L. Quantifying landscape differences across the Tibetan Plateau: Implications for topographic relief evolution. J. Geophys. Res. Earth Surf. 2008, 113, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zhao, X.; Liu, Z.; Lippert, P.C.; Graham, S.A.; Coe, R.S.; Li, Y. Constraints on the early uplift history of the Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2008, 105, 4987–4992. [Google Scholar] [CrossRef] [Green Version]
- Royden, L.H.; Burchfiel, B.C.; van der Hilst, R.D. The geological evolution of the Tibetan Plateau. Science 2008, 321, 1054–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, L.; Kapp, P.; Cai, F.; Garzione, C.N.; Xiong, Z.; Wang, H.; Wang, C. Timing and mechanisms of Tibetan Plateau uplift. Nat. Rev. Earth Environ. 2022, 3, 652–667. [Google Scholar] [CrossRef]
- Jolivet, M.; Cheng, F.; Zuza, A.V.; Guo, Z.; Dauteuil, O. Large-scale topography of the north Tibetan ranges as a proxy for contrasted crustal-scale deformation modes. J. Geol. Soc. 2022, 179, 1–15. [Google Scholar] [CrossRef]
- Métivier, F.; Gaudemer, Y.; Tapponnier, P.; Meyer, B. Northeastward growth of the Tibet plateau deduced from balanced reconstruction of two depositional areas: The Qaidam and Hexi Corridor basins, China. Tectonics 1998, 17, 823–842. [Google Scholar] [CrossRef] [Green Version]
- Tapponnier, P.; Xu, Z.; Roger, F.; Meyer, B.; Arnaud, N.; Wittlinger, G.; Jingsui, Y. Oblique stepwise rise and growth of the Tibet Plateau. Science 2001, 294, 1671–1677. [Google Scholar] [CrossRef]
- Jolivet, M.; Brunel, M.; Seward, D.; Xu, Z.; Yang, J.; Roger, F.; Tapponnier, P.; Malavieille, J.; Arnaud, N.; Wu, C. Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan plateau: Fission-track constraints. Tectonophysics 2001, 343, 111–134. [Google Scholar] [CrossRef]
- Xia, L.Q.; Li, X.M.; Yu, J.Y.; Wang, G.Q. Mid-late Neoproterozoic to early Paleozoic volcanism and tectonic evolution of the Qilianshan, NW China. GeoResJ 2016, 9, 1–41. [Google Scholar] [CrossRef]
- Zuza, A.V.; Wu, C.; Reith, R.C.; Yin, A.; Li, J.; Zhang, J.; Liu, W. Tectonic evolution of the Qilian Shan: An early Paleozoic orogen reactivated in the Cenozoic. Geol. Soc. Am. Bull. 2018, 130, 881–925. [Google Scholar] [CrossRef]
- Li, B.; Chen, X.; Zuza, A.V.; Hu, D.; Ding, W.; Huang, P. Cenozoic cooling history of the North Qilian Shan, northern Tibetan Plateau, and the initiation of the Haiyuan fault: Constraints from apatite-and zircon-fission track thermochronology. Tectonophysics 2019, 751, 109–124. [Google Scholar] [CrossRef]
- Cheng, F.; Garzione, C.N.; Mitra, G.; Jolivet, M.; Guo, Z.; Lu, H.; Wang, L. The interplay between climate and tectonics during the upward and outward growth of the Qilian Shan orogenic wedge, northern Tibetan Plateau. Earth-Sci. Rev. 2019, 198, 102945. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Jolivet, M.; Liu-Zeng, J.; Cheng, F.; Wu, Z.; Tian, Y.; Chen, J. The Formation of the North Qilian Shan through time: Clues from detrital zircon fission-track data from modern river sediments. Geosciences 2022, 12, 166. [Google Scholar] [CrossRef]
- Xiao, W.; Windley, B.F.; Yong, Y.; Yan, Z.; Yuan, C.; Liu, C.; Li, J. Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China. J. Asian Earth Sci. 2009, 35, 323–333. [Google Scholar] [CrossRef]
- Song, S.; Niu, Y.; Su, L.; Xia, X. Tectonics of the north Qilian orogen, NW China. Gondwana Res. 2013, 23, 1378–1401. [Google Scholar] [CrossRef]
- Lin, X.; Jolivet, M.; Liu-Zeng, J.; Cheng, F.; Tian, Y.; Li, C. Mesozoic-Cenozoic cooling history of the Eastern Qinghai Nan Shan (NW China): Apatite low-temperature thermochronology constraints. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 572, 110416. [Google Scholar] [CrossRef]
- Qi, B.; Hu, D.; Yang, X.; Zhang, Y.; Tan, C.; Zhang, P.; Feng, C. Apatite fission track evidence for the Cretaceous-Cenozoic cooling history of the Qilian Shan (NW China) and for stepwise northeastward growth of the northeastern Tibetan Plateau since early Eocene. J. Asian Earth Sci. 2016, 124, 28–41. [Google Scholar] [CrossRef]
- Zuza, A.V.; Li, B.; Tremblay, M.M.; Chen, X.; Shuster, D.L.; Yin, A. Cenozoic development of the Northern Tibetan Plateau and the onset of thrust and strike-slip faulting: Constraints from apatite and zircon (U-Th)/He and fission-track thermochronometry. In AGU Falling Meeting; American Geophysical Union: Washington, DC, USA, 2016; p. T11A-2586. [Google Scholar]
- Li, B.; Zuza, A.V.; Chen, X.; Wang, Z.Z.; Shao, Z.; Levy, D.A.; Sun, Y. Pre-cenozoic evolution of the northern Qilian Orogen from zircon geochronology: Framework for early growth of the northern Tibetan Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 562, 110091. [Google Scholar] [CrossRef]
- Tong, K.; Li, Z.; Zhu, L.; Tao, G.; Zhang, Y.; Yang, W.; Zhang, J. Fold-and-thrust deformation of the hinterland of Qilian Shan, northeastern Tibetan Plateau since Mesozoic with implications for the plateau growth. J. Asian Earth Sci. 2020, 198, 104131. [Google Scholar] [CrossRef]
- Cherniak, D.J.; Watson, E.B. Pb diffusion in zircon. Chem. Geol. 2001, 172, 5–24. [Google Scholar] [CrossRef]
- Kang, H.; Chen, Y.L.; Li, D.P.; Bao, C.; Zhang, H.Z. Zircon U-Pb ages and Hf isotopic compositions of fluvial sediments from the Huangshui, Beichuan, and Xichuan rivers, Northwest China: Constraints on the formation and evolution history of the Central Qilian Block. Geochem. J. 2018, 52, 37–57. [Google Scholar] [CrossRef]
- Yao, L. Detrital Zircon U-Pb Geochronology of the Xining Basin and Its Geological Implications in Cenozoic. Master’s Thesis, Lanzhou University, Lanzhou, China, 2016; pp. 1–74, (In Chinese with English Abstract). [Google Scholar]
- Zhao, X.; Liu, C.; Wang, J.; Zhao, Y.; Wang, L.; Zhang, Q. Detrital zircon U-Pb ages of Paleozoic sedimentary rocks from the eastern Hexi Corridor Belt (NW China): Provenance and geodynamic implications. Sediment. Geol. 2016, 339, 32–45. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, B.; Zhao, H. Timing of amalgamation of the Alxa Block and the North China Block: Constraints based on detrital zircon U-Pb ages and sedimentologic and structural evidence. Tectonophysics 2016, 668, 65–81. [Google Scholar] [CrossRef]
- Gong, H.; Zhao, H.; Xie, W.; Kang, W.; Zhang, R.; Yang, L.; Zhang, Y. Tectono-thermal events of the North Qilian Orogenic Belt, NW China: Constraints from detrital zircon U-Pb ages of Heihe River sediments. J. Asian Earth Sci. 2017, 138, 647–656. [Google Scholar] [CrossRef]
- Kang, H.; Chen, Y.; Li, D.; Bao, C.; Chen, Y.; Xue, H. Detrital zircon record of rivers’ sediments in the North Qilian Orogenic Belt: Implications of the tectonic evolution of the northeastern Tibetan Plateau. Geol. J. 2019, 54, 2208–2228. [Google Scholar] [CrossRef]
- Song, B.; Zhang, K.; Hou, Y.; Ji, J.; Wang, J.; Yang, Y.; Shen, T. New insights into the provenance of Cenozoic strata in the Qaidam Basin, northern Tibet: Constraints from combined U-Pb dating of detrital zircons in recent and ancient fluvial sediments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 533, 109254. [Google Scholar] [CrossRef]
- Zhang, S.; Jian, X.; Pullen, A.; Fu, L.; Liang, H.; Hong, D.; Zhang, W. Tectono-magmatic events of the Qilian orogenic belt in northern Tibet: New insights from detrital zircon geochronology of river sands. Int. Geol. Rev. 2020, 63, 917–940. [Google Scholar] [CrossRef]
- Lease, R.O.; Burbank, D.W.; Gehrels, G.E.; Wang, Z.; Yuan, D. Signatures of mountain building: Detrital zircon U/Pb ages from northeastern Tibet. Geology 2007, 35, 239–242. [Google Scholar] [CrossRef] [Green Version]
- Liu, S. Spatio-Temporal Evolution of Northeastern Tibetan Plateau: Integrated Provenance Study of the Guide, Lanzhou and Wushan-Tianshui Basins; Lanzhou University: Lanzhou, China, 2015; pp. 1–135, (In Chinese with English Abstract). [Google Scholar]
- Li, Z.; Wang, H.; Chen, X.; Zhang, E. Geological Map of the People’s Republic of China (Northwest) 1:1500000 Description; Geological Publishing House: Beijing, China, 2019; pp. 1–188, (In Chinese with English Abstract). [Google Scholar]
- Gehrels, G.E.; Yin, A.; Wang, X.F. Detrital-zircon geochronology of the northeastern Tibetan plateau. Geol. Soc. Am. Bull. 2003, 115, 881–896. [Google Scholar] [CrossRef]
- Wu, C.; Zuza, A.V.; Yin, A.; Liu, C.; Reith, R.C.; Zhang, J.; Zhou, Z. Geochronology and geochemistry of Neoproterozoic granitoids in the central Qilian Shan of northern Tibet: Reconstructing the amalgamation processes and tectonic history of Asia. Lithosphere 2017, 9, 609–636. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Xiao, W.; Li, Z.; Wang, K.; Zheng, J.; Brouwer, F.M. Early Neoproterozoic magmatism in the Central Qilian block, NW China: Geochronological and petrogenetic constraints for Rodinia assembly. Geol. Soc. Am. Bull. 2020, 132, 2415–2431. [Google Scholar] [CrossRef]
- Kang, H.; Chen, Y.; Xiong, J.; Li, D.; Xue, G. Tectonic affinity and significance of the Qilian Block: Evidence from river sediments in the Central Qilian Belt. Geochemistry 2023, 83, 125923. [Google Scholar] [CrossRef]
- Donelick, R.A.; O’Sullivan, P.B.; Ketcham, R.A. Apatite fission-track analysis. Rev. Mineral. Geochem. 2005, 58, 49–94. [Google Scholar] [CrossRef]
- Lease, R.O.; Burbank, D.W.; Clark, M.K.; Farley, K.A.; Zheng, D.; Zhang, H. Middle Miocene reorganization of deformation along the northeastern Tibetan Plateau. Geology 2011, 39, 359–362. [Google Scholar] [CrossRef]
- Zheng, D.; Wang, W.; Wan, J.; Yuan, D.; Liu, C.; Zheng, W.; Zhang, P. Progressive northward growth of the northern Qilian Shan-Hexi Corridor (northeastern Tibet) during the Cenozoic. Lithosphere 2017, 9, 408–416. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Pang, J.; Wang, Y.; Zheng, D.; Liu, C.; Wang, W. Mid-Miocene uplift of the northern Qilian Shan as a result of the northward growth of the northern Tibetan Plateau. Geosphere 2019, 15, 423–432. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wang, Y.; Zhang, B.; Zhao, H. Evolution of the NE Qinghai-Tibetan Plateau, constrained by the apatite fission track ages of the mountain ranges around the Xining Basin in NW China. J. Asian Earth Sci. 2015, 97, 10–23. [Google Scholar] [CrossRef]
- Wang, X.; Song, C.; Zattin, M.; He, P.; Song, A.; Li, J.; Wang, Q. Cenozoic pulsed deformation history of northeastern Tibetan Plateau reconstructed from fission-track thermochronology. Tectonophysics 2016, 88, 367–370. [Google Scholar] [CrossRef]
- Wu, C.; Zuza, A.V.; Li, J.; Haproff, P.J.; Yin, A.; Chen, X.; Li, B. Late Mesozoic–Cenozoic cooling history of the northeastern Tibetan Plateau and its foreland derived from low-temperature thermochronology. Geol. Soc. Am. Bull. Bull. 2021, 133, 2393–2417. [Google Scholar] [CrossRef]
- Garver, J.I.; Brandon, M.T.; Roden-Tice, M.; Kamp, P.J. Exhumation history of orogenic highlands determined by detrital fission-track thermochronology. Geol. Soc. Lond. Spec. Publ. 1999, 154, 283–304. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Ji, J.; Zhao, W.; Sun, D.; Zhong, D.; Zhao, L. Late Cenozoic uplift-exhumation history of the Altyn Tagh and Qilian Mountains: Evidence from detrital apatite fission track thermochronology. Chin. J. Geol. 2015, 50, 1044–1067, (In Chinese with English Abstract). [Google Scholar]
- Glotzbach, C.; Busschers, F.S.; Winsemann, J. Detrital thermochronology of Rhine, Elbe and Meuse river sediment (Central Europe): Implications for provenance, erosion and mineral fertility. Int. J. Earth Sci. 2018, 107, 459–479. [Google Scholar] [CrossRef]
- Lin, X.; Tian, Y.; Donelick, R.A.; Liu-Zeng, J.; Cleber, S.J.; Wu, Q.; Li, Z. Mesozoic and Cenozoic tectonics of the northeastern edge of the Tibetan plateau: Evidence from modern river detrital apatite fission-track age constraints. J. Asian Earth Sci. 2019, 170, 84–95. [Google Scholar] [CrossRef]
- Malusà, M.G.; Fitzgerald, P.G. Application of thermochronology to geologic problems: Bedrock and detrital approaches. In Fission-Track Thermochronology and Its Application to Geology; Springer: Cham, Switzerland, 2019; pp. 91–209. [Google Scholar]
- Kirkland, C.L.; Barham, M.; Danišík, M. Find a match with triple-dating: Antarctic sub-ice zircon detritus on the modern shore of Western Australia. Earth Planet. Sci. Lett. 2020, 531, 115953. [Google Scholar] [CrossRef]
- Carrapa, B.; Faiz bin Hassim, M.; Kapp, P.A.; DeCelles, P.G.; Gehrels, G. Tectonic and erosional history of southern Tibet recorded by detrital chronological signatures along the Yarlung River drainage. Geol. Soc. Am. Bull. 2017, 129, 570–581. [Google Scholar] [CrossRef]
- Blayney, T.; Najman, Y.; Dupont-Nivet, G.; Carter, A.; Millar, I.; Garzanti, E.; Vezzoli, G. Indentation of the Pamirs with respect to the northern margin of Tibet: Constraints from the Tarim basin sedimentary record. Tectonics 2016, 35, 2345–2369. [Google Scholar] [CrossRef] [Green Version]
- Gansu BGMR (Bureau of Geology and Mineral Resources). Regional Geology Evolution of Gansu Province; Geological Publishing House: Beijing, China, 1989; pp. 1–692, (In Chinese with English Abstract). [Google Scholar]
- Ritts, B.D.; Biffi, U. Mesozoic northeast Qaidam basin: Response to contractional reactivation of the Qilian Shan, and implications for the extent of Mesozoic intracontinental deformation in central Asia. In Memoirs-Geological Society of America; Geological Society of America: Boulder, CO, USA, 2001; pp. 293–316. [Google Scholar]
- George, A.D.; Marshallsea, S.J.; Wyrwoll, K.H.; Jie, C.; Yanchou, L. Miocene cooling in the northern Qilian Shan, northeastern margin of the Tibetan Plateau, revealed by apatite fission-track and vitrinite-reflectance analysis. Geology 2001, 29, 939–942. [Google Scholar] [CrossRef]
- Cheng, F.; Garzione, C.; Jolivet, M.; Wang, W.; Dong, J.; Richter, F.; Guo, Z. Provenance analysis of the Yumen Basin and northern Qilian Shan: Implications for the pre-collisional paleogeography in the NE Tibetan Plateau and eastern termination of Altyn Tagh fault. Gondwana Res. 2019, 65, 156–171. [Google Scholar] [CrossRef] [Green Version]
- Horton, B.; Dupont-Nivet, G.; Zhou, J.; Waanders, G.; Butler, R.; Wang, J. Mesozoic-Cenozoic evolution of the Xining-Minhe and Dangchang basins, northeastern Tibetan Plateau: Magnetostratigraphic and biostratigraphic results. J. Geophys. Res. Solid Earth 2004, 109, 1–35. [Google Scholar] [CrossRef]
- Scotese, C.R. PALEOMAP PaleoAtlas for GPlates and the PaleoData Plotter Program, PALEOMAP Project. 2016. Available online: https://www.earthbyte.org/paleomap--paleoatlas--for--gplates/ (accessed on 20 July 2021).
- Fang, X.; Fang, Y.; Zan, J.; Zhang, W.; Song, C.; Appel, E. Cenozoic magnetostratigraphy of the Xining Basin, NE Tibetan Plateau, and its constraints on paleontological, sedimentological and tectonomorphological evolution. Earth-Sci. Rev. 2019, 190, 460–485. [Google Scholar] [CrossRef]
- Dai, S.; Fang, X.; Dupont-Nivet, G.; Song, C.; Gao, J.; Krijgsman, W.; Zhang, W. Magnetostratigraphy of Cenozoic sediments from the Xining Basin: Tectonic implications for the northeastern Tibetan Plateau. J. Geophys. Res. Solid Earth 2006, 111, 1–19. [Google Scholar] [CrossRef]
- Wang, X.; Lu, H.; Vandenberghe, J.; Zheng, S.; van Balen, R. Late Miocene uplift of the NE Tibetan Plateau inferred from basin filling, planation and fluvial terraces in the Huang Shui catchment. Glob. Planet. Chang. 2012, 88, 10–19. [Google Scholar] [CrossRef]
- Lu, H.; Wang, X.; An, Z.; Miao, X.D.; Zhu, R.X.; Ma, H.Z.; Wang, X.Y. Geomorphologic evidence of phased uplift of the northeastern Qinghai-Tibet Plateau since 14 million years ago. Sci. China Ser. D Earth Sci. 2004, 47, 822–833. [Google Scholar] [CrossRef]
- Carlson, W.D.; Donelick, R.A.; Ketcham, R.A. Variability of apatite fission-track annealing kinetics: I. Experimental results. Am. Miner. 1999, 84, 1213–1223. [Google Scholar] [CrossRef]
- Soares, C.J.; Guedes, S.; Hadler, J.C.; Mertz-Kraus, R.; Zack, T. Novel calibrations for LA-ICP-MS-based fission-track thermochronology. Phys. Chem. Miner. 2014, 41, 65–73. [Google Scholar] [CrossRef]
- Hurford, A.J.; Green, P.F. The zeta age calibration of fission-track dating. Isot. Geosci. 1983, 1, 285–317. [Google Scholar] [CrossRef]
- Vermeesch, P. On the visualisation of detrital age distributions. Chem. Geol. 2012, 312, 190–194. [Google Scholar] [CrossRef]
- Saylor, J.E.; Stockli, D.F.; Horton, B.K.; Nie, J.; Mora, A. Discriminating rapid exhumation from syndepositional volcanism using detrital zircon double dating: Implications for the tectonic history of the Eastern Cordillera, Colombia. Geol. Soc. Am. Bull. 2012, 124, 762–779. [Google Scholar] [CrossRef]
- Bootes, N.; Enkelmann, E.; Lease, R. Late Miocene to Pleistocene source to sink record of exhumation and sediment routing in the gulf of Alaska from detrital zircon fission-track and U-Pb double dating. Tectonics 2019, 38, 2703–2726. [Google Scholar] [CrossRef]
- Carter, A.; Bristow, C.S. Linking hinterland evolution and continental basin sedimentation by using detrital zircon thermochronology: A study of the Khorat Plateau Basin, eastern Thailand. Basin Res. 2003, 15, 271–285. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Qi, W.; Guo, S. Exhumation history of the Xining Basin since the Mesozoic and its tectonic significance. Acta Geol. Sin.-Engl. Ed. 2015, 89, 145–162. [Google Scholar]
- Wu, L.; Xiao, A.; Wang, L.; Shen, Z.; Zhou, S.; Chen, Y.; Guan, J. Late Jurassic–early Cretaceous northern Qaidam basin, NW China: Implications for the earliest Cretaceous intracontinental tectonism. Cretac. Res. 2011, 32, 552–564. [Google Scholar] [CrossRef]
- Chen, L.; Song, C.; Wang, Y.; Fang, X.; Zhang, Y.; Zhang, J.; He, P. Mesozoic–Cenozoic Uplift/exhumation history of the Qilian Shan, NE Tibetan Plateau: Constraints from low-temperature thermochronology. Front. Earth Sci. 2021, 9, 760100. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; He, P.; Song, C.; Meng, Q.; Feng, W.; Wang, X. Mesozoic-Cenozoic multistage tectonic deformation of the Qilian Shan constrained by detrital apatite fission track and zircon U-Pb geochronology in the Yumu Shan area. Tectonophysics 2022, 822, 229151. [Google Scholar] [CrossRef]
- Jian, X.; Guan, P.; Zhang, W.; Liang, H.; Feng, F.; Fu, L. Late Cretaceous to early Eocene deformation in the northern Tibetan Plateau: Detrital apatite fission track evidence from northern Qaidam basin. Gondwana Res. 2018, 60, 94–104. [Google Scholar] [CrossRef]
- He, P.; Song, C.; Wang, Y.; Zhao, Y.; Tan, Y.; Meng, Q.; Zhang, J. Cenozoic two-phase topographic growth of the northeastern Tibetan Plateau derived from two thermochronologic transects across the southern Qilian Shan thrust belt. Tectonophysics 2022, 837, 229432. [Google Scholar] [CrossRef]
- Zheng, D.; Clark, M.K.; Zhang, P.; Zheng, W.; Farley, K.A. Erosion, fault initiation and topographic growth of the North Qilian Shan (northern Tibetan Plateau). Geosphere 2010, 6, 937–941. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Wang, F.; Yang, L.; Wu, L.; Zhang, W. Diachronous growth of the Altyn Tagh Mountains: Constraints on propagation of the northern Tibetan margin from (U-Th)/He dating. J. Geophys. Res. Solid Earth 2018, 123, 6000–6018. [Google Scholar] [CrossRef]
- Pang, J.; Yu, J.; Zheng, D.; Wang, W.; Ma, Y.; Wang, Y.; Li, C.; Li, Y.; Wang, Y. Neogene Expansion of the Qilian Shan, North Tibet: Implications for the Dynamic Evolution of the Tibetan Plateau. Tectonics 2019, 38, 1018–1032. [Google Scholar] [CrossRef]
- Lin, X.; Chen, H.; Wyrwoll, K.H.; Cheng, X. Commencing uplift of the Liupan Shan since 9.5 Ma: Evidences from the Sikouzi section at its east side. J. Asian Earth Sci. 2010, 37, 350–360. [Google Scholar] [CrossRef]
- An, K.; Lin, X.; Wu, L.; Yang, R.; Chen, H.; Cheng, X.; Zhang, Y. An immediate response to the Indian-Eurasian collision along the northeastern Tibetan Plateau: Evidence from apatite fission track analysis in the Kuantan Shan-Hei Shan. Tectonophysics 2020, 774, 228278. [Google Scholar] [CrossRef]
- Miao, Y.; Fang, X.; Sun, J.; Xiao, W.; Yang, Y.; Wang, X.; Utescher, T. A new biologic paleoaltimetry indicating Late Miocene rapid uplift of northern Tibet Plateau. Science 2022, 378, 1074–1079. [Google Scholar] [CrossRef]
Sample | GPS | AFT | ZFT |
---|---|---|---|
HY-1 | 101°18′14″ 36°40′55″ | 40 | 24 |
LD-1 | 102°22′22″ 36°28′58″ | 39 | 20 |
DTH-1 | 102°50′05″ 36°20′54″ | 28 | 21 |
HSH-1 | 102°55′04″ 36°18′21″ | 33 | 18 |
HSH-2 | 103°20′49″ 36°07′12″ | 13 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, X.; Jolivet, M.; Cheng, F. Spatiotemporal Evolution of Central Qilian Shan (Northwest China) Constrained by Fission-Track Ages of Detrital Grains from the Huangshui River. Minerals 2023, 13, 890. https://doi.org/10.3390/min13070890
Lin X, Jolivet M, Cheng F. Spatiotemporal Evolution of Central Qilian Shan (Northwest China) Constrained by Fission-Track Ages of Detrital Grains from the Huangshui River. Minerals. 2023; 13(7):890. https://doi.org/10.3390/min13070890
Chicago/Turabian StyleLin, Xu, Marc Jolivet, and Feng Cheng. 2023. "Spatiotemporal Evolution of Central Qilian Shan (Northwest China) Constrained by Fission-Track Ages of Detrital Grains from the Huangshui River" Minerals 13, no. 7: 890. https://doi.org/10.3390/min13070890
APA StyleLin, X., Jolivet, M., & Cheng, F. (2023). Spatiotemporal Evolution of Central Qilian Shan (Northwest China) Constrained by Fission-Track Ages of Detrital Grains from the Huangshui River. Minerals, 13(7), 890. https://doi.org/10.3390/min13070890