Geochemical Characteristics and Geological Significance of the Shangsu Mafic Dikes in Jiangxi
Abstract
:1. Introduction
2. Regional Geological Background
3. Petrographic Characteristics of the Samples
4. Analysis Methods and Results
5. Geochemical Characteristics
6. Discussion
6.1. Nature of Magma Source Region
6.2. Tectonic Background
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, G.; Cawood, P.A. Precambrian geology of China. Precambrian Res. 2012, 222–223, 13–54. [Google Scholar] [CrossRef]
- Charvet, J.; Shu, L.; Faure, M.; Choulet, F.; Wang, B.; Lu, H.; Le Breton, N. Structural development of the Lower Paleozoic belt of South China: Genesis of an intracontinental orogen. J. Asian Earth Sci. 2010, 39, 309–330. [Google Scholar] [CrossRef] [Green Version]
- Charvet, J.; Shu, L.; Shi, Y.; Guo, L.; Faure, M. The building of south China: Collision of Yangzi and Cathaysia blocks, problems and tentative answers. J. Asian Earth Sci. 1996, 13, 3–5. [Google Scholar] [CrossRef]
- Li, C.; Wang, Z.; Lü, Q.; Tan, Y.; Li, L.; Tao, T. Mesozoic tectonic evolution of the eastern South China Block: A review on the synthesis of the regional deformation and magmatism. Ore Geol. Rev. 2021, 131, 104028. [Google Scholar] [CrossRef]
- Luo, J.C.; Qi, Y.Q.; Wang, L.X.; Chen, Y.W.; Tian, J.J.; Shi, S.H. Ar-Ar dating of mafic dykes from the Xiazhuang uranium ore field in northern Guangdong, South China: A reevaluation of the role of mafic dyke in uranium mineralization. Acta Petrol. Sin. 2019, 35, 2660–2678. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, S. East asia multi-plate convergence in late mesozoic and the development of continental tectonic systems. J. Geomech. 2019, 25, 613–641. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Dong, S.W.; Li, J.H.; Cui, J.J.; Shi, W.; Su, J.B.; Li, Y. The New Progress in the Study of Mesozoic Tectonics of South China. Acta Geosci. Sin. 2012, 33, 257–279. [Google Scholar] [CrossRef]
- Jiang, W.; Shao, S.; Lin, K.; Li, H. Characteristics of granites and their geological role in uranium mineralization in South China. World Nucl. Geosci. 2021, 38, 446–456. [Google Scholar] [CrossRef]
- Yu, X.; Chen, Z.; Hu, J.; Liu, M.; He, Y.; Peng, F. Early Cretaceous extension in South China: Constraints from east–west-trending A-type granite belts and growth strata in terrigenous basins. Int. Geol. Rev. 2022, 64, 799–819. [Google Scholar] [CrossRef]
- Zeng, R.; Pan, J.Y.; Su, H.; Gan, D.; Zhong, F.; Du, H.; Yan, J.; Zhang, C. Geochronology and genetic mineralogy of apatite and zircon from the Huichang pyroxene diorite in southern Jiangxi Province: Implications for uranium mineralization. Earth Sci. 2022, 1–45. [Google Scholar]
- Chen, Y.; Wang, D.; Xu, Z.; Huang, F. Outline of regional metallogeny of ore deposits associated with the Mesozoic magmatism in South China. Geotecton. Metallog. 2014, 38, 219–229. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, K.D.; Chen, W.; Jiang, S.Y. Early Jurassic mafic dykes from the Aigao uranium ore deposit in South China: Geochronology, petrogenesis and relationship with uranium mineralization. Lithos 2018, 308, 118–133. [Google Scholar] [CrossRef]
- Halls, H.C. The importance and potential of mafic dyke swarms in studies of geodynamic processes. Geosci. Can. 1982, 9, 145–154. Available online: https://www.researchgate.net/publication/285020850 (accessed on 10 October 2022).
- Shu, L.S. An analysis of principal features of tectonic evolution in South China Block. Geological Bulletin of China. Geol. Bull. China 2012, 31, 1035–1053. [Google Scholar] [CrossRef]
- Gan, C.; Wang, Y.; Zhang, Y.; Chen, X. Late Jurassic magmatism in the interior South China Block and its implication. J. Geol. Soc. 2019, 176, 737–754. [Google Scholar] [CrossRef]
- Wang, T.; Huang, C.; Du, G.; Liu, Y.; Xie, J.; Li, H. Geochronology, geochemistry and zircon Hf-isotopes of the early Mesoproterozoic Yaopengzi dolerite in SW Yangtze block (Sichuan, SW China): Implications for the Columbia supercontinent breakup. Geosci. J. 2019, 23, 557–573. [Google Scholar] [CrossRef]
- Ren, J. On the Geotectonics of Southern China. Acta Geol. Sin.-Engl. Ed. 1991, 4, 111–130. [Google Scholar] [CrossRef]
- Xie, G.Q.; Hu, R.Z.; Jia, D.C. Geological and geochemical characteristics and its significance of mafic dikes from Northwest Jiangxi Province. Geochimica 2002, 31, 329–337. [Google Scholar] [CrossRef]
- Yu, X.Q.; Wu, G.G.; Shu, L.S.; Yan, T.Z.; Di, Y.J. The Cretaceous tectonism of the Gan-Hang Tectonic Belt, southeastern China. Earth Sci. Front. 2006, 13, 31–43. [Google Scholar] [CrossRef]
- Xie, G.Q. Late Mesozoic and Cenozoic Mafic Dikes (Bodies) from Southeastern China: Geological and Geochemical Characteristics and Its Geodynamics—A Case of Jiangxi Province. Doctoral Dissertation, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China, 2003. Available online: http://ir.gyig.ac.cn/handle/352002/3650 (accessed on 11 July 2023).
- Qi, Y.; Hu, R.; Liu, S.; Coulson, I.M.; Qi, H.; Tian, J.; Feng, C.; Wang, T. Geochemical and Sr–Nd–Pb isotopic compositions of Mesozoic mafic dikes from the Gan-Hang tectonic belt, South China: Petrogenesis and geodynamic significance. Int. Geol. Rev. 2012, 54, 920–939. [Google Scholar] [CrossRef]
- Mao, J.; Cheng, Y.; Chen, M. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Miner. Depos. 2013, 48, 267–294. [Google Scholar] [CrossRef]
- Gan, C.; Wang, Y.; Zhang, Y.; Zhang, J. The earliest Jurassic A-type granite in the Nanling Range of southeastern South China: Petrogenesis and geological implications. Int. Geol. Rev. 2017, 59, 274–292. [Google Scholar] [CrossRef]
- Xu, X.; Liang, C.; Chen, J.; Xu, Y. Fundamental geological features and metallogenic geological backgrounds of Nanling tectonic belt. Earth Sci. 2021, 46, 1133–1150. [Google Scholar] [CrossRef]
- Yan, Q.-H.; Wang, H.; Wu, Y.; Chi, G. Simultaneous development of arc-like and OIB-like mafic dikes in eastern Guangdong, SE China: Implications for late Jurassic—Early Cretaceous tectonic setting and deep geodynamic processes of South China. Lithos 2021, 388–389, 106021. [Google Scholar] [CrossRef]
- Mao, J.; Li, Z.; Ye, H. Mesozoic tectono-magmatic activities in South China: Retrospect and prospect. Earth Sci. 2014, 57, 2853–2877. [Google Scholar] [CrossRef]
- Zhang, G.; Guo, A.; Wang, Y.; Li, S.; Dong, Y.; Liu, S.; He, D.; Cheng, S.; Lu, R.; Yao, A. Tectonics of South China Continent and its implications. Earth Sci. 2013, 56, 1804–1828. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, W.; Zhang, G.; Zhang, Y. Phanerozoic tectonics of the South China Block: Key observations and controversies. Gondwana Res. 2013, 23, 1273–1305. [Google Scholar] [CrossRef]
- Ou, Q.; Lai, J.Q.; Carvalho, B.B.; Zi, F.; Kong, H.; Li, B.; Jiang, Z.Q. Different response to middle-Palaeozoic magmatism during intracontinental orogenic processes: Evidence from southeastern South China Block. Int. Geol. Rev. 2019, 61, 1504–1521. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Q.; Ma, L.; Wyman, D.A.; Zhou, J.S. Petrogenesis of Late Jurassic Pb–Zn mineralized high δ18O granodiorites in the western Nanling Range, South China. J. Asian Earth Sci. 2020, 192, 104236. [Google Scholar] [CrossRef]
- Peng, J.; Wang, C.; Li, Y.; Hu, A.; Lu, Y.; Chen, X. Geochemical characteristics and Sm-Nd geochronology of scheelite in the Baojinshan ore district, central Hunan. Acta Petrol. Sin. 2022, 37, 665–682. [Google Scholar] [CrossRef]
- Quan, O.; Lai, J.Q.; Carvalho, B.B.; Zi, F.; Liu, Y.Z. Early Silurian granitic rocks and associated enclaves as evidence of rapid cooling in a cognate magma system: The case of the Xuehuading–Panshanchong pluton, South China Block. Geol. Mag. 2020, 158, 1173–1193. [Google Scholar] [CrossRef]
- Li, L.; Liao, Z.; Lei, L.; Lash, G.G.; Chen, A.; Tan, X. On the negative carbon isotope excursion across the Wuchiapingian–Changhsingian transition: A regional event in the lower Yangtze region, South China? Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 540, 109501. [Google Scholar] [CrossRef]
- Zhan, Y.; Shao, Y.; Liu, Q.; Zhang, X.; Chen, M.; Lu, Y.; Zhang, Y.; Tan, H. Hydrothermal rutile U-Pb dating of gold mineralization in the Jiangnan Orogen: A case study of the Hengjiangchong gold deposit in northeastern Hunan. Ore Geol. Rev. 2022, 149, 105115. [Google Scholar] [CrossRef]
- Li, X.H.; Hu, R.Z.; Rao, B. Geochronology and geochemistry of Cretaceous mafic rocks from northern Guangdong Province, SE China. Geochimica 1997, 26, 14–31. [Google Scholar] [CrossRef]
- Zhu, Q.; Ji, G.; Zhao, X.; Zhang, C.; Shu, X.; Hong, W. Petrogenesis of the late Mesozoic Lingshang ultramafic intrusion in northern Jiangxi Province: Chronologic and geochemical constraints. Geol. China 2020, 47, 1092–1108. [Google Scholar]
- Lei, Z.L. Genesis and Source Lithology of Late Mesozoic Mafic Dikes in Southeastern China. Master’s Thesis, Nanjing University, Nanjing, China, 2020. [Google Scholar] [CrossRef]
- Liang, X.Q.; Li, X.H.; Qiu, Y.X. Indosinian collisional orogeny: Evidence from structural and sedimentary geology in Shiwandashan Basin, South China. Geotecton. Metallog. 2005, 29, 99–112. [Google Scholar] [CrossRef]
- Hu, R.Z.; Bi, X.W.; Zhou, M.F.; Peng, J.T.; Su, W.C.; Liu, S.; Qi, H.W. Uranium Metallogenesis in South China and Its Relationship to Crustal Extension during the Cretaceous to Tertiary. Econ. Geol. 2008, 103, 583–598. [Google Scholar] [CrossRef]
- Winchester, J.A.; Floyd, P.A. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977, 20, 325–343. [Google Scholar] [CrossRef] [Green Version]
- Pearce, J.A. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. In Andesites: Orogenic Andesites and Related Rocks; Thorpe, R.S., Ed.; John Wiley and Sons: Chichester, UK, 1982; Volume 8, pp. 525–548. [Google Scholar]
- Sun, S.S.; Mcdonough, W.F. Chemical and isotopic systematics of ocean basalts: Implications for mantle composition and processes, in Magmatism in the Ocean Basins. Geol. Soc. Lond. Spec. Publ. 1989, 423, 13–345. [Google Scholar] [CrossRef]
- Li, X.H. Geochemical characteristics of Cretaceous mafic dikes from northern Guangdong, SE China: Petrogenesis, mantle sources and tectonic significance. In Proceedings of the Mantle Dynamics and Plate Interactions in East Asia Geodynamics, San Francisco, CA, USA, 1 December 1995. [Google Scholar] [CrossRef]
- Meschede, M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chem. Geol. 1986, 56, 207–218. [Google Scholar] [CrossRef]
- Pearce, J.A. Role of the sub-continental lithosphere in magma genesis at active continental margins. In Continental Basalts and Mantle Xenoliths; American Geophysical Union: Washington, DC, USA, 1983; Volume 1, pp. 230–249. [Google Scholar]
- Pearce, J.A.; Norry, M.J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib. Mineral. Petrol. 1979, 69, 33–47. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Shan, G. Composition of the Continental Crust. Treatise Geochem. 2003, 3, 1–64. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhong, F.; Pan, J.; Xia, F.; Qi, J.; Li, H.; Liu, W. Petrogenesis and Its Relationship with Uranium Mineralization of Diabase in Huangsha Uranium Ore-Field, South Jiangxi Province. Earth Sci. 2021, 47, 206–223. [Google Scholar] [CrossRef]
- Fitton, J.G.; James, D.; Leeman, W.P. Basic magmatism associated with Late Cenozoic extension in the western United States: Compositional variations in space and time. J. Geophys. Res. Solid Earth 1991, 96, 13693–13711. [Google Scholar] [CrossRef]
- Xu, Z.; Cheng, R.; He, Y.; Wang, L.; Lan, Y. Zircon U-Pb Ages, Sr-Nd Isotopes and Geological Significance of Early Jurassic Volcanic Rocks from Southwest Fujian. Earth Sci. 2019, 44, 1371–1388. [Google Scholar] [CrossRef]
- Qi, Y.; Hu, R.; Liu, S.; Qi, H. Geochemical Characteristics of the Mafic Dikes from the Gan-Hang Tectonic Belt. J. Jilin Univ. 2008, 38, 784–794. [Google Scholar] [CrossRef]
- Wang, L.-X.; Chang, Q.; Zhong, X.; Michael, A.W.; Zhang, C.; Yu, F. Early Jurassic mafic dykes from the Xiazhuang ore district (South China): Implications for tectonic evolution and uranium metallogenesis. Lithos Int. J. Mineral. Petrol. Geochem. 2015, 239, 71–85. [Google Scholar] [CrossRef]
- Zhang, M.; Li, X.; Wei, X.; Mao, W.; Zhang, Z.; Tang, Y. Zircon LA-ICP-MS U-Pb Ages of diabase from Yinshan Deposit and Its Geological Significance, Dexing, Jiangxi Province, South China. Acta Neralogica Sin. 2016, 36, 25–33. [Google Scholar] [CrossRef]
- Nie, B.; Zhang, W.L. Ar-Ar age of the diabase and its relationship with uranium mineralization in Huangsha mining district, southern Jiangxi Province. Miner. Resour. Geol. 2018, 32, 784–794. [Google Scholar] [CrossRef]
- Hua, C.; Yang, Q.; Zhou, W.; Guo, F. Zircon LA-ICPMS chronology and petrogeochemical characteristics of diabase in nancheng area, central Jiangxi province. Miner. Petrol. 2019, 39, 58–69. [Google Scholar] [CrossRef]
Sample ID | JX-001 | JX-002 | JX-003 | JX-004 | JX-005 | JX-006 |
---|---|---|---|---|---|---|
LOI * | 4.17 | 4.42 | 4.11 | 3.49 | 2.87 | 3.63 |
SiO2 * | 50.53 | 49.46 | 48.40 | 48.59 | 49.94 | 48.38 |
Al2O3 * | 16.63 | 16.89 | 17.55 | 17.49 | 17.81 | 17.21 |
Fe2O3 * | 8.97 | 9.41 | 9.20 | 9.41 | 8.96 | 9.59 |
CaO * | 6.59 | 6.41 | 9.00 | 9.01 | 8.74 | 8.84 |
MgO * | 7.14 | 7.36 | 7.63 | 7.63 | 6.53 | 7.53 |
TiO2 * | 0.91 | 0.95 | 0.85 | 0.90 | 1.05 | 0.94 |
MnO * | 0.16 | 0.16 | 0.15 | 0.15 | 0.16 | 0.17 |
P2O5 * | 0.11 | 0.12 | 0.10 | 0.11 | 0.13 | 0.12 |
K2O * | 0.94 | 0.91 | 0.68 | 0.73 | 1.03 | 0.88 |
Na2O * | 3.68 | 3.64 | 2.20 | 2.30 | 2.63 | 2.48 |
V | 149 | 148 | 140 | 146 | 168 | 149 |
Cr | 217 | 300 | 263 | 260 | 215 | 219 |
Co | 37.0 | 38.7 | 40.2 | 40.7 | 34.0 | 38.2 |
Ni | 97.2 | 136 | 121 | 117 | 73.8 | 107 |
Ga | 15.8 | 15.3 | 15.7 | 16.5 | 16.5 | 15.4 |
Sr | 352 | 330 | 223 | 212 | 238 | 226 |
Zr | 248 | 1099 | 159 | 581 | 246 | 1021 |
Nb | 7.19 | 7.20 | 5.85 | 6.24 | 7.23 | 6.64 |
Ba | 382 | 349 | 166 | 163 | 253 | 204 |
Hf | 6.51 | 27.8 | 4.40 | 15.1 | 6.71 | 26.3 |
Ta | 0.49 | 0.48 | 0.41 | 0.43 | 0.50 | 0.46 |
Pb | 13.0 | 13.4 | 8.62 | 9.53 | 10.3 | 7.26 |
Th | 4.05 | 4.04 | 3.89 | 4.18 | 4.91 | 4.41 |
U | 0.58 | 0.57 | 0.51 | 0.56 | 0.65 | 0.60 |
Rb | 38.6 | 35.1 | 19.0 | 20.3 | 30.6 | 28.0 |
Sc | 26.9 | 30.6 | 23.9 | 25.1 | 30.7 | 27.4 |
Y | 31.8 | 89.0 | 27.8 | 56.2 | 37.7 | 86.0 |
La | 14.0 | 14.5 | 13.3 | 13.4 | 16.4 | 14.9 |
Ce | 30.1 | 32.0 | 29.5 | 30.5 | 36.4 | 33.4 |
Pr | 3.56 | 3.66 | 3.42 | 3.56 | 4.19 | 3.84 |
Nd | 14.4 | 15.2 | 14.1 | 14.9 | 17.4 | 15.8 |
Sm | 3.30 | 3.43 | 3.29 | 3.39 | 3.98 | 3.53 |
Eu | 1.07 | 1.10 | 1.10 | 1.11 | 1.27 | 1.13 |
Gd | 3.66 | 3.98 | 3.72 | 3.92 | 4.57 | 4.09 |
Tb | 0.66 | 0.69 | 0.65 | 0.67 | 0.80 | 0.71 |
Dy | 4.18 | 4.41 | 4.33 | 4.51 | 5.24 | 4.81 |
Ho | 0.95 | 0.99 | 0.95 | 1.01 | 1.17 | 1.06 |
Er | 2.86 | 3.08 | 2.86 | 3.05 | 3.60 | 3.16 |
Tm | 0.45 | 0.44 | 0.44 | 0.46 | 0.53 | 0.48 |
Yb | 2.81 | 3.05 | 2.94 | 3.00 | 3.53 | 3.21 |
Lu | 0.46 | 0.48 | 0.45 | 0.46 | 0.54 | 0.48 |
LREE/HREE | 4.14 | 4.08 | 3.96 | 3.91 | 3.99 | 4.03 |
Mg# | 43.28 | 43.34 | 43.91 | 44.91 | 40.06 | 45.06 |
δEu | 0.94 | 0.91 | 0.95 | 0.93 | 0.91 | 0.909 |
δCe | 1.04 | 1.07 | 1.07 | 1.08 | 1.07 | 1.08 |
LaN/YbN | 3.57 | 3.41 | 3.25 | 3.20 | 3.33 | 3.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Chen, X.; Xie, Y. Geochemical Characteristics and Geological Significance of the Shangsu Mafic Dikes in Jiangxi. Minerals 2023, 13, 943. https://doi.org/10.3390/min13070943
Huang Y, Chen X, Xie Y. Geochemical Characteristics and Geological Significance of the Shangsu Mafic Dikes in Jiangxi. Minerals. 2023; 13(7):943. https://doi.org/10.3390/min13070943
Chicago/Turabian StyleHuang, Yang, Xinyue Chen, and Yujiang Xie. 2023. "Geochemical Characteristics and Geological Significance of the Shangsu Mafic Dikes in Jiangxi" Minerals 13, no. 7: 943. https://doi.org/10.3390/min13070943
APA StyleHuang, Y., Chen, X., & Xie, Y. (2023). Geochemical Characteristics and Geological Significance of the Shangsu Mafic Dikes in Jiangxi. Minerals, 13(7), 943. https://doi.org/10.3390/min13070943