An Overview of the Behavior of Concentrates with Arsenic, Antimony, and Bismuth under Roasting Conditions
Abstract
:1. Introduction
2. Literature Review
2.1. Thermal Decomposition or Inert Roasting
2.2. Oxidative Roasting
2.3. Reductive Roasting
∆G 998 K = −1.115 kJ/mol
3. Discussion
3.1. Antimony
3.2. Arsenic
3.3. Bismuth
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dimitrijević, M.; Kostov, A.; Tasić, V.; Milosević, N. Influence of Pyrometallurgical Copper Production on the Environment. J. Hazard. Mater. 2009, 164, 892–899. [Google Scholar] [CrossRef] [PubMed]
- COCHILCO Producción Minera. Available online: https://www.cochilco.cl/Paginas/Estadisticas/Bases%20de%20Datos/Producci%C3%B3n-Minera.aspx (accessed on 28 June 2023).
- Barros, K.S.; Vielmo, V.S.; Moreno, B.G.; Riveros, G.; Cifuentes, G.; Bernardes, A.M. Chemical Composition Data of the Main Stages of Copper Production from Sulfide Minerals in Chile: A Review to Assist Circular Economy Studies. Minerals 2022, 12, 205. [Google Scholar] [CrossRef]
- Aracena, A.; Fuenzalida, P. Pirometalurgia: Conceptos y Problemas; Ediciones Universitarias de la Universidad Catolica de Valparaiso: Valparaiso, Chile, 2021; pp. 161–325. [Google Scholar]
- Habashi, F. Extractive Metallurgy of Copper; Annika Parance: Montreal, QC, Canada, 2012; pp. 115–140. ISBN 9782922686197. [Google Scholar]
- Long, G.; Peng, Y.; Bradshaw, D. A Review of Copper–Arsenic Mineral Removal from Copper Concentrates. Miner. Eng. 2012, 36–38, 179–186. [Google Scholar] [CrossRef]
- Sasaki, K.; Takatsugi, K.; Kaneko, K.; Kozai, N.; Ohnuki, T.; Tuovinen, O.; Hirajima, T. Characterization of Secondary Arsenic-Bearing Precipitates Formed in the Bioleaching of Enargite by Acidithiobacillus Ferrooxidans. Hydrometallurgy 2010, 104, 424–431. [Google Scholar] [CrossRef]
- Riveros, G.; Utigard, T.A. Disposal of Arsenic in Copper Discharge Slags. J. Hazard. Mater. 2000, 77, 241–252. [Google Scholar] [CrossRef]
- Basha, C.A.; Somasundaram, M.; Kannadasan, T.; Lee, C.W. Heavy Metals Removal from Copper Smelting Effluent Using Electrochemical Filter Press Cells. Chem. Eng. J. 2011, 171, 563–571. [Google Scholar] [CrossRef]
- Lane, D.J.; Cook, N.J.; Grano, S.R.; Ehrig, K. Selective Leaching of Penalty Elements from Copper Concentrates: A Review. Miner. Eng. 2016, 98, 110–121. [Google Scholar] [CrossRef]
- Calvo Sevillano, G. Historia del Arsenico; Almuzara: Cordoba, Spain, 2021. [Google Scholar]
- Castro, K.; Balladares, E.; Jerez, O.; Pérez-Tello, M.; Aracena, Á. Behavior of As/AsxSy in Neutral and Oxidizing Atmospheres at High Temperatures—An Overview. Metals 2022, 12, 457. [Google Scholar] [CrossRef]
- Moosavi-Khoonsari, E.; Mostaghel, S.; Siegmund, A.; Cloutier, J.P. A Review on Pyrometallurgical Extraction of Antimony from Primary Resources: Current Practices and Evolving Processes. Processes 2022, 10, 1590. [Google Scholar] [CrossRef]
- Padilla, R.; Aracena, A.; Ruiz, M.C. Reaction Mechanism and Kinetics of Enargite Oxidation at Roasting Temperatures. Metall. Mater. Trans. B 2012, 43, 1119–1126. [Google Scholar] [CrossRef]
- Secco, A.C.; Riveros, G.; Lupaschi, A. Thermal Decomposition of Enargite and Phase Relations in the System Cu-As-S; Copper 95, C. Diaz, C. Landolt and A. Lurashi, 1988; Volume 4. Available online: https://scholar.google.com/scholar_lookup?title=Thermal+decomposition+of+enargite+and+phase+relations+in+the+system+copper-arsenic-sulfur&author=Secco,+A.C.&author=Riveros,+G.A.&author=Luraschi,+A.A.&publication_year=1988&pages=225%E2%80%93238 (accessed on 1 June 2023).
- Yoshimura, Z. Bull. Inst. Min; Metall. JPN, 1962; Volume 75. Available online: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Fundamental+Investigation+of+De-arsenising+Roasting+of+Copper+Concentrates+and+its+Industrial+Practices&btnG= (accessed on 1 June 2023).
- Padilla, R.; Fan, Y.; Wilkomirsky, I. Decomposition of Enargite in Nitrogen Atmosphere. Can. Metall. Q. 2001, 40, 335–342. [Google Scholar] [CrossRef]
- Davenport, W.G.; King, M.J.; Schlesinger, M.; Biswas, A.K.; Sole, K.C. Extractive Metallurgy of Copper; Pergamon Press: Londres, Inglaterra, 2002. [Google Scholar]
- Sohn, H.S.; Fukunaka, Y.; Oishi, T.; Sohn, H.Y.; Asaki, Z. Kinetics of As, Sb, Bi and Pb Volatilization from Industrial Copper Matte during Ar+O2 Bubbling. Metall. Mater. Trans. B 2004, 35, 651–661. [Google Scholar] [CrossRef]
- Arias Arce, V.; Coronado Falcón, R.; Puente Santibañez, L.; Lovera Dávila, D. Refractariedad de Concentrados Auriferos. Rev. Del Inst. De Investig. De La Fac. De Minas Metal. Y Cienc. Geográficas 2005, 8, 5–14. [Google Scholar]
- Faure, F.M.; Mitchell, M.J.; Bartlett, R.W. Vapour Pressure Study of Stibnite Sb2S3. High Tem. Sci. 1972, 4, 181–191. [Google Scholar]
- Shendiyapin, A.C.; Nestlerov, U.N.; Ibragimov, E.T. Davlenye Para Trehsernistoy Surmy. AN Kasahskoy SSR Institut Metallurgii i Obogashceniya. Available online: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Davlenye+Para+Trehsernistory+surmy+AC+Shendiyapin&btnG= (accessed on 1 June 2023).
- Komorova, L.; HolmstrÖm, A.; Imris, I. Vaporization of Antimony from Synthetic Sulphosalts. Scand. J. Metall. 1985, 14, 103–112. [Google Scholar]
- Habashi, F. Handbook of Extractive Metallurgy; Antimony; 1997; Volume 2. Available online: https://books.google.cl/books?id=wIpTAAAAMAAJ&redir_esc=y (accessed on 1 June 2023).
- Zivkovic, Z.; Strbac, N.; Zivkovic, D.; Grujicic, D.; Boyanov, B. Kinetics and Mechanism of Sb2S3 Oxidation Process. Elsevier Termochimica Acta 2002, 383, 137–143. [Google Scholar] [CrossRef]
- Steinhauser, J.; Vartiainen, A.; Wuth, W. Volatilization and Distribution of Impurities in Modern Pyrometallurgical Copper Processing from Complex Concentrates. JOM 1984, 36, 54–61. [Google Scholar] [CrossRef]
- Davenport, W.G.; Jones, D.M.; King, M.J.; Partelpoeg, E.H. Flash Smelting: Analysis, Control and Optimization, 2nd ed.; Minerals, Metals & Materials Society: Pittsburgh, PA, USA, 2004. [Google Scholar]
- Padilla, R.; Ramírez, G.; Ruiz, M.C. High-Temperature Volatilization Mechanism of Stibnite in Nitrogen-Oxygen Atmospheres. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2010, 41, 1284–1292. [Google Scholar] [CrossRef]
- Qin, W.Q.; Luo, H.L.; Liu, W.; Zheng, Y.X.; Yang, K.; Han, J.W. Mechanism of Stibnite Volatilization at High Temperature. J. Cent. South Univ. 2015, 22, 868–873. [Google Scholar] [CrossRef]
- Aracena, A.; Jerez, O.; Antonucci, C. Senarmontite Volatilization Kinetics in Nitrogen Atmosphere at Roasting/Melting Temperatures. Trans. Nonferrous Met. Soc. China (Engl. Ed.) 2016, 26, 294–300. [Google Scholar] [CrossRef]
- Cabrera, E.; Aracena, A. Encapsulamiento de Antimonio En Escoria Fayalítica Mediante Reducción Carbotérmica En Ambiente Neutro; Pontificia Universidad Católica de Valparaíso: Valparaíso, Chile, 2018. [Google Scholar]
- Kim, H.G.; Sohn, H.Y. Kinetic Modeling of Minor Element Behaviour in Copper Converting. In Proceedings of the Extraction and Processing Division, New Orlands, LA, USA, 17–21 February 1991. [Google Scholar]
- Chaubal, P.C.; Sohn, H.Y.; George, D.B.; Bailey, L.K. Mathematical Modeling of Minor-Element Behavior in Flash Smelting of Copper Concentrates and Flash Converting of Copper Mattes. Metall. Trans. B 1989, 20, 39–51. [Google Scholar] [CrossRef]
- Piacente, V.; Scardala, P.; Ferro, D. Study of the Vaporization Behaviour of Sb2S3 and Sb2Te3 from Their Vapour Pressure Measurements. J. Alloys Compd. 1992, 178, 101–115. [Google Scholar] [CrossRef]
- Li, L.; Xu, M.; Li, Q. Arsenic Pre-Removal from Antimony Oxide Powder by Roasting with Pyrite (FeS2) for Decreasing Arsenic Transfer and Pollution in the Followed Antimony Smelting Process. Sep. Sci. Technol. 2022, 57, 1978–1991. [Google Scholar] [CrossRef]
- Ouyang, Z.; Chen, Y.F.; Tian, S.Y.; Xiao, L.; Tang, C.B.; Hu, Y.J.; Xia, Z.M.; Chen, Y.M.; Ye, L.G. Thermodynamic and Kinetics Analysis of the Sulfur-Fixed Roasting of Antimony Sulfide Using ZnO as Sulfur-Fixing Agent. J. Min. Metall. Sect. B Metall. 2018, 54, 411–418. [Google Scholar] [CrossRef] [Green Version]
- Haga, K.; Altansukh, B.; Shibayama, A. Volatilization of Arsenic and Antimony from Tennantite/Tetrahedrite Ore by a Roasting Process. Mater. Trans. 2018, 59, 1396–1403. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.; Wen, P.; Ouyang, Z.; Hu, Y.; Tang, C.; Xia, Z. Clean and SO2-Free Method for Bismuth Extraction from Bismuthinite by Multiphase Roasting: Thermodynamic Equilibria and Reaction Mechanisms. JOM 2020, 72, 3513–3520. [Google Scholar] [CrossRef]
- Jin, W.; Yang, S.; Tang, C.; Li, Y.; Chang, C.; Chen, Y. Green and Short Smelting Process of Bismuth Sulphide Concentrate with Pyrite Cinder. J. Clean. Prod. 2022, 377, 134348. [Google Scholar] [CrossRef]
- Jadhav, R.A.; Fan, L.S. Capture of Gas-Phase Arsenic Oxide by Lime: Kinetic and Mechanistic Studies. Environ. Sci. Technol. 2001, 35, 794–799. [Google Scholar] [CrossRef]
- Zhang, W.; Che, J.; Xia, L.; Wen, P.; Chen, J.; Ma, B.; Wang, C. Efficient Removal and Recovery of Arsenic from Copper Smelting Flue Dust by a Roasting Method: Process Optimization, Phase Transformation and Mechanism Investigation. J. Hazard. Mater. 2021, 412, 125232. [Google Scholar] [CrossRef]
- Tan, C.; Li, L.; Zhong, D.; Wang, H.; Li, K. Separation of Arsenic and Antimony from Dust with High Content of Arsenic by a Selective Sulfidation Roasting Process Using Sulfur. Trans. Nonferrous Met. Soc. China 2018, 28, 1027–1035. [Google Scholar] [CrossRef]
- Liu, H.; Pan, W.-P.; Wang, C.; Zhang, Y. Volatilization of Arsenic During Coal Combustion Based on Isothermal Thermogravimetric Analysis at 600–1500 °C. Energy Fuels 2016, 30, 6790–6798. [Google Scholar] [CrossRef]
- Aracena, A.; Ruiz, M.C.; Padilla, R. Oxidación de Enargita En Atmosferas de Nitrógeno-Oxígeno a Temperaturas Altas. IBEROMET XI, X CONAMET/SAM 2010, 2. [Google Scholar]
- Nakazawa, S.; Yazawa, A.; Jorgensen, F.R.A. Simulation of the Removal of Arsenic during the Roasting of Copper Concentrate. Metall. Mater. Trans. B 1999, 30, 393–401. [Google Scholar] [CrossRef]
- Fukuzawa, R.; Rao, S.R.; The Metallurgy and Materials Society Environment Section; Metals & Minerals Processing & the Environment in Memory of Dr. Ram Rao Symposium 2014.09.28-10.01 Vancouver, B.; Conference of Metallurgists 53 2014.09.28-10.01 Vancouver, B.; COM 53 2014.09.28-10.01 Vancouver, B. Metals and Mineral Processing and the Environment in Memory of Dr. Ram Rao, Proceedings of the COM 2014, Conference of Metallurgists, 28 September–1 October 2014, Hyatt Regency Hotel, Vancouver, BC, Canada; Canadian Inst. of Mining, Metallurgy and Petroleum: Vancouver, BC, Canada, 2014; ISBN 9781926872247. [Google Scholar]
- Safarzadeh, M.S.; Howard, S.M.; Miller, J.D. Analysis and Visualization of Enargite and Tennantite Roasting Using Cu-As-S-O System Predominance Volume Diagrams. Vacuum 2018, 156, 78–90. [Google Scholar] [CrossRef]
- Winkel, L.; Wochele, J.; Ludwig, C.; Alxneit, I.; Sturzenegger, M. Decomposition of Copper Concentrates at High-Temperatures: An Efficient Method to Remove Volatile Impurities. Miner. Eng. 2008, 21, 731–742. [Google Scholar] [CrossRef]
- Bruckard, W.J.; Davey, K.J.; Jorgensen, F.R.A.; Wright, S.; Brew, D.R.M.; Haque, N.; Vance, E.R. Development and Evaluation of an Early Removal Process for the Beneficiation of Arsenic-Bearing Copper Ores. Miner. Eng. 2010, 23, 1167–1173. [Google Scholar] [CrossRef]
- Yin, Z.; Lu, W.; Xiao, H. Arsenic Removal from Copper–Silver Ore by Roasting in Vacuum. Vacuum 2014, 101, 350–353. [Google Scholar] [CrossRef]
- Padilla, R.; Chambi, L.C.; Ruiz, M.C. Antimony Production by Carbothermic Reduction of Stibnite in the Presence of Lime. J. Min. Metall. Sect. B Metall. 2014, 50, 5–13. [Google Scholar] [CrossRef]
- Anderson, C.G. The Metallurgy of Antimony. Geochemistry 2012, 72, 3–8. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, C.; Zhu, X.; Ma, Z.; Li, L.; Zhang, L. Direct Preparation of Micro and Nano Antimony Trioxide Using Antimony Concentrate via Microwave Roasting: Mechanism and Process. Ceram. Int. 2022, 48, 23828–23839. [Google Scholar] [CrossRef]
- Zhan, J.; Wang, Z.J.; Zhang, C.F.; Hwang, J.Y.; Xia, C.P. Separation and Extraction of Bismuth and Manganese from Roasted Low-Grade Bismuthinite and Pyrolusite: Thermodynamic Analysis and Sulfur Fixing. JOM 2015, 67, 1114–1122. [Google Scholar] [CrossRef]
- Adham, K.; Harris, C. Two-stage fluid bed reactor for arsenic removal and fixation. In Proceedings of the Conference of Metallurgist (COM 2014), Canadian Institute of Mining, Metallurgy, and Petroleum, Vancouver, BC, Canada, 28 September–1 October 2014. [Google Scholar]
- Yang, Y.B.; Cui, L.N.; Li, X.S.; Li, Q.; Jiang, T.; Ge, J. Novel Technology on Preparation of Double-Layered Pellets for Sulfur and Arsenic-Bearing Gold Concentrates. J. Cent. South Univ. 2013, 20, 2967–2973. [Google Scholar] [CrossRef]
- Liu, S.; Su, Z.; Cai, Y.; Jiang, T.; Zhang, Y. An Efficient and Clean Method for the Selective Separation of Arsenic from Scrap Copper Anode Slime Containing High Arsenic and Tin. J. Clean. Prod. 2022, 354, 131640. [Google Scholar] [CrossRef]
- Mihajlovic, I.; Strbac, N.; Zivkovic, Z.; Kovacevic, R.; Stehernik, M. A Potential Method for Arsenic Removal from Copper Concentrates. Miner. Eng. 2007, 20, 26–33. [Google Scholar] [CrossRef]
- Lin, Y.; Hu, X.; Zi, F.; Chen, Y.; Chen, S.; Li, X.; Li, J.; Jiang, Y.; Zhang, Y. Rapid Gold Cyanidation from a Sulfur-High and Arsenic-High Micro-Fine Concentrate via Facile Two-Stage Roasting Pre-Treatment. Miner. Eng. 2022, 190, 107938. [Google Scholar] [CrossRef]
- YAO, W.; MIN, X.; LI, Q.; LI, K.; WANG, Y.; WANG, Q.; LIU, H.; QU, S.; DONG, Z.; QU, C.; et al. Formation of Arsenic−copper-Containing Particles and Their Sulfation Decomposition Mechanism in Copper Smelting Flue Gas. Trans. Nonferrous Met. Soc. China 2021, 31, 2153–2164. [Google Scholar] [CrossRef]
- HSC Chemistry [Software], Metso:Outotec 2023. Available online: https://www.metso.com/portfolio/hsc-chemistry/ (accessed on 23 June 2023).
- Ouyang, Z.; Ye, L.; Tang, C.; Chen, Y. Phase and Morphology Transformations in Sulfur-Fixing and Reduction Roasting of Antimony Sulfide. Metals 2019, 9, 79. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Chen, Y.; Xue, H.; Tang, C.; Yang, S.; Tang, M. One-Step Extraction of Antimony in Low Temperature from Stibnite Concentrate Using Iron Oxide as Sulfur-Fixing Agent. Metals 2016, 6, 153. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Zhao, P.; Zhu, X.; Srinivasakannan, C.; Chen, M.; Zhang, M. A Novel Production Method of Antimony Trioxide from Stibnite Concentrate and the Dielectric Properties of Antimony Sulfide with Different Desulfurizer. Miner. Eng. 2021, 171, 107097. [Google Scholar] [CrossRef]
- Li, Y.; Xue, H.; Taskinen, P.; Jokilaakso, A.; Tang, C.; Jin, W.; Rämä, M.; Chen, Y.; Yang, S. Clean Antimony Production from Stibnite Concentrate with Goethite Residue Co-Treatment for Zinc, Iron, Sulfur Conservation. J. Clean. Prod. 2021, 313, 127847. [Google Scholar] [CrossRef]
- Li, Y.; Xue, H.; Taskinen, P.; Yang, S.; Tang, C.; Jin, W.; Chen, Y.; Jokilaakso, A. Sustainable Phase-Conversion Method for Antimony Extraction and Sulfur Conservation and Waste Treatment at Low Temperature. J. Clean. Prod. 2020, 268, 121950. [Google Scholar] [CrossRef]
- Ye, L.; Tang, C.; Chen, Y.; Yang, S.; Yang, J.; Zhang, W. One-Step Extraction of Antimony from Low-Grade Stibnite in Sodium Carbonate—Sodium Chloride Binary Molten Salt. J. Clean. Prod. 2015, 93, 134–139. [Google Scholar] [CrossRef]
- Lin, W.; Yang, S.; Tang, C.; Chen, Y.; Ye, L. One-Step Extraction of Bismuth from Bismuthinite in Sodium Carbonate–Sodium Chloride Molten Salt Using Ferric Oxide as Sulfur-Fixing Agent. RSC Adv. 2016, 6, 49717–49723. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, S.; Taskinen, P.; Peng, N.; Peng, B.; Jokilaakso, A.; Liu, H.; Liang, Y.; Zhao, Z.; Wang, Z. Treatment of High-Arsenic Copper Smelting Flue Dust with High Copper Sulfate: Arsenic Separation by Low Temperature Roasting. Miner Eng. 2021, 164, 106796. [Google Scholar] [CrossRef]
- Wu, G.; Wang, T.; Chen, G.; Shen, Z.; Pan, W.-P. Coal Fly Ash Activated by NaOH Roasting: Rare Earth Elements Recovery and Harmful Trace Elements Migration. Fuel 2022, 324, 124515. [Google Scholar] [CrossRef]
- Song, B.; Song, M.; Chen, D.; Cao, Y.; Meng, F.; Wei, Y. Retention of Arsenic in Coal Combustion Flue Gas at High Temperature in the Presence of CaO. Fuel 2020, 259, 116249. [Google Scholar] [CrossRef]
- Yang, K.; Qin, W.; Liu, W. Extraction of Metal Arsenic from Waste Sodium Arsenate by Roasting with Charcoal Powder. Metals 2018, 8, 542. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Deng, J.; Jiang, W.; Zha, G.; Yang, B. Removal of Arsenic, Lead and Bismuth from Copper Anode Slime by a One-Step Sustainable Vacuum Carbothermal Reduction Process. Sep. Purif. Technol. 2022, 123059. [Google Scholar] [CrossRef]
- Shi, T.; He, J.; Zhu, R.; Yang, B.; Xu, B. Arsenic Removal from Arsenic–Containing Copper Dust by Vacuum Carbothermal Reduction–Vulcanization Roasting. Vacuum 2021, 189, 110213. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, Z.; Xu, W.; Qin, W.; Lei, J.; Dong, Z.; Liang, Y. Arsenic Removal from Copper Slag Matrix by High Temperature Sulfide-Reduction-Volatilization. J. Hazard. Mater. 2021, 415, 125642. [Google Scholar] [CrossRef]
Mine/Region | Chuquicamata Concentrate | Northern Chile Sulfide Minerals |
---|---|---|
Element | ||
Cu | 31.8–33.5 | 1.49 |
As | 0.48–0.79 | <0.1 |
Sb | 0.012–0.042 | - |
Bi | 0.0069–0.011 | - |
Compound/Element * | A | B | Reference |
---|---|---|---|
As (1) | −20,689 | 10.62 | [32] |
Sb (1) | −28,535 | 12.336 | [33] |
Sb2S3 (2) | −(10,490 200) | 13.96 0.2 | [34] |
Bi (1) | −21,702 | 11.75 | [32] |
Compound | Material * | Experimental Technique * | Volatilization | Reference |
---|---|---|---|---|
Sb2O3 | M [32], C [35], S [28,30,31] | TG [28,30,31,35], TG/DSC [32] | 823–1423 K | [28,30,31,32,35] |
SbO2 | S | TG | >1423 K | [28,31] |
Sb2S3 | S | TG [28,29,31], TG/DSC [36] | 973–1423 K | [28,29,31,36] |
Sb | S | TG | 1223 K | [28,29] |
Cu12Sb4S13 | M | TG | 973–1473 K | [36,37] |
Bi2S3 | C [38], S [39] | TG/DSC [38], TG/MS [39] | No | [38,39] |
Bi2O3 | C | TG/DSC | No | [40] |
As2O3 | C [35,41,42], S [40,43] | TG [40,42], TG/DSC [35,41,43] | 623–1273 K | [35,40,41,42,43] |
Cu3AsS4 | M [14,44,45,46], C [17,47,48] | TG [14,44,45,46,47], FB [48], TG/DSC [17] | 848–1773 K | [14,17,44,45,46,47,48] |
Cu12As4S13 | M [37,49], C [45,48,50] | TG [37,47,49,50], TG/DTG [48] | 848–1773 K | [37,47,48,49,50] |
Compound | Material * | Reagents | Experimental Technique * | Volatilization | Reference |
---|---|---|---|---|---|
Sb2O3 | S | O2 (g) | TG | No | [51] |
Sb2S3 | C [52,53], S [28,29] | O2 (g) | TG/DSC | No | [28,29,52,53] |
Sb | S | O2 (g) | TG | No | [29] |
Cu12Sb4S13 | M | O2 (g) | TG | 773–1473 K | [37] |
Bi2S3 | M | MnO2, Mn2O3, O2 (g) | TG | No | [54] |
As2S3 | C | O2 (g) | FB | 873–1173 K | [48,55] |
As2O3 | C [56], NA [45] | Ca(OH)2, Fe2O3, O2 (g) | TG [56], NA [45] | No | [45,56] |
As4O6 | C [41,57], S [40] | CaO, Cu2O, CuO, Fe2O3, O2 (g) | TG [40], TG/DSC [41,57] | No | [40,41,57] |
Cu3AsS4 | M | O2 (g) | TG | 648–898 K | [14,47,58,59] |
Cu12As4S13 | M [36], C [50] | O2 (g) | TG | 723–1323 K | [36,50] |
FeAsS | C [56,59], NA [45] | O2 (g) | TG [56,59], NA [45] | 673–1173 K | [45,56,59] |
Cu3(AsO4)2 | NA | FeS2, O2 (g) | NA | >873 K | [60] |
Ca2As2O7 | S | O2 (g) | TG | >1223 K | [40] |
Compound | Material * | Reagents | Experimental Technique * | Volatilization | Reference |
---|---|---|---|---|---|
Sb2O3 | C [52], S [31,62] | Fe, FeO, Fe2O3, C, Sb2S3 | TG | No | [31,52,62] |
Sb2S3 | C [63,64], S [31,36,52,65,66,67] | C, CO (g), CaO, Fe2O3, Na2CO3, Fe3O4, ZnO | TG [31,51,63,64], TG/DSC [36], TG/DTA [65,66,67] | No | [31,36,51,63,64,65,66,67] |
SbO2 | S | C, CO (g) | TG | No | [28] |
Cu12Sb4S13 | C | CuO | TG | No | [68] |
Bi2S3 | C [38,68], S [39] | C, CO (g), CO2 (g), Fe3O4, Fe2O3, FeO | TG/DTG [68], TG/DSC [38], TG/MS [39] | No | [38,39,68] |
Bi2O3 | C [38], S [39] | C, CO (g), CO2 (g), Fe3O4, Fe2O3 | TG/DSC [38], TG/MS [39] | No | [38,39] |
As2O3 | C [41,69,70], S [71] | C, CuSO4, CuS, NaOH, CaSO4 | TG [71], TG/DTG [69], TG/DSC [41,70] | No | [41,69,70,71] |
As2O5 | C | C, CO (g), NaOH | TG/DTG [69], TG/DSC [41,70] | No | [41,69,70] |
Cu3(AsO4)2 | C | C, H2SO4, FeS2, FeS | TG/DTG [69], TG/DSC [41] | 573–823 K | [41,69] |
Na6As2O8 | C | C | ISP/AES [71], TG [72] | 873–1073 K | [71,72] |
FeAsO4 | C | NaOH | TG/DSC | No | [70] |
Bi(AsO4) | C | C, CO (g) | NA | No | [73] |
Zn3(AsO4)2 | C | C, CO (g) | TG | No | [74] |
FeAsO4 | S | CaO, Fe2O3, SiO2, Na2CO3 | TG | 1273–1523 K | [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aracena, A.; Véliz, M.; Jerez, O.; Balladares, E.; Pérez-Tello, M. An Overview of the Behavior of Concentrates with Arsenic, Antimony, and Bismuth under Roasting Conditions. Minerals 2023, 13, 942. https://doi.org/10.3390/min13070942
Aracena A, Véliz M, Jerez O, Balladares E, Pérez-Tello M. An Overview of the Behavior of Concentrates with Arsenic, Antimony, and Bismuth under Roasting Conditions. Minerals. 2023; 13(7):942. https://doi.org/10.3390/min13070942
Chicago/Turabian StyleAracena, Alvaro, Miguel Véliz, Oscar Jerez, Eduardo Balladares, and Manuel Pérez-Tello. 2023. "An Overview of the Behavior of Concentrates with Arsenic, Antimony, and Bismuth under Roasting Conditions" Minerals 13, no. 7: 942. https://doi.org/10.3390/min13070942
APA StyleAracena, A., Véliz, M., Jerez, O., Balladares, E., & Pérez-Tello, M. (2023). An Overview of the Behavior of Concentrates with Arsenic, Antimony, and Bismuth under Roasting Conditions. Minerals, 13(7), 942. https://doi.org/10.3390/min13070942