The Role of Reductive Carbonaceous Surrounding Rocks in the Formation of Porphyry Mo Deposits
Abstract
:1. Introduction
2. Geological Characteristics of Porphyry Mo Deposits and Their Relationship with Carbonaceous Surrounding Rocks
2.1. Nannihu-Sandaozhuang-Shangfanggou Mo-(W) Porphyry-Skarn Deposits
2.2. Shapinggou Porphyry Mo Deposit
2.3. Yuchiling Porphyry Mo Deposit
2.4. Mt. Emmons Porphyry Mo Deposit
3. Discussion
3.1. Redox State Transformation
3.2. Involvement of Carbonaceous Surrounding Rocks
3.3. CH4 as an Important Reductive Component
3.4. Stage of Involvement of Carbonaceous Surrounding Rocks
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- U.S. Geological Survey. USGS Mineral Commodity Summaries 2023; U.S. Geological Survey: Reston, VA, USA, 2023.
- Sillitoe, R.H. Types of porphyry molybdenum deposits. Min. Mag. 1980, 142, 550–553. [Google Scholar]
- Seedorff, E.; Marco, T.E. Henderson Porphyry Molybdenum System, Colorado: I. Sequence and Abundance of Hydrothermal Mineral Assemblages, Flow Paths of Evolving Fluids, and Evolutionary Style. Econ. Geol. Bull. Soc. Econ. Geol. 2004, 99, 3–37. [Google Scholar] [CrossRef] [PubMed]
- Seedorff, E.; Marco, T.E. Henderson Porphyry Molybdenum System, Colorado: II. Decoupling of Introduction and Deposition of Metals during Geochemical Evolution of Hydrothermal Fluids. Econ. Geol. Bull. Soc. Econ. Geol. 2004, 99, 39–72. [Google Scholar] [CrossRef]
- Ludington, S.; Plumlee, G.S. Climax-Type Porphyry Molybdenum Deposits; US Geological Survey Open-File Report; U.S. Geological Survey: Reston, VA, USA, 2009; Volume 1215.
- Heintze, L. Geology and Geochemistry of the Porphyry Stockwork Molybdenum Deposit at Tamboras, La Negra Zone (Peru). Econ. Geol. 1985, 80, 2019–2027. [Google Scholar] [CrossRef]
- Linnen, R.L.; Williams-Jones, A.E. Evolution of Aqueous-Carbonic Fluids during Contact Metamorphism, Wall-Rock Alteration, and Molybdenite Deposition at Trout Lake, British Columbia. Econ. Geol. 1990, 85, 1840–1856. [Google Scholar] [CrossRef]
- Carten, R.B.; White, W.H.; Stein, H.J. High-Grade Granite-Related Molybdenum Systems: Classification and Origin; Special Paper; Geological Association of Canada: St. John’s, NL, Canada, 1993; Volume 40, pp. 521–554. [Google Scholar]
- Selby, D.; Nesbitt, B.E.; Muehlenbachs, K.; Prochaska, W. Hydrothermal Alteration and Fluid Chemistry of the Endako Porphyry Molybdenum Deposit, British Columbia. Econ. Geol. 2000, 95, 183–202. [Google Scholar] [CrossRef] [Green Version]
- Lawley, C.J.M.; Richards, J.P.; Anderson, R.G.; Creaser, R.A.; Heaman, L.M. Geochronology and Geochemistry of the MAX Porphyry Mo Deposit and Its Relationship to Pb-Zn-Ag Mineralization, Kootenay Arc, Southeastern British Columbia, Canada. Econ. Geol. 2010, 105, 1113–1142. [Google Scholar] [CrossRef]
- Tang, J.X.; Chen, Y.C.; Wang, D.H.; Wang, C.H.; Xu, Y.p.; Qu, W.J.; Huang, W.; Huang, Y. Re-Os Dating of Molybdenite from the Sharang Porphyry Molybdenum Deposit in Gongbógyamda County, Tibet and Its Geological Significance. Acta Geol. Sin. 2009, 5, 698–704. [Google Scholar]
- Liu, J.; Mao, J.W.; Wu, G.; Wang, F.; Luo, D.F.; Hu, Y.Q. Zircon U-Pb and molybdenite Re-Os dating of the Chalukou porphyry Mo deposit in the northern Great Xing’an Range, China and its geological significance. J. Asian Earth Sci. 2014, 79, 696–709. [Google Scholar] [CrossRef]
- Liu, Y.H.; Ma, R.; Chen, Z.Y.; Gan, Y.Y.; He, F.; Li, X.Z.; Quan, Z.X.; Zhao, Q.X.; Amu, G.L. Geological characteristics and prospecting indicator of Caosiyao Mo deposit, Inner Mongolia. Glob. Geol. 2014, 2, 426–432. [Google Scholar]
- Wang, G.R.; Wu, G.; Wu, H.; Liu, J.; Li, X.Z.; Xu, L.Q.; Zhang, T.; Quan, Z.X. Fluid inclusion and hydrogen-oxygen isotope study of Caosiyao superlarge porphyry molybdenum deposit in Xinghe County, central Inner Mongolia. Miner. Depos. 2014, 6, 1213–1232. [Google Scholar]
- Li, H.; Sun, H.S.; Wu, J.H.; Evans, N.J.; Xi, X.S.; Peng, N.L.; Cao, J.Y.; Gabo-Ratio, J.A.S. Re–Os and U–Pb geochronology of the Shazigou Mo polymetallic ore field, Inner Mongolia: Implications for Permian–Triassic mineralization at the northern margin of the North China Craton. Ore Geol. Rev. 2017, 83, 287–299. [Google Scholar] [CrossRef]
- Sun, H.S.; Li, H.; Danišík, M.; Xia, Q.L.; Jiang, C.L.; Wu, P.; Yang, H.; Fan, Q.R.; Zhu, D.S. U–Pb and Re–Os geochronology and geochemistry of the Donggebi Mo deposit, Eastern Tianshan, NW China: Insights into mineralization and tectonic setting. Ore Geol. Rev. 2017, 86, 584–599. [Google Scholar] [CrossRef]
- Liao, M.Q.; Lai, Y.; Zhou, Y.T.; Shu, Q.H. Zircon U-Pb Dating and Geochemical Analysis of Ore-Bearing Intrusions of Dasuji Porphyry Mo Deposit. Acta Sci. Nat. Univ. Pekin. 2018, 54, 763–780. [Google Scholar]
- Xue, Q.Q.; Zhang, L.P.; Chen, S.; Guo, K.; Li, T.; Han, Z.; Sun, W.D. Tracing black shales in the source of a porphyry Mo deposit using molybdenum isotopes. Geology 2023, 51, 688–692. [Google Scholar] [CrossRef]
- Li, N.; Chen, Y.J.; Zhang, H.; Zhao, T.P.; Deng, X.H.; Wang, Y.; Ni, Z.Y. Molybdenum deposits in East Qinling. Earth Sci. Front. 2007, 14, 186–198. [Google Scholar]
- Chen, Y.J.; Li, N. Nature of ore-fluids of intracontinental intrusion-related hypothermal deposits and its difference from those in island arcs. Acta Petrol. Sin. 2009, 25, 2477–2508. [Google Scholar]
- Li, C.Y.; Wang, F.Y.; Hao, X.L.; Ding, X.; Zhang, H.; Ling, M.X.; Zhou, J.B.; Li, Y.L.; Fan, W.-M.; Sun, W.-D. Formation of the World’s Largest Molybdenum Metallogenic Belt: A Plate-Tectonic Perspective on the Qinling Molybdenum Deposits. Int. Geol. Rev. 2012, 54, 1093–1112. [Google Scholar] [CrossRef]
- Chen, Y.J.; Li, N.; Deng, X.H. Molybdenum Mineralization in Qinling Orogeny; Science Press: Beijing, China, 2020. [Google Scholar]
- Liu, Q.; Li, H.; Shao, Y.; Bala Girei, M.; Jiang, W.; Yuan, H.; Zhang, X. Age, Genesis, and Tectonic Setting of the Qiushuwan Cu–Mo Deposit in East Qinling (Central China): Constraints from Sr–Nd–Hf Isotopes, Zircon U–Pb and Molybdenite Re–Os Dating. Ore Geol. Rev. 2021, 132, 103998. [Google Scholar] [CrossRef]
- Roedder, E. Fluid Inclusion Studies on the Porphyry-Type Ore Deposits at Bingham, Utah, Butte, Montana, and Climax, Colorado. Econ. Geol. 1971, 66, 98–118. [Google Scholar] [CrossRef]
- Thomas, J.A.; Galey, J.T. Exploration and Geology of the Mt. Emmons Molybdenite Deposits, Gunnison County, Colorado. Econ. Geol. 1982, 77, 1085–1104. [Google Scholar] [CrossRef]
- Yang, Y.F.; Li, N.; Ni, Z.Y. Fluid inclusion study of the Jinduicheng porphyry Mo deposit, Hua country, Shanxi province. Acta Petrol. Sin. 2009, 25, 2983–2993. [Google Scholar]
- Yang, Y.; Chen, Y.J.; Zhang, J.; Zhang, C. Ore Geology, Fluid Inclusions and Four-Stage Hydrothermal Mineralization of the Shangfanggou Giant Mo–Fe Deposit in Eastern Qinling, Central China. Ore Geol. Rev. 2013, 55, 146–161. [Google Scholar] [CrossRef]
- Zhang, J.; Ye, H.S.; Shi, M.C.; Meng, F. Metallogenic process of the Yuchiling Mo deposit in East Qinling: Constraints from fluid inclusions. Geol. Bull. China 2013, 32, 1113–1128. [Google Scholar]
- Zhang, J.; Ye, H.S.; Zhou, K.; Meng, F. Processes of Ore Genesis at the World-Class Yuchiling Molybdenum Deposit, Henan Province, China. J. Asian Earth Sci. 2014, 79, 666–681. [Google Scholar] [CrossRef]
- Audétat, A. Compositional Evolution and Formation Conditions of Magmas and Fluids Related to Porphyry Mo Mineralization at Climax, Colorado. J. Petrol. 2015, 56, 1519–1546. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, H.; Caulfield, J.; Mao, J.; Hu, R. Controls on the Formation of Porphyry Mo Deposits: Insights from Porphyry (-Skarn) Mo Deposits in Northeastern China. Am. Mineral. 2022, 107, 1736–1751. [Google Scholar] [CrossRef]
- Mengason, M.J.; Candela, P.A.; Piccoli, P.M. Molybdenum, Tungsten and Manganese Partitioning in the System Pyrrhotite–Fe–S–O Melt–Rhyolite Melt: Impact of Sulfide Segregation on Arc Magma Evolution. Geochim. Cosmochim. Acta 2011, 75, 7018–7030. [Google Scholar] [CrossRef]
- Chiaradia, M. Copper enrichment in arc magmas controlled by overriding plate thickness. Nat. Geosci. 2014, 7, 43–46. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, Y.C.; Han, S.J.; Meng, F. Geochemistry of Zircon and Apatite from the Mo Ore-Forming Granites in the Dabie Mo Belt, East China: Implications for Petrogenesis and Mineralization. Ore Geol. Rev. 2020, 126, 103733. [Google Scholar] [CrossRef]
- Sun, W.; Huang, R.; Li, H.; Hu, Y.; Zhang, C.; Sun, S.; Zhang, L.; Ding, X.; Li, C.; Zartman, R.E. Porphyry Deposits and Oxidized Magmas. Ore Geol. Rev. 2015, 65, 97–131. [Google Scholar] [CrossRef]
- Ballard, J.R.; Palin, M.J.; Campbell, I.H. Relative Oxidation States of Magmas Inferred from Ce(IV)/Ce(III) in Zircon: Application to Porphyry Copper Deposits of Northern Chile. Contrib. Miner. Pet. 2002, 144, 347–364. [Google Scholar] [CrossRef]
- Burnham, A.D.; Berry, A.J. An Experimental Study of Trace Element Partitioning between Zircon and Melt as a Function of Oxygen Fugacity. Geochim. Cosmochim. Acta 2012, 95, 196–212. [Google Scholar] [CrossRef]
- Muñoz, M.; Charrier, R.; Fanning, C.M.; Maksaev, V.; Deckart, K. Zircon trace element and O-Hf isotope analyses of mineralized intrusions from El Teniente ore deposit, Chilean Andes: Constraints on the source and magmatic evolution of porphyry Cu-Mo related magmas. J. Petrol. 2012, 53, 1091–1122. [Google Scholar] [CrossRef] [Green Version]
- Trail, D.; Bruce Watson, E.; Tailby, N.D. Ce and Eu Anomalies in Zircon as Proxies for the Oxidation State of Magmas. Geochim. Cosmochim. Acta 2012, 97, 70–87. [Google Scholar] [CrossRef]
- Zhang, D. Chemistry, Mineralogy and Crystallization Conditions of Porphyry Mo-Forming Magmas at Urad–Henderson and Silver Creek, Colorado, USA. J. Petrol. 2017, 58, 277–296. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Zeng, Q.; Chu, S.; Zhou, L.; Yang, Y. Magmatic Oxygen Fugacities of Porphyry Mo Deposits in the East Xing’an-Mongolian Orogenic Belt (NE China) with Metallogenic Implications. J. Asian Earth Sci. 2018, 165, 145–159. [Google Scholar] [CrossRef]
- Li, Y.H.; Duan, C.; Zeng, P.S.; Jian, W.; Wan, Q.; Hu, G.-Y.; Zhao, X.-Y.; Wu, X.-P. The Role of Reductive Carbonaceous Strata in the Formation of Porphyry Copper Ores. Acta Geosci. Sin. 2020, 41, 637–650. [Google Scholar]
- Xing, K.; Shu, Q.; Lentz, D.R. Constraints on the Formation of the Giant Daheishan Porphyry Mo Deposit (NE China) from Whole-Rock and Accessory Mineral Geochemistry. J. Petrol. 2021, 62, egab018. [Google Scholar] [CrossRef]
- Xu, L.L.; Bi, X.W.; Zhang, X.C.; Huang, M.L.; Liu, G. Mantle Contribution to the Generation of the Giant Jinduicheng Porphyry Mo Deposit, Central China: New Insights from Combined in-Situ Element and Isotope Compositions of Zircon and Apatite. Chem. Geol. 2023, 616, 121238. [Google Scholar] [CrossRef]
- Jiang, Z.; Shang, L.; Guo, H.; Wang, X.; Chen, C.; Zhou, Y. An Experimental Investigation into the Partition of Mo between Aqueous Fluids and Felsic Melts: Implications for the Genesis of Porphyry Mo Ore Deposits. Ore Geol. Rev. 2021, 134, 104144. [Google Scholar] [CrossRef]
- Audétat, A.; Li, W. The Genesis of Climax-Type Porphyry Mo Deposits: Insights from Fluid Inclusions and Melt Inclusions. Ore Geol. Rev. 2017, 88, 436–460. [Google Scholar] [CrossRef]
- Ouyang, H.; Mao, J.; Hu, R. Geochemistry and Crystallization Conditions of Magmas Related to Porphyry Mo Mineralization in Northeastern China. Econ. Geol. 2020, 115, 79–100. [Google Scholar] [CrossRef]
- Ouyang, H.; Mao, J.; Hu, R.; Caulfield, J.; Zhou, Z. Controls on the metal endowment of porphyry Mo deposits: Insights from the Luming porphyry Mo deposit, Northeastern China. Econ. Geol. 2021, 116, 1711–1735. [Google Scholar] [CrossRef]
- Vigneresse, J.L.; Truche, L.; Richard, A. How Do Metals Escape from Magmas to Form Porphyry-Type Ore Deposits? Ore Geol. Rev. 2019, 105, 310–336. [Google Scholar] [CrossRef]
- Li, Y.F.; Mao, J.W.; Hu, H.B.; Guo, B.J.; Bai, F.J. Geology, distribution, types and tectonic settings of Mesozoic molybdenum deposits in East Qinling area. Miner. Depos. 2005, 292–304. [Google Scholar]
- Ye, H.S.; Mao, J.W.; Li, Y.F.; Yan, C.H.; Guo, B.J.; Zhao, C.S.; Zheng, R.F.; Chen, L. Characteristics and metallogenic mechanism of Mo W and Pb Zn-Ag deposits in Nannihu ore field western Henan province. Geoscience 2006, 81, 165–174. [Google Scholar]
- Yang, Y.; Zhang, J.; Yang, Y.F.; Shi, Y.X. Characteristics of fluid indusions and its geological implication of the Shangfanggou Mo deposit in Luanchuan county, Henan province. Acta Petrol. Sin. 2009, 25, 2563–2574. [Google Scholar]
- Xiang, J.F.; Pei, R.F.; Ye, H.S.; Wang, C.Y.; Tian, Z.H. New geochronological data of granites and ores from the Nannihu-Sandaozhuang Mo (W) deposit. Geol. China 2012, 39, 1778–1789. [Google Scholar]
- Yang, Y.F.; Li, N.; Chen, Y.J. Fluid Inclusion Study of the Nannihu Giant Porphyry Mo–W Deposit, Henan Province, China: Implications for the Nature of Porphyry Ore-Fluid Systems Formed in a Continental Collision Setting. Ore Geol. Rev. 2012, 46, 83–94. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Z.J.; Deng, X.H. Mineralization Mechanisms in the Shangfanggou Giant Porphyry-Skarn Mo–Fe Deposit of the East Qinling, China: Constraints from H–O–C–S–Pb Isotopes. Ore Geol. Rev. 2017, 81, 535–547. [Google Scholar] [CrossRef]
- Skewes, M.A.; Holmgren, C.; Stern, C.R. The Donoso Copper-Rich, Tourmaline-Bearing Breccia Pipe in Central Chile: Petrologic, Fluid Inclusion and Stable Isotope Evidence for an Origin from Magmatic Fluids. Min. Depos. 2003, 38, 2–21. [Google Scholar] [CrossRef]
- Cannell, J.; Cooke, D.R.; Walshe, J.L.; Stein, H. Geology, mineralization, alteration, and structural evolution of the El Teniente porphyry Cu-Mo deposit. In Economic Geology and the Bulletin of the Society of Economic Geologists; The Economic Geology Publishing Company: Littleton, CO, USA, 2005; Volume 100, pp. 979–1003. [Google Scholar]
- Stern, C.R.; Funk, J.A.; Skewes, M.A.; Arevalo, A. Magmatic anhydrite in plutonic rocks at the El Teniente Cu-Mo deposit, Chile, and the role of sulfur and copper-rich magmas in its formation. Econ. Geol. 2007, 102, 1335–1344. [Google Scholar] [CrossRef]
- Vry, V.H.; Wilkinson, J.J.; Seguel, J.; Millan, J. Multistage Intrusion, Brecciation, and Veining at El Teniente, Chile: Evolution of a Nested Porphyry System. Econ. Geol. 2010, 105, 119–153. [Google Scholar] [CrossRef]
- Chen, Y.J.; Fu, S.G.; Hu, S.X. The main element character and its significance of different type greenstone belts in southern margin of North-China platform. J. Nanjing Univ. 1988, 1, 70–84. [Google Scholar]
- Ji, H.Z.; Chen, Y.J.; Zhao, Y.Y. Khondalite series and graphite deposits. China Non-Met. Miner. Ind. 1990, 6, 9–11. [Google Scholar]
- Donnell, J.R. Tertiary Geology and Oil-Shale Resources of the Piceance Creek Basin between the Colorado and White Rivers, Northwestern Colorado; U.S. Geological Survey: Bulletin, WA, USA, 1961; pp. 835–891.
- Roehler, H.W. Vermillion Creek coal bed, high-sulfur, radioactive coal of paludal-lacustrine origin in Wasatch Formation of Vermillion Creek basin, Wyoming and Colorado. AAPG Bull. 1979, 63, 839. [Google Scholar]
- Roehler, H.W.; Martin, P.L. Geological Investigations of the Vermillion Creek Coal Bed in the Eocene Niland Tongue of the Wasatch Formation, Sweetwater County, Wyoming; U.S. Geological Survey Professional Papers; U.S. Geological Survey: Denver, CO, USA, 1987; p. 1314.
- Sanchez, J.D. Stratigraphic Framework, Coal Zone Correlations, And Depositional Environment of The Upper Cretaceous Blackhawk Formation And Star Point Sandstone in The Scofield And Beaver Creek Areas, Nephi 30’ x 60’ Quadrangle, Wasatch Plateau Coal Field, Carbon County, Utah. Coal Investigations Map; U.S. Geological Survey: Reston, VA, USA, 1990.
- Li, Z.; Schieber, J. Composite Particles in Mudstones: Examples from the Late Cretaceous Tununk Shale Member of the Mancos Shale Formation. J. Sediment. Res. 2018, 88, 1319–1344. [Google Scholar] [CrossRef] [Green Version]
- Collins, B.A. Geology of the Coal-Bearing Mesaverde Formation (Cretaceous), Coal Basin Area, Pitkin Country, Colorado. Master’s Thesis, Colorado School of Mines, Golden, CO, USA, 2020. [Google Scholar]
- Mao, J.W.; Pirajno, F.; Xiang, J.F.; Gao, J.J.; Ye, H.S.; Li, Y.F.; Guo, B.J. Mesozoic Molybdenum Deposits in the East Qinling–Dabie Orogenic Belt: Characteristics and Tectonic Settings. Ore Geol. Rev. 2011, 43, 264–293. [Google Scholar] [CrossRef]
- Liu, X.S.; Wu, C.Y.; Huang, B. Origin and evolution of the hydrothermal system in Nannihu-Sandaozhuang molybdenum (tungsten) ore deposit, Luanchuan country, Henan province. Geochimica 1987, 7, 199–207. [Google Scholar] [CrossRef]
- Xu, G.; Tang, Z.L.; Jiao, J.G.; Han, X.B.; Zhong, J.X.; Wei, X.; Qiu, G.L. The Comparative Study on Small Intrusion Type Molybdenum Deposits of Shapingg and Jinduicheng. Northwestern Geol. 2012, 45, 367–369. [Google Scholar]
- Lu, S.M.; Li, J.S.; Ruan, L.S.; Zhao, L.L.; Huang, F.; Wang, B.H.; Zhang, H.D. The characteristics of stable isotope geochemistry of Shapinggou molybdenum deposit, Anhui province. Geoscience 2019, 33, 262–270. [Google Scholar] [CrossRef]
- Ren, Z.; Zhou, T.-F.; Yuan, F.; Zhang, H.-D. Characteristics of the metallogenic system of the Shapinggou super-large porphyry molybdenum deposit in the Dabie orogenic belt, Anhui Province. Earth Sci. Front. 2020, 27, 353–372. [Google Scholar] [CrossRef]
- Li, N.; Ulrich, T.; Chen, Y.-J.; Thomsen, T.B.; Pease, V.; Pirajno, F. Fluid Evolution of the Yuchiling Porphyry Mo Deposit, East Qinling, China. Ore Geol. Rev. 2012, 48, 442–459. [Google Scholar] [CrossRef]
- Li, N.; Chen, Y.J.; Ni, Z.Y.; Hu, H.Z. Characteristics of ore-forming fluids of the Yuchiling porphyry Mo deposit, Songxian country, Henan province, and its geological significance. Acta Petrol. Sin. 2009, 25, 2509–2522. [Google Scholar]
- Zhou, K.; Ye, H.-S.; Mao, J.-W.; Qu, W.-J.; Zhou, S.-F.; Meng, F.; Gao, Y.-L. Geological characteristics and molybdenite Re—Os isotopic dating of Yuchiling porphyry Mo deposit in western Henan Province. Miner. Depos. 2009, 28, 170–184. [Google Scholar]
- Lorenz, J.C.; Nadon, G.C. Braided-River Deposits in A Muddy Depositional Setting: The Molina Member of the Wasatch Formation (Paleogene), West-Central Colorado, U.S.A. J. Sediment. Res. 2002, 72, 376–385. [Google Scholar] [CrossRef]
- Sharp, J.E. Cave Peak, a Molybdenum-Mineralized Breccia Pipe Complex in Culberson County, Texas. Econ. Geol. 1979, 74, 517–534. [Google Scholar] [CrossRef]
- Clark, K.F. Stockwork Molybdenum Deposits in the Western Cordillera of North America. Econ. Geol. 1972, 67, 731–758. [Google Scholar] [CrossRef]
- Wallace, S.R.; MacKenzie, W.B.; Blair, R.G.; Muncaster, N.K. Geology of the Urad and Henderson Molybdenite Deposits, Clear Creek County, Colorado, with a Section on a Comparison of These Deposits with Those at Climax, Colorado. Econ. Geol. 1978, 73, 325–368. [Google Scholar] [CrossRef]
- Drake, R.M., II; Schenk, C.J.; Mercier, T.J.; Le, P.A.; Finn, T.M.; Johnson, R.C.; Woodall, C.A.; Gaswirth, S.B.; Marra, K.R.; Pitman, J.K.; et al. Assessment of Undiscovered Continuous Tight-Gas Resources in the Mesaverde Group and Wasatch Formation, Uinta-Piceance Province, Utah and Colorado, 2018; USGS Fact Sheet; U.S. Geological Survey: Reston, VA, USA, 2019.
- Wilkinson, J.J. Triggers for the Formation of Porphyry Ore Deposits in Magmatic Arcs. Nat. Geosci. 2013, 6, 917–925. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H. Geochronology and Metallogenesis of the Shapinggou Giant Porphyry Molybdenum Deposit in the Dabie Orogenic Belt. Acta Geol. Sin. 2011, 85, 12. [Google Scholar]
- Shi, Y.X.; Li, N.; Yang, Y. Ore geology and fluid inclusion geochemistry of the Sandaozhuang Mo-W deposit in Luanchuan county, Henan province. Acta Petrotogica Sin. 2009, 25, 2575–2587. [Google Scholar]
- Sun, W.; Liang, H.; Ling, M.; Zhan, M.; Ding, X.; Zhang, H.; Yang, X.; Li, Y.; Ireland, T.R.; Wei, Q. The Link between Reduced Porphyry Copper Deposits and Oxidized Magmas. Geochim. Cosmochim. Acta 2013, 103, 263–275. [Google Scholar] [CrossRef]
- Richards, J.P. The Oxidation State, and Sulfur and Cu Contents of Arc Magmas: Implications for Metallogeny. Lithos 2015, 233, 27–45. [Google Scholar] [CrossRef]
- Kelley, K.A.; Cottrell, E. The Influence of Magmatic Differentiation on the Oxidation State of Fe in a Basaltic Arc Magma. Earth Planet. Sci. Lett. 2012, 329–330, 109–121. [Google Scholar] [CrossRef]
- Kusakabe, M.; Komoda, Y.; Takano, B.; Abiko, T. Sulfur isotopic effects in the disproportionation reaction of sulfur dioxide in hydrothermal fluids: Implications for the δ34S variations of dissolved bisulfate and elemental sulfur from active crater lakes. J. Volcanol. Geotherm. Res. 2000, 97, 287–307. [Google Scholar] [CrossRef]
- Simon, A.C.; Ripley, E.M. The Role of Magmatic Sulfur in the Formation of Ore Deposits. Rev. Miner. Geochem. 2011, 73, 513–578. [Google Scholar] [CrossRef]
- Hedenquist, J.W.; Taran, Y.A. Modeling the Formation of Advanced Argillic Lithocaps: Volcanic Vapor Condensation Above Porphyry Intrusions. Econ. Geol. 2013, 108, 1523–1540. [Google Scholar] [CrossRef]
- Perello, J.; Cox, D.; Garamjav, D.; Sanjdorj, S.; Diakov, S.; Schissel, D.; Munkhbat, T.; Oyun, G. Oyu Tolgoi, Mongolia; Siluro-Devonian porphyry Cu-Au-(Mo) and high-sulfidation Cu mineralization with a Cretaceous chalcocite blanket. Econ. Geol. Bull. Soc. Econ. Geol. 2001, 96, 1407–1428. [Google Scholar] [CrossRef]
- Li, Y.H.; Xie, G.Q.; Duan, C.; Han, D. Effect of sulfate evaporate salt layer over the formation of skarn-type iron ores. Acta Geol. Sin. 2013, 87, 1324–1334. [Google Scholar]
- Li, Y.H.; Duan, C.; Han, D.; Chen, X.W.; Wang, C.L.; Yang, B.Y.; Zhang, C.; Liu, F. Effect of sulfate evaporate salt layer for formation of porphyrite iron ores in the Middle-Lower Yangtze River area. Acta Petrol. Sin. 2014, 30, 1355–1368. [Google Scholar]
- Duan, C.; Li, Y.; Mao, J.; Zhu, Q.; Xie, G.; Wan, Q.; Jian, W.; Hou, K. The Role of Evaporite Layers in the Ore-Forming Processes of Iron Oxide-Apatite and Skarn Fe Deposits: Examples from the Middle-Lower Yangtze River Metallogenic Belt, East China. Ore Geol. Rev. 2021, 138, 104352. [Google Scholar] [CrossRef]
- Guo, D.; Li, Y.; Duan, C.; Fan, C. Involvement of Evaporite Layers in the Formation of Iron Oxide-Apatite Ore Deposits: Examples from the Luohe Deposit in China and the El Laco Deposit in Chile. Minerals 2022, 12, 1043. [Google Scholar] [CrossRef]
- Ye, H.S.; Mao, J.W.; Li, Y.F.; Guo, B.J.; Zhang, C.Q.; Liu, J.; Yan, Q.R.; Liu, G.Y. SHRIMP Zircon U-Pb and Molybdenite Re-Os Dating for the Superlarge Donggou Porphyry Mo Deposit in East Qinling, China and Its Geological Implication. Acta Geol. Sin. 2006, 80, 1078–1088. [Google Scholar]
- Rowins, S.M. Reduced Porphyry Copper-Gold Deposits: A New Variation on an Old Theme. Geology 2000, 28, 491–494. [Google Scholar] [CrossRef]
- Ague, J.J.; Brimhall, G.H. Magmatic Arc Asymmetry and Distribution of Anomalous Plutonic Belts in the Batholiths of California: Effects of Assimilation, Crustal Thickness, and Depth of Crystallization. Geol. Soc. Am. Bull. 1988, 100, 912–927. [Google Scholar] [CrossRef]
- Cao, C.; Shen, P. Advances and Problems in Study of Porphyry Molybdenum Deposits. Geol. Rev. 2018, 64, 477–497. [Google Scholar] [CrossRef]
- Andersen, T.; Burke, E.A.J. Methane Inclusions in Shocked Quartz from the Gardnos Impact Breccia, South Norway. EJM 1996, 8, 927–936. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.-R.; Xie, Y.-H.; Wang, K.-Y.; Wilde, S.A. Methane-Rich Fluid Inclusions in Skarn near the Giant REE–Nb–Fe Deposit at Bayan Obo, Northern China. Ore Geol. Rev. 2004, 25, 301–309. [Google Scholar] [CrossRef]
- He, J. The Yanshanian Magmatism and Mineralization in Shapinggou Porphyry Mo-Polymetallic Deposit, Jinzhai, Anhui. Ph.D. Thesis, Hefei University of Technology, Hefei, China, 2018. [Google Scholar]
- Xu, X.C.; Lou, J.W.; Lu, S.M.; Xie, Q.Q.; Chu, P.L.; Yin, T. Re-Os ages of molybdenum-1ead-zinc polymetallic deposits and 40Ar-39Ar ages of related magmatic rocks in Yinshan area, Jinzhai, Anhui Province. Miner. Depos. 2009, 28, 621–632. [Google Scholar]
- Lu, S.M.; Ruan, L.S.; Zhao, L.L.; Wang, B.H.; Zhang, H.D.; Wang, G.G.; Chen, F. Two Stages of Diagenesis and Metallogenesis of Shapinggou Molybdenum-Lead-Zinc Ore Field in Jinzhai Country, Anhui Province. Acta Geol. Sin. 2016, 90, 1167–1181. [Google Scholar]
- Wu, H.R.; Xie, Y.L.; Zhong, R.C.; Wang, Y.; An, W.J. Geology, Fluid Inclusion and Stable Isotopes of the Yinshuisi Zn-Pb Deposit, Jinzhai County, Anhui Province. Geotecton. Metallog. 2019, 43, 967–990. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, D.; Li, Y.; Duan, C.; Fan, C.; Sun, P. The Role of Reductive Carbonaceous Surrounding Rocks in the Formation of Porphyry Mo Deposits. Minerals 2023, 13, 951. https://doi.org/10.3390/min13070951
Guo D, Li Y, Duan C, Fan C, Sun P. The Role of Reductive Carbonaceous Surrounding Rocks in the Formation of Porphyry Mo Deposits. Minerals. 2023; 13(7):951. https://doi.org/10.3390/min13070951
Chicago/Turabian StyleGuo, Dongwei, Yanhe Li, Chao Duan, Changfu Fan, and Pengcheng Sun. 2023. "The Role of Reductive Carbonaceous Surrounding Rocks in the Formation of Porphyry Mo Deposits" Minerals 13, no. 7: 951. https://doi.org/10.3390/min13070951
APA StyleGuo, D., Li, Y., Duan, C., Fan, C., & Sun, P. (2023). The Role of Reductive Carbonaceous Surrounding Rocks in the Formation of Porphyry Mo Deposits. Minerals, 13(7), 951. https://doi.org/10.3390/min13070951