Recovery of Rare Earth Elements from Coal Fly Ash with Betainium Bis(trifluoromethylsulfonyl)imide: Different Ash Types and Broad Elemental Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Materials, and Characterization
2.2. CFA Alkaline Pretreatment
2.3. Leaching and Stripping Experiments
2.3.1. Leaching
2.3.2. Stripping
2.4. Quantification of Extraction and Separation
3. Results
3.1. Elemental Compositions
3.2. Elemental Behaviors
3.2.1. REEs
3.2.2. Actinides and Trace Elements
3.2.3. Bulk Elements
4. Discussion
4.1. Class F vs. Class C CFAs
4.2. Effect of Fire Clay Coals
4.3. Evaluation of Scandium and Critical REEs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Damhus, T.; Hartshorn, R.; Hutton, A. Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005; Royal Society of Chemistry: Cambridge, UK, 2005. [Google Scholar]
- Massari, S.; Ruberti, M. Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resour. Policy 2013, 38, 36–43. [Google Scholar] [CrossRef]
- Balaram, V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front. 2019, 10, 1285–1303. [Google Scholar] [CrossRef]
- Dutta, T.; Kim, K.-H.; Uchimiya, M.; Kwon, E.E.; Jeon, B.-H.; Deep, A.; Yun, S.-T. Global demand for rare earth resources and strategies for green mining. Environ. Res. 2016, 150, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Humphries, M. Rare Earth Elements: The Global Supply Chain; DIANE Publishing Company: Collingdale, PA, USA, 2010. [Google Scholar]
- Atwood, D.A. The Rare Earth Elements: Fundamentals and Applications; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Jowitt, S.M.; Werner, T.T.; Weng, Z.; Mudd, G.M. Recycling of the rare earth elements. Curr. Opin. Green Sustain. Chem. 2018, 13, 1–7. [Google Scholar] [CrossRef]
- Long, K.R.; Van Gosen, B.S.; Foley, N.K.; Cordier, D. The Principal Rare Earth Elements Deposits of the United States: A Summary of Domestic Deposits and a Global Perspective. In Non-Renewable Resource Issues: Geoscientific and Societal Challenges; Sinding-Larsen, R., Wellmer, F.-W., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 131–155. [Google Scholar]
- Henderson, P. Chapter 1—General Geochemical Properties and Abundances of the Rare Earth Elements. In Developments in Geochemistry; Henderson, P., Ed.; Elsevier: Amsterdam, The Netherlands, 1984; Volume 2, pp. 1–32. [Google Scholar]
- Dushyantha, N.; Batapola, N.; Ilankoon, I.; Rohitha, S.; Premasiri, R.; Abeysinghe, B.; Ratnayake, N.; Dissanayake, K. The story of rare earth elements (REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geol. Rev. 2020, 122, 103521. [Google Scholar] [CrossRef]
- Alonso, E.; Sherman, A.M.; Wallington, T.J.; Everson, M.P.; Field, F.R.; Roth, R.; Kirchain, R.E. Evaluating Rare Earth Element Availability: A Case with Revolutionary Demand from Clean Technologies. Environ. Sci. Technol. 2012, 46, 3406–3414. [Google Scholar] [CrossRef]
- Zhou, B.; Li, Z.; Chen, C. Global Potential of Rare Earth Resources and Rare Earth Demand from Clean Technologies. Minerals 2017, 7, 203. [Google Scholar] [CrossRef] [Green Version]
- Haque, N.; Hughes, A.; Lim, S.; Vernon, C. Rare Earth Elements: Overview of Mining, Mineralogy, Uses, Sustainability and Environmental Impact. Resources 2014, 3, 614–635. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Zhang, G.; Pan, A.; Chen, F.; Zheng, C. Protecting the environment and public health from rare earth mining. Earth’s Future 2016, 4, 532–535. [Google Scholar] [CrossRef] [Green Version]
- American Coal Ash Association. 2021 Coal Combustion Product (CCP) Production & Use Survey Report; American Coal Ash Association: Aurora, CO, USA, 2021. [Google Scholar]
- Seredin, V.V.; Dai, S.; Sun, Y.; Chekryzhov, I.Y. Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. Appl. Geochem. 2013, 31, 1–11. [Google Scholar] [CrossRef]
- Taggart, R.K.; Hower, J.C.; Dwyer, G.S.; Hsu-Kim, H. Trends in the Rare Earth Element Content of U.S.-Based Coal Combustion Fly Ashes. Environ. Sci. Technol. 2016, 50, 5919–5926. [Google Scholar] [CrossRef] [PubMed]
- Hower, J.C.; Dai, S.; Seredin, V.V.; Zhao, L.; Kostova, I.J.; Silva, L.F.O.; Mardon, S.M.; Gurdal, G. A Note on the Occurrence of Yttrium and Rare Earth Elements in Coal Combustion Products. Coal Combust. Gasif. Prod. 2013, 5, 39–47. [Google Scholar]
- Hower, J.C.; Granite, E.J.; Mayfield, D.B.; Lewis, A.S.; Finkelman, R.B. Notes on Contributions to the Science of Rare Earth Element Enrichment in Coal and Coal Combustion Byproducts. Minerals 2016, 6, 32. [Google Scholar] [CrossRef] [Green Version]
- Mardon, S.M.; Hower, J.C. Impact of coal properties on coal combustion by-product quality: Examples from a Kentucky power plant. Int. J. Coal Geol. 2004, 59, 153–169. [Google Scholar] [CrossRef]
- Querol, X.; Fernández-Turiel, J.; López-Soler, A. Trace elements in coal and their behaviour during combustion in a large power station. Fuel 1995, 74, 331–343. [Google Scholar] [CrossRef]
- Izquierdo, M.; Querol, X. Leaching behaviour of elements from coal combustion fly ash: An overview. Int. J. Coal Geol. 2012, 94, 54–66. [Google Scholar] [CrossRef] [Green Version]
- Okeme, I.C.; Crane, R.A.; Nash, W.M.; Ojonimi, T.I.; Scott, T.B. Characterisation of rare earth elements and toxic heavy metals in coal and coal fly ash. RSC Adv. 2022, 12, 19284–19296. [Google Scholar] [CrossRef]
- Yao, Z.T.; Ji, X.; Sarker, P.; Tang, J.; Ge, L.; Xia, M.; Xi, Y. A comprehensive review on the applications of coal fly ash. Earth Sci. Rev. 2015, 141, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Sun, X.; Zhao, Q.; Yang, Y.; Wang, P. Leachability and adverse effects of coal fly ash: A review. J. Hazard. Mater. 2020, 396, 122725. [Google Scholar] [CrossRef]
- Zhang, W.; Noble, A.; Yang, X.; Honaker, R. A Comprehensive Review of Rare Earth Elements Recovery from Coal-Related Materials. Minerals 2020, 10, 451. [Google Scholar] [CrossRef]
- Kashiwakura, S.; Kumagai, Y.; Kubo, H.; Wagatsuma, K. Dissolution of Rare Earth Elements from Coal Fly Ash Particles in a Dilute H2SO4 Solvent. Open J. Phys. Chem. 2013, 3, 69–75. [Google Scholar] [CrossRef] [Green Version]
- King, J.F.; Taggart, R.K.; Smith, R.C.; Hower, J.C.; Hsu-Kim, H. Aqueous acid and alkaline extraction of rare earth elements from coal combustion ash. Int. J. Coal Geol. 2018, 195, 75–83. [Google Scholar] [CrossRef]
- Taggart, R.K.; Hower, J.C.; Hsu-Kim, H. Effects of roasting additives and leaching parameters on the extraction of rare earth elements from coal fly ash. Int. J. Coal Geol. 2018, 196, 106–114. [Google Scholar] [CrossRef]
- Stoy, L.; Diaz, V.; Huang, C.H. Preferential Recovery of Rare-Earth Elements from Coal Fly Ash Using a Recyclable Ionic Liquid. Environ. Sci. Technol. 2021, 55, 9209–9220. [Google Scholar] [CrossRef] [PubMed]
- Binnemans, K. Lanthanides and Actinides in Ionic Liquids. Chem. Rev. 2007, 107, 2592–2614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nockemann, P.; Thijs, B.; Pittois, S.; Thoen, J.; Glorieux, C.; Van Hecke, K.; Van Meervelt, L.; Kirchner, B.; Binnemans, K. Task-Specific Ionic Liquid for Solubilizing Metal Oxides. J. Phys. Chem. B 2006, 110, 20978–20992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nockemann, P.; Thijs, B.; Parac-Vogt, T.N.; Van Hecke, K.; Van Meervelt, L.; Tinant, B.; Hartenbach, I.; Schleid, T.; Ngan, V.T.; Nguyen, M.T.; et al. Carboxyl-Functionalized Task-Specific Ionic Liquids for Solubilizing Metal Oxides. Inorg. Chem. 2008, 47, 9987–9999. [Google Scholar] [CrossRef]
- Vander Hoogerstraete, T.; Onghena, B.; Binnemans, K. Homogeneous Liquid–Liquid Extraction of Rare Earths with the Betaine—Betainium Bis(trifluoromethylsulfonyl)imide Ionic Liquid System. Int. J. Mol. Sci. 2013, 14, 21353–21377. [Google Scholar] [CrossRef] [Green Version]
- Stoy, L.; Kulkarni, Y.; Huang, C.H. Optimization of Iron Removal in the Recovery of Rare-Earth Elements from Coal Fly Ash Using a Recyclable Ionic Liquid. Environ. Sci. Technol. 2022, 56, 5150–5160. [Google Scholar] [CrossRef]
- Stoy, L.; Xu, J.; Kulkarni, Y.; Huang, C.-H. Ionic Liquid Recovery of Rare-Earth Elements from Coal fly Ash: Process Efficiency and Sustainability Evaluations. ACS Sustain. Chem. Eng. 2022, 10, 11824–11834. [Google Scholar] [CrossRef]
- Hower, J.C.; Berti, D.; Winkler, C.R.; Qian, D.; Briot, N.J. High-Resolution Transmission Electron Microscopy Study of a Powder River Basin Coal-Derived Fly Ash. Minerals 2022, 12, 975. [Google Scholar] [CrossRef]
- Hower, J.; Groppo, J.; Henke, K.; Hood, M.; Eble, C.; Honaker, R.; Zhang, W.; Qian, D. Notes on the Potential for the Concentration of Rare Earth Elements and Yttrium in Coal Combustion Fly Ash. Minerals 2015, 5, 356–366. [Google Scholar] [CrossRef] [Green Version]
- Hower, J.; Qian, D.; Briot, N.; Santillan-Jimenez, E.; Hood, M.; Taggart, R.; Hsu-Kim, H. Nano-Scale Rare Earth Distribution in Fly Ash Derived from the Combustion of the Fire Clay Coal, Kentucky. Minerals 2019, 9, 206. [Google Scholar] [CrossRef] [Green Version]
- Hood, M.M.; Taggart, R.K.; Smith, R.C.; Hsu-Kim, H.; Henke, K.R.; Graham, U.; Groppo, J.G.; Unrine, J.M.; Hower, J.C. Rare Earth Element Distribution in Fly Ash Derived from the Fire Clay Coal, Kentucky. Coal Combust. Gasif. Prod. 2017, 9, 22–33. [Google Scholar] [CrossRef]
- Taggart, R.K.; Rivera, N.A.; Levard, C.; Ambrosi, J.P.; Borschneck, D.; Hower, J.C.; Hsu-Kim, H. Differences in bulk and microscale yttrium speciation in coal combustion fly ash. Environ. Sci. Process. Impacts 2018, 20, 1390–1403. [Google Scholar] [CrossRef] [Green Version]
- Hower, J.C.; Groppo, J.G.; Hopps, S.D.; Morgan, T.D.; Hsu-Kim, H.; Taggart, R.K. Coal Feed-Dependent Variation in Fly Ash Chemistry in a Single Pulverized-Combustion Unit. Minerals 2022, 12, 1071. [Google Scholar] [CrossRef]
- Seredin, V.V. A new method for primary evaluation of the outlook for rare earth element ores. Geol. Ore Depos. 2010, 52, 428–433. [Google Scholar] [CrossRef]
- United States Department of Energy. Report on Rare Earth Elements from Coal and Coal Byproducts; United States Department of Energy: Washington, DC, USA, 2017.
- Senior, C.; Granite, E.; Linak, W.; Seames, W. Chemistry of Trace Inorganic Elements in Coal Combustion Systems: A Century of Discovery. Energy Fuels 2020, 34, 15141–15168. [Google Scholar] [CrossRef]
- Findeiß, M.; Schäffer, A. Fate and environmental impact of thorium residues during rare earth processing. J. Sustain. Metall. 2017, 3, 179–189. [Google Scholar] [CrossRef]
- Zhu, Z.; Pranolo, Y.; Cheng, C.Y. Separation of uranium and thorium from rare earths for rare earth production—A review. Miner. Eng. 2015, 77, 185–196. [Google Scholar] [CrossRef]
- Vander Hoogerstraete, T.; Onghena, B.; Binnemans, K. Homogeneous Liquid–Liquid Extraction of Metal Ions with a Functionalized Ionic Liquid. J. Phys. Chem. Lett. 2013, 4, 1659–1663. [Google Scholar] [CrossRef] [PubMed]
- Mochizuki, A.; Murata, T.; Hosoda, K.; Katano, T.; Tanaka, Y.; Mimura, T.; Mitamura, O.; Nakano, S.-I.; Okazaki, Y.; Sugiyama, Y.; et al. Distributions and geochemical behaviors of oxyanion-forming trace elements and uranium in the Hövsgöl–Baikal–Yenisei water system of Mongolia and Russia. J. Geochem. Explor. 2018, 188, 123–136. [Google Scholar] [CrossRef]
- Onghena, B.; Binnemans, K. Recovery of Scandium(III) from Aqueous Solutions by Solvent Extraction with the Functionalized Ionic Liquid Betainium Bis(trifluoromethylsulfonyl)imide. Ind. Eng. Chem. Res. 2015, 54, 1887–1898. [Google Scholar] [CrossRef] [Green Version]
Sample ID | Power Plant ID (Location) | CCP Type | Feed Coal Basin (Coal Bed) | Reference |
---|---|---|---|---|
93927 | Plant LA (Missouri) | Fly ash | PRB | [17,37] |
92801 | Plant I, unit 2 (Kentucky) | ESP fly ash | App (Fire Clay coal) | [20] |
93932 | Plant W (South Carolina) | ESP fly ash | App (Fire Clay coal) | [38,39] |
93951 | Plant I, unit 1 (Kentucky) | Silo fly ash | App (Fire Clay coal) | [38,40] |
93964 | Plant H, unit 3 (Kentucky) | ESP fly ash | ILB | [41,42] |
94012 | Plant I, unit 1 (Kentucky) | ESP fly ash | App | [41,42] |
Element | 93927 | 92801 | 93932 | 93951 | 93964 | 94012 |
---|---|---|---|---|---|---|
Sc | 22.13 | 60.2 | - | - | 34.65 | 28 |
Y | 31.52 | 253 | 110 | 124 | 81.8 | 61 |
La | 46.72 | 237 | 108 | 141 | 75.01 | 84 |
Ce | 91.09 | 496 | 224 | 304 | 158.97 | 180 |
Pr | 9.4 | 58.1 | 79 | 66 | 19.13 | 20 |
Nd | 33.65 | 204 | 111 | 121 | 77.3 | 81 |
Sm | 6.52 | 48.3 | 28 | 34 | 16.42 | 17 |
Eu | 2.52 | 4.7 | 7 | 5 | 3.52 | 3.4 |
Gd | 6.75 | 26.9 | 15 | 29 | 19.02 | 17 |
Tb | 0.97 | 6.3 | 12 | 8 | 2.62 | 2.5 |
Dy | 5.52 | 41.3 | 20 | 24 | 14.66 | 16 |
Ho | 1.11 | 8.5 | 15 | 5 | 2.96 | 3.1 |
Er | 3.15 | 26.2 | 22 | 14 | 8.32 | 8.7 |
Yb | 2.81 | 23.3 | 11 | 15 | 7.43 | 8 |
Lu | 0.43 | - | 6 | 5 | 1.14 | 1.1 |
ΣREE | 264 | 1494 | 768 | 895 | 523 | 531 |
U | 21.35 | 52.6 | - | - | 16.46 | - |
Th | 6.6 | 101 | - | - | 24.05 | - |
Element | 93927 | 92801 | 93932 | 93951 | 93964 | 94012 | |
---|---|---|---|---|---|---|---|
Major Oxides (wt %) | Mg | 6.98 | 0.95 | 1.07 | 0.82 | 0.99 | 1.16 |
Al | 16.56 | 29.5 | 28.43 | 29.91 | 23.08 | 29.89 | |
Si | 29.49 | 50.1 | 54.21 | 53.47 | 48.51 | 52.64 | |
Ca | 31.1 | 2.3 | 4.01 | 1.5 | 1.89 | 2.04 | |
Ti | 1.12 | 2 | 1.6 | 1.72 | 1.22 | 1.59 | |
Fe | 4.8 | 9.9 | 7.6 | 8.46 | 22.22 | 8.41 | |
Trace Elements (ppm) | V | 192 | 359 | 486 | 516 | 401 | 496 |
Cr | 26 | 254 | 156 | 168 | 165 | 182 | |
Mn | 80 | 134 | 223 | 114 | 280 | 149 | |
Ni | 39 | 209 | 137 | 110 | 152 | 142 | |
Cu | 181 | 254 | 181 | 204 | 134 | 190 | |
Zn | 96 | 250 | 177 | 113 | 174 | 206 | |
As | 2 | 549 | 73 | 124 | 83 | 320 | |
Se | - | 239 | - | - | - | - | |
Cd | 2 | 2 | 1 | <1 | 4 | <1 | |
Pb | 63 | 186 | 81 | 100 | 69 | 183 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Hower, J.C.; Huang, C.-H. Recovery of Rare Earth Elements from Coal Fly Ash with Betainium Bis(trifluoromethylsulfonyl)imide: Different Ash Types and Broad Elemental Survey. Minerals 2023, 13, 952. https://doi.org/10.3390/min13070952
Liu T, Hower JC, Huang C-H. Recovery of Rare Earth Elements from Coal Fly Ash with Betainium Bis(trifluoromethylsulfonyl)imide: Different Ash Types and Broad Elemental Survey. Minerals. 2023; 13(7):952. https://doi.org/10.3390/min13070952
Chicago/Turabian StyleLiu, Ting, James C. Hower, and Ching-Hua Huang. 2023. "Recovery of Rare Earth Elements from Coal Fly Ash with Betainium Bis(trifluoromethylsulfonyl)imide: Different Ash Types and Broad Elemental Survey" Minerals 13, no. 7: 952. https://doi.org/10.3390/min13070952
APA StyleLiu, T., Hower, J. C., & Huang, C. -H. (2023). Recovery of Rare Earth Elements from Coal Fly Ash with Betainium Bis(trifluoromethylsulfonyl)imide: Different Ash Types and Broad Elemental Survey. Minerals, 13(7), 952. https://doi.org/10.3390/min13070952